Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55094
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡孟君(Meng-Chun Hu)
dc.contributor.authorYu-Fang Wangen
dc.contributor.author王裕方zh_TW
dc.date.accessioned2021-06-16T03:47:01Z-
dc.date.available2020-03-12
dc.date.copyright2015-03-12
dc.date.issued2015
dc.date.submitted2015-01-29
dc.identifier.citationAbella, A., P. Dubus, M. Malumbres, S. G. Rane, H. Kiyokawa et al., 2005 Cdk4 promotes adipogenesis through PPARgamma activation. Cell Metab 2: 239-249.
Aguilar, V., and L. Fajas, 2010 Cycling through metabolism. EMBO Mol Med 2: 338-348.
Amazit, L., A. Roseau, J. A. Khan, A. Chauchereau, R. K. Tyagi et al., 2011 Ligand-dependent degradation of SRC-1 is pivotal for progesterone receptor transcriptional activity. Mol Endocrinol 25: 394-408.
Ashida, H., M. Kim, M. Schmidt-Supprian, A. Ma, M. Ogawa et al., 2010 A bacterial E3 ubiquitin ligase IpaH9.8 targets NEMO/IKKgamma to dampen the host NF-kappaB-mediated inflammatory response. Nat Cell Biol 12: 66-73; sup pp 61-69.
Bagashev, A., S. Fan, R. Mukerjee, P. P. Claudio, T. Chabrashvili et al., 2013 Cdk9 phosphorylates Pirh2 protein and prevents degradation of p53 protein. Cell Cycle 12: 1569-1577.
Bastien, J., S. Adam-Stitah, T. Riedl, J. M. Egly, P. Chambon et al., 2000 TFIIH interacts with the retinoic acid receptor gamma and phosphorylates its AF-1-activating domain through cdk7. J Biol Chem 275: 21896-21904.
Beltrao, P., V. Albanese, L. R. Kenner, D. L. Swaney, A. Burlingame et al., 2012 Systematic functional prioritization of protein posttranslational modifications. Cell 150: 413-425.
Benod, C., M. V. Vinogradova, N. Jouravel, G. E. Kim, R. J. Fletterick et al., 2011 Nuclear receptor liver receptor homologue 1 (LRH-1) regulates pancreatic cancer cell growth and proliferation. Proc Natl Acad Sci U S A 108: 16927-16931.
Camp, H. S., S. R. Tafuri and T. Leff, 1999 c-Jun N-terminal kinase phosphorylates peroxisome proliferator-activated receptor-gamma1 and negatively regulates its transcriptional activity. Endocrinology 140: 392-397.
Chalkiadaki, A., and I. Talianidis, 2005 SUMO-dependent compartmentalization in promyelocytic leukemia protein nuclear bodies prevents the access of LRH-1 to chromatin. Mol Cell Biol 25: 5095-5105.
Chand, A. L., K. A. Herridge, E. W. Thompson and C. D. Clyne, 2010 The orphan nuclear receptor LRH-1 promotes breast cancer motility and invasion. Endocr Relat Cancer 17: 965-975.
Chau, V., J. W. Tobias, A. Bachmair, D. Marriott, D. J. Ecker et al., 1989 A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243: 1576-1583.
Chauchereau, A., L. Amazit, M. Quesne, A. Guiochon-Mantel and E. Milgrom, 2003 Sumoylation of the progesterone receptor and of the steroid receptor coactivator SRC-1. J Biol Chem 278: 12335-12343.
Chen, D., E. Washbrook, N. Sarwar, G. J. Bates, P. E. Pace et al., 2002 Phosphorylation of human estrogen receptor alpha at serine 118 by two distinct signal transduction pathways revealed by phosphorylation-specific antisera. Oncogene 21: 4921-4931.
Chen, R., M. J. Keating, V. Gandhi and W. Plunkett, 2005 Transcription inhibition by flavopiridol: mechanism of chronic lymphocytic leukemia cell death. Blood 106: 2513-2519.
Claudio, P. P., J. Cui, M. Ghafouri, C. Mariano, M. K. White et al., 2006 Cdk9 phosphorylates p53 on serine 392 independently of CKII. J Cell Physiol 208: 602-612.
Clyne, C. D., C. J. Speed, J. Zhou and E. R. Simpson, 2002 Liver receptor homologue-1 (LRH-1) regulates expression of aromatase in preadipocytes. J Biol Chem 277: 20591-20597.
Compe, E., P. Drane, C. Laurent, K. Diderich, C. Braun et al., 2005 Dysregulation of the peroxisome proliferator-activated receptor target genes by XPD mutations. Mol Cell Biol 25: 6065-6076.
De Falco, G., and A. Giordano, 2002 CDK9: from basal transcription to cancer and AIDS. Cancer Biol Ther 1: 342-347.
Del Castillo-Olivares, A., and G. Gil, 2000 Alpha 1-fetoprotein transcription factor is required for the expression of sterol 12alpha -hydroxylase, the specific enzyme for cholic acid synthesis. Potential role in the bile acid-mediated regulation of gene transcription. J Biol Chem 275: 17793-17799.
Desclozeaux, M., I. N. Krylova, F. Horn, R. J. Fletterick and H. A. Ingraham, 2002 Phosphorylation and intramolecular stabilization of the ligand binding domain in the nuclear receptor steroidogenic factor 1. Mol Cell Biol 22: 7193-7203.
Dikic, I., S. Wakatsuki and K. J. Walters, 2009 Ubiquitin-binding domains - from structures to functions. Nat Rev Mol Cell Biol 10: 659-671.
Fajas, L., 2013 Re-thinking cell cycle regulators: the cross-talk with metabolism. Front Oncol 3: 4.
Falender, A. E., R. Lanz, D. Malenfant, L. Belanger and J. S. Richards, 2003 Differential expression of steroidogenic factor-1 and FTF/LRH-1 in the rodent ovary. Endocrinology 144: 3598-3610.
Floyd, Z. E., and J. M. Stephens, 2002 Interferon-gamma-mediated activation and ubiquitin-proteasome-dependent degradation of PPARgamma in adipocytes. J Biol Chem 277: 4062-4068.
Francis, G. A., E. Fayard, F. Picard and J. Auwerx, 2003 Nuclear receptors and the control of metabolism. Annu Rev Physiol 65: 261-311.
Gianni, M., A. Bauer, E. Garattini, P. Chambon and C. Rochette-Egly, 2002 Phosphorylation by p38MAPK and recruitment of SUG-1 are required for RA-induced RAR gamma degradation and transactivation. Embo j 21: 3760-3769.
Giguere, V., 1999 Orphan nuclear receptors: from gene to function. Endocr Rev 20: 689-725.
Goodwin, B., S. A. Jones, R. R. Price, M. A. Watson, D. D. McKee et al., 2000 A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 6: 517-526.
Gordon, V., S. Bhadel, W. Wunderlich, J. Zhang, S. B. Ficarro et al., 2010 CDK9 regulates AR promoter selectivity and cell growth through serine 81 phosphorylation. Mol Endocrinol 24: 2267-2280.
Hammer, G. D., I. Krylova, Y. Zhang, B. D. Darimont, K. Simpson et al., 1999 Phosphorylation of the nuclear receptor SF-1 modulates cofactor recruitment: integration of hormone signaling in reproduction and stress. Mol Cell 3: 521-526.
Henchoz, S., Y. Chi, B. Catarin, I. Herskowitz, R. J. Deshaies et al., 1997 Phosphorylation- and ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor Far1p in budding yeast. Genes Dev 11: 3046-3060.
Hinshelwood, M. M., J. J. Repa, J. M. Shelton, J. A. Richardson, D. J. Mangelsdorf et al., 2003 Expression of LRH-1 and SF-1 in the mouse ovary: localization in different cell types correlates with differing function. Mol Cell Endocrinol 207: 39-45.
Hunter, T., 2007 The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell 28: 730-738.
Iankova, I., R. K. Petersen, J. S. Annicotte, C. Chavey, J. B. Hansen et al., 2006 Peroxisome proliferator-activated receptor gamma recruits the positive transcription elongation factor b complex to activate transcription and promote adipogenesis. Mol Endocrinol 20: 1494-1505.
Inoue, N., N. Yahagi, T. Yamamoto, M. Ishikawa, K. Watanabe et al., 2008 Cyclin-dependent kinase inhibitor, p21WAF1/CIP1, is involved in adipocyte differentiation and hypertrophy, linking to obesity, and insulin resistance. J Biol Chem 283: 21220-21229.
Johansson, L., J. S. Thomsen, A. E. Damdimopoulos, G. Spyrou, J. A. Gustafsson et al., 1999 The orphan nuclear receptor SHP inhibits agonist-dependent transcriptional activity of estrogen receptors ERalpha and ERbeta. J Biol Chem 274: 345-353.
Kato, S., H. Endoh, Y. Masuhiro, T. Kitamoto, S. Uchiyama et al., 1995 Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270: 1491-1494.
Kim, J. W., J. C. Havelock, B. R. Carr and G. R. Attia, 2005 The orphan nuclear receptor, liver receptor homolog-1, regulates cholesterol side-chain cleavage cytochrome p450 enzyme in human granulosa cells. J Clin Endocrinol Metab 90: 1678-1685.
Kim, J. W., N. Peng, W. E. Rainey, B. R. Carr and G. R. Attia, 2004 Liver receptor homolog-1 regulates the expression of steroidogenic acute regulatory protein in human granulosa cells. J Clin Endocrinol Metab 89: 3042-3047.
Lange, C. A., T. Shen and K. B. Horwitz, 2000 Phosphorylation of human progesterone receptors at serine-294 by mitogen-activated protein kinase signals their degradation by the 26S proteasome. Proc Natl Acad Sci U S A 97: 1032-1037.
Lee, M. B., L. A. Lebedeva, M. Suzawa, S. A. Wadekar, M. Desclozeaux et al., 2005 The DEAD-box protein DP103 (Ddx20 or Gemin-3) represses orphan nuclear receptor activity via SUMO modification. Mol Cell Biol 25: 1879-1890.
Lee, Y. K., Y. H. Choi, S. Chua, Y. J. Park and D. D. Moore, 2006 Phosphorylation of the hinge domain of the nuclear hormone receptor LRH-1 stimulates transactivation. J Biol Chem 281: 7850-7855.
Lee, Y. K., K. L. Parker, H. S. Choi and D. D. Moore, 1999 Activation of the promoter of the orphan receptor SHP by orphan receptors that bind DNA as monomers. J Biol Chem 274: 20869-20873.
Lee, Y. S., D. Chanda, J. Sim, Y. Y. Park and H. S. Choi, 2007 Structure and function of the atypical orphan nuclear receptor small heterodimer partner. Int Rev Cytol 261: 117-158.
Lewis, A. E., M. Rusten, E. A. Hoivik, E. L. Vikse, M. L. Hansson et al., 2008 Phosphorylation of steroidogenic factor 1 is mediated by cyclin-dependent kinase 7. Mol Endocrinol 22: 91-104.
Lilja, L., S. N. Yang, D. L. Webb, L. Juntti-Berggren, P. O. Berggren et al., 2001 Cyclin-dependent kinase 5 promotes insulin exocytosis. J Biol Chem 276: 34199-34205.
Lin, D. I., O. Barbash, K. G. Kumar, J. D. Weber, J. W. Harper et al., 2006 Phosphorylation-dependent ubiquitination of cyclin D1 by the SCF(FBX4-alphaB crystallin) complex. Mol Cell 24: 355-366.
Lin, H. K., S. Altuwaijri, W. J. Lin, P. Y. Kan, L. L. Collins et al., 2002a Proteasome activity is required for androgen receptor transcriptional activity via regulation of androgen receptor nuclear translocation and interaction with coregulators in prostate cancer cells. J Biol Chem 277: 36570-36576.
Lin, X., R. Taube, K. Fujinaga and B. M. Peterlin, 2002b P-TEFb containing cyclin K and Cdk9 can activate transcription via RNA. J Biol Chem 277: 16873-16878.
Liu, D. L., W. Z. Liu, Q. L. Li, H. M. Wang, D. Qian et al., 2003 Expression and functional analysis of liver receptor homologue 1 as a potential steroidogenic factor in rat ovary. Biol Reprod 69: 508-517.
Liu, H., and C. H. Herrmann, 2005 Differential localization and expression of the Cdk9 42k and 55k isoforms. J Cell Physiol 203: 251-260.
Lu, T. T., M. Makishima, J. J. Repa, K. Schoonjans, T. A. Kerr et al., 2000 Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 6: 507-515.
Luo, Y., C. P. Liang and A. R. Tall, 2001 The orphan nuclear receptor LRH-1 potentiates the sterol-mediated induction of the human CETP gene by liver X receptor. J Biol Chem 276: 24767-24773.
MacDonald, B. T., K. Tamai and X. He, 2009 Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17: 9-26.
Malumbres, M., P. Pevarello, M. Barbacid and J. R. Bischoff, 2008 CDK inhibitors in cancer therapy: what is next? Trends Pharmacol Sci 29: 16-21.
Mrosek, N., B. Meissburger, C. Mataki, E. Roeder, J. Ukropec et al., 2013 Transcriptional regulation of adipocyte formation by the liver receptor homologue 1 (Lrh1)-Small hetero-dimerization partner (Shp) network. Mol Metab 2: 314-323.
Nawaz, Z., D. M. Lonard, A. P. Dennis, C. L. Smith and B. W. O'Malley, 1999 Proteasome-dependent degradation of the human estrogen receptor. Proc Natl Acad Sci U S A 96: 1858-1862.
Nitta, M., S. Ku, C. Brown, A. Y. Okamoto and B. Shan, 1999 CPF: an orphan nuclear receptor that regulates liver-specific expression of the human cholesterol 7alpha-hydroxylase gene. Proc Natl Acad Sci U S A 96: 6660-6665.
Oosterveer, M. H., C. Mataki, H. Yamamoto, T. Harach, N. Moullan et al., 2012 LRH-1-dependent glucose sensing determines intermediary metabolism in liver. J Clin Invest 122: 2817-2826.
Pare, J. F., S. Roy, L. Galarneau and L. Belanger, 2001 The mouse fetoprotein transcription factor (FTF) gene promoter is regulated by three GATA elements with tandem E box and Nkx motifs, and FTF in turn activates the Hnf3beta, Hnf4alpha, and Hnf1alpha gene promoters. J Biol Chem 276: 13136-13144.
Peng, N., J. W. Kim, W. E. Rainey, B. R. Carr and G. R. Attia, 2003 The role of the orphan nuclear receptor, liver receptor homologue-1, in the regulation of human corpus luteum 3beta-hydroxysteroid dehydrogenase type II. J Clin Endocrinol Metab 88: 6020-6028.
Pezzi, V., R. Sirianni, A. Chimento, M. Maggiolini, S. Bourguiba et al., 2004 Differential expression of steroidogenic factor-1/adrenal 4 binding protein and liver receptor homolog-1 (LRH-1)/fetoprotein transcription factor in the rat testis: LRH-1 as a potential regulator of testicular aromatase expression. Endocrinology 145: 2186-2196.
Pickart, C. M., 1997 Targeting of substrates to the 26S proteasome. Faseb j 11: 1055-1066.
Poukka, H., U. Karvonen, O. A. Janne and J. J. Palvimo, 2000 Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc Natl Acad Sci U S A 97: 14145-14150.
Price, D. H., 2000 P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol Cell Biol 20: 2629-2634.
Rane, S. G., P. Dubus, R. V. Mettus, E. J. Galbreath, G. Boden et al., 1999 Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nat Genet 22: 44-52.
Rochette-Egly, C., 2003 Nuclear receptors: integration of multiple signalling pathways through phosphorylation. Cell Signal 15: 355-366.
Romano, G., and A. Giordano, 2008 Role of the cyclin-dependent kinase 9-related pathway in mammalian gene expression and human diseases. Cell Cycle 7: 3664-3668.
Sablin, E. P., I. N. Krylova, R. J. Fletterick and H. A. Ingraham, 2003 Structural basis for ligand-independent activation of the orphan nuclear receptor LRH-1. Mol Cell 11: 1575-1585.
Sano, M., M. Abdellatif, H. Oh, M. Xie, L. Bagella et al., 2002 Activation and function of cyclin T-Cdk9 (positive transcription elongation factor-b) in cardiac muscle-cell hypertrophy. Nat Med 8: 1310-1317.
Schoonjans, K., J. S. Annicotte, T. Huby, O. A. Botrugno, E. Fayard et al., 2002 Liver receptor homolog 1 controls the expression of the scavenger receptor class B type I. EMBO Rep 3: 1181-1187.
Seol, W., H. S. Choi and D. D. Moore, 1996 An orphan nuclear hormone receptor that lacks a DNA binding domain and heterodimerizes with other receptors. Science 272: 1336-1339.
Shao, D., S. M. Rangwala, S. T. Bailey, S. L. Krakow, M. J. Reginato et al., 1998 Interdomain communication regulating ligand binding by PPAR-gamma. Nature 396: 377-380.
Shchebet, A., O. Karpiuk, E. Kremmer, D. Eick and S. A. Johnsen, 2012 Phosphorylation by cyclin-dependent kinase-9 controls ubiquitin-conjugating enzyme-2A function. Cell Cycle 11: 2122-2127.
Simone, C., and A. Giordano, 2007 Abrogation of signal-dependent activation of the cdk9/cyclin T2a complex in human RD rhabdomyosarcoma cells. Cell Death Differ 14: 192-195.
Sirianni, R., J. B. Seely, G. Attia, D. M. Stocco, B. R. Carr et al., 2002 Liver receptor homologue-1 is expressed in human steroidogenic tissues and activates transcription of genes encoding steroidogenic enzymes. J Endocrinol 174: R13-17.
Swaney, D. L., P. Beltrao, L. Starita, A. Guo, J. Rush et al., 2013 Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 10: 676-682.
Thrower, J. S., L. Hoffman, M. Rechsteiner and C. M. Pickart, 2000 Recognition of the polyubiquitin proteolytic signal. Embo j 19: 94-102.
Tzivion, G., M. Dobson and G. Ramakrishnan, 2011 FoxO transcription factors; Regulation by AKT and 14-3-3 proteins. Biochim Biophys Acta 1813: 1938-1945.
Ubeda, M., D. M. Kemp and J. F. Habener, 2004 Glucose-induced expression of the cyclin-dependent protein kinase 5 activator p35 involved in Alzheimer's disease regulates insulin gene transcription in pancreatic beta-cells. Endocrinology 145: 3023-3031.
Ueda, H., G. C. Sun, T. Murata and S. Hirose, 1992 A novel DNA-binding motif abuts the zinc finger domain of insect nuclear hormone receptor FTZ-F1 and mouse embryonal long terminal repeat-binding protein. Mol Cell Biol 12: 5667-5672.
Venteclef, N., T. Jakobsson, A. Ehrlund, A. Damdimopoulos, L. Mikkonen et al., 2010 GPS2-dependent corepressor/SUMO pathways govern anti-inflammatory actions of LRH-1 and LXRbeta in the hepatic acute phase response. Genes Dev 24: 381-395.
Wang, S., and P. M. Fischer, 2008 Cyclin-dependent kinase 9: a key transcriptional regulator and potential drug target in oncology, virology and cardiology. Trends Pharmacol Sci 29: 302-313.
Wang, Z. N., M. Bassett and W. E. Rainey, 2001 Liver receptor homologue-1 is expressed in the adrenal and can regulate transcription of 11 beta-hydroxylase. J Mol Endocrinol 27: 255-258.
Weigel, N. L., 1996 Steroid hormone receptors and their regulation by phosphorylation. Biochem J 319 ( Pt 3): 657-667.
Yang, F. M., C. T. Pan, H. M. Tsai, T. W. Chiu, M. L. Wu et al., 2009a Liver receptor homolog-1 localization in the nuclear body is regulated by sumoylation and cAMP signaling in rat granulosa cells. Febs j 276: 425-436.
Yang, W. H., J. H. Heaton, H. Brevig, S. Mukherjee, J. A. Iniguez-Lluhi et al., 2009b SUMOylation inhibits SF-1 activity by reducing CDK7-mediated serine 203 phosphorylation. Mol Cell Biol 29: 613-625.
Yu, F. Q., C. S. Han, W. Yang, X. Jin, Z. Y. Hu et al., 2005 Activation of the p38 MAPK pathway by follicle-stimulating hormone regulates steroidogenesis in granulosa cells differentially. J Endocrinol 186: 85-96.
許閔茹, 2013 利用酵母菌雙雜交技術找尋在小鼠肝中與 LRH-1 有交互作用的蛋白質, 生理學研究所. 國立台灣大學.
黃守賢, 2010 mLRH-1 泛素化作用之探討, 生理學研究所. 國立台灣大學.
潘建廷, 2005 LRH-1 抗體製備及 LRH-1 調控 CYP11A1 之研究, 生理學研究所. 國立台灣大學.
賴財春, 2011 LRH-1 離胺酸 329 參與泛素-蛋白媒體依賴之蛋白質水解途徑, 生理學研究所. 國立台灣大學.
戴予辰, 2008 PIASy 抑制人類腎上腺細胞類固醇荷爾蒙生成基因的表現, 生理學研究所. 國立台灣大學.
謝祥燦, 2007 LRH-1 特性及其轉錄活性受 PIASy 調控之研究, 生理學研究所. 國立台灣大學.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55094-
dc.description.abstractLiver receptor homolog-1 (LRH-1;NR5A2) 隸屬於孤兒核受器,對於發育、膽固醇運輸、膽酸平衡以及固醇類荷爾蒙生成相當重要。然而,目前對於調控LRH-1的相關機制所知仍有限。本實驗室利用酵母菌雙雜交技術,於老鼠肝臟 cDNA library中找到激酶 CDK9 與LRH-1會有相互作用。經由共同免疫沉澱法,證實CDK9與LRH-1在哺乳細胞中有交互作用;利用免疫螢光染色法,偵測到CDK9 同時存在於細胞核與細胞質,在細胞核中的分布與 LRH-1有重疊。利用In vitro kinase assay 證實LRH-1可直接受到CDK9的磷酸化修飾。當同時轉染CDK9與LRH-1於HEK293T細胞中,發現 LRH-1蛋白質的量會降低;若將CDK9過量表現於HepG2肝癌細胞中,會造成內源性LRH-1蛋白質量減少,但不會影響LRH-1 mRNA表現量。另外,加入CDK9抑制劑 DRB 或以 shRNA減低CDK9在HepG2細胞的表現量,會使LRH-1蛋白質量上升,說明了CDK9會調控LRH-1蛋白質的量。利用蛋白質衰減測定,發現CDK9可降低LRH-1蛋白質半衰期。此外,CDK9調控LRH-1蛋白質量的能力會受到蛋白酶體抑制劑MG-132所抑制,且CDK9會增加LRH-1與聚泛素鏈結合。這些結果顯示,CDK9會促進LRH-1蛋白質經由蛋白酶體路徑而降解。
利用啟動子活性分析,發現CDK9 會抑制LRH-1調控 Small heterodimer partner (SHP) 與Glucokinase (GCK) 啟動子的轉錄活性。SHP與GCK參與肝細胞重要的代謝反應,增加或減少CDK9的量,會影響SHP與GCK在HepG2的表現。此外,給予CDK9抑制劑會增加 Insulin 訊息傳遞路徑中磷酸化 pAKT 與 pErk1/2蛋白質量。綜合結果說明,CDK9對於調控LRH-1蛋白質,以及肝細胞代謝相關反應,扮演著重要的角色。
zh_TW
dc.description.abstractThe orphan nuclear receptor liver receptor homolog-1 (LRH-1; NR5A2) plays a critical role in development, reverse cholesterol transport, bile-acid homeostasis and steroidogenesis. However, little is known about the regulation of LRH-1 protein. We previously applied yeast two-hybrid approach to search for LRH-1 interacting proteins in a mouse liver cDNA library and a kinase CDK9 was identified as a novel interaction protein of LRH-1. Immunoprecipitation experiments confirmed the interaction between CDK9 and LRH-1 in mammalian cells. The immunofluorence assay revealed that CDK9 present in nucleus and cytoplasm and it colocalized with LRH-1 in the nucleus. In vitro kinase assay showed that LRH-1 can be phosphorylated by CDK9. We found that co-expression of CDK9 significantly decreased the protein levels of LRH-1 in HEK293T cells. Overexpression of CDK9 in hepatoma HepG2 cells decreased the protein levels of endogenous LRH-1, whereas it had no effects on LRH-1 mRNA levels. In addition, pharmacological inhibition of CDK9 kinase activity or CDK9 knockdown caused an increase in endogenous LRH-1 protein levels in HepG2. These demonstrate that CDK9 can regulate LRH-1 protein levels. By protein turnover assay, we found that CDK9 decreased LRH-1 protein half-life. In addition, CDK9-mediated LRH-1 protein levels were inhibited by the proteasome inhibitor MG-132. Furthermore, CDK9 increased LRH-1 polyubiquitination. These results indicate that CDK9 may promote LRH-1 protein degradation through proteasome pathway.
In promoter assays, CDK9 reduced the LRH-1-regulated small heterodimer partner (SHP) and glucokinase (GCK) promoter activity. SHP and GCK involved in the hepatic metabolism. The expression of SHP and GCK was affected by CDK9 overexpression or knockdown. In addition, CDK9 inhibitor upregulated the levels of phosphorylated AKT and Erk1/2 proteins in insulin signaling pathway.
Collectively, these results suggest that CDK9 may play an important role in modulating LRH-1 protein and hepatic metabolism.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:47:01Z (GMT). No. of bitstreams: 1
ntu-104-R01441002-1.pdf: 2194788 bytes, checksum: 4def60bc176cbe5448054de522b1330d (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents誌謝 I
目錄 II
圖次 IV
中文摘要 V
Abstract VI
第一章 序論 1
一、LRH-1簡介 1
1. LRH-1之蛋白質結構 1
2. LRH-1之生理功能 2
3. LRH-1之轉譯後修飾作用 4
二、CDK9簡介 5
1. CDK9之分布 5
2. CDK9之生理功能 5
3. CDKs 與核受器及其他轉錄因子關聯性 6
三、研究目的 8
第二章 材料與方法 9
一、細胞培養 9
二、質體建構 9
三、暫時性轉染法 (Transient transfection) 13
四、冷光酶活性分析 (Luciferase assay) 14
五、西方墨點法分析 (Western blot) 15
六、免疫沉澱法 (Immunoprecipitation) 17
七、GST 沉澱法 (GST pull-down) 18
八、體外激酶活性測定 (In vitro kinase assay) 19
九、免疫螢光染色法 (Immunofluorence) 20
十、蛋白質半衰期 (protein half-life) 測定 20
十一、即時性反轉錄聚合酶鏈式反應分析 (Real-time RT-PCR) 20
十二、shRNA knockdown 21
第三章 結果 23
一、CDK9 與 LRH-1 蛋白質的交互作用 23
二、CDK9 與 LRH-1 在細胞中的分布 24
三、CDK9 磷酸化 LRH-1 24
四、CDK9 影響 LRH-1 蛋白質的量 24
五、CDK9 影響 LRH-1 蛋白質降解 25
六、CDK9 影響 LRH-1 的轉錄活性 26
七、CDK9 對於 LRH-1 下游基因表現的影響 27
八、CDK9 影響 Insulin 訊息傳遞路徑 28
第四章 討論 29
一、CDK9 磷酸化 LRH-1 29
二、CDK9 調控 LRH-1 蛋白質的穩定性 30
三、CDK9 調控 LRH-1 轉錄活性 31
四、CDK9 參與肝細胞代謝反應 32
參考文獻 34
dc.language.isozh-TW
dc.subject磷酸化zh_TW
dc.subject核受器zh_TW
dc.subjectLRH-1en
dc.subjectCDK9en
dc.title探討 CDK9 調控核受器 LRH-1 的分子機制zh_TW
dc.titleThe molecular mechanism of CDK9 in regulation of nuclear receptor LRH-1en
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee張淑芬,徐立中,盧主欽
dc.subject.keyword核受器,磷酸化,zh_TW
dc.subject.keywordLRH-1,CDK9,en
dc.relation.page59
dc.rights.note有償授權
dc.date.accepted2015-01-30
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
2.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved