請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55093
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳小梨(Show-Li Chen) | |
dc.contributor.author | Wei-Jiun Huang | en |
dc.contributor.author | 黃暐竣 | zh_TW |
dc.date.accessioned | 2021-06-16T03:46:59Z | - |
dc.date.available | 2016-03-12 | |
dc.date.copyright | 2015-03-12 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-01-29 | |
dc.identifier.citation | Abbott, K. L., Friday, B. B., Thaloor, D., Murphy, T. J. and Pavlath, G. K. 1998.Activation and cellular localization of the cyclosporine A-sensitive transcription factor NF-AT in skeletal muscle cells. Mol. Biol. Cell 9: 2905-2916.
Bahler, M. and A. Rhoads. 2002. Calmodulin signaling via the IQ motif. FEBS Journal 513:107-113. Bassel-Duby, R., Olson, E.N. 2006. Signaling pathways in skeletal muscle remodeling. Annu. Rev. Biochem. 75: 19–37. B. B. Friday, P. O. Mitchell, K. M. Kegley, and G. K. Pavlath. 2003. Calcineurin initiates skeletal muscle differentiation by activating MEF2 and MyoD. Differentiation 71(3):217–227. B. B. Friday, V. Horsley, and G. K. Pavlath. 2000. Calcineurin activity is required for the initiation of skeletal muscle differentiation. Journal of Cell Biology, 149(3): 657–666. Benezra,R., Davis,R.L., Lockshon,D., Turner,D.L. and Weintraub,H. 1990. The protein Id: a negative regulator of helix–loop–helix DNA binding proteins. Cell. 61: 49–59. Bushdid, P.B., Osinska, H., Waclaw, R.R., Molkentin, J.D., Yutzey, K.E. 2003. NFATc3 and NFATc4 are required for cardiac development and mitochondrial function. Circ. Res. 92: 1305–1313. Calabria, E., Ciciliot, S., Moretti, I., Garcia, M., Picard, A., Dyar, K.A. 2009. NFAT isoforms control activity-dependent muscle fiber type specification. Proc. Natl. Acad. Sci. U.S.A. 106:13335–13340. Chang, S.W., Tsao, Y.P., Lin, C.Y., Chen, S.L. 2011. NRIP, a novel calmodulin binding protein, activates calcineurin to dephosphorylate human papillomavirus E2 protein. J. Virol. 85:6750-6763 Charge, S.B. and Rudnicki, M.A. 2004. Cellular and molecular regulation of muscle regeneration. Physiol. Rev. 84: 209–238 Chen, P.H., Y.P. Taso, C. C. Wang, and S. L. Chen. 2008. Nuclear receptor interaction protein, a coactivator of androgen receptors (AR), is regulated by AR and Sp1 to feed forward and activate its own gene expression through AR protein stability. Nucleic Acids Res. 36:51-66. Cho, Y. Y., Yao, K., Bode, A. M., Bergen, H. R., 3rd, Madden, B. J., Oh, S. M., Ermakova, S., Kang, B. S., Choi, H. S., Shim, J. H. 2007. RSK2 mediates muscle cell differentiation through regulation of NFAT3. J. Biol. Chem. 282: 8380-8392. Collins, C.A., Olsen, I., Zammit, P.S., Heslop, L., Petrie, A., Partridge, T.A., and Morgan, J.E. 2005. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122: 289–301. Comoglio, P.M., Giordano, S. and Trusolino, L. (2008) Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov 7: 504_516. Crabtree, G. R. 1999. Generic signals and specific outcomes: signaling through Ca21, calcineurin, and NFAT. Cell 96:611–614. Deepak Kumar, Jennifer L. Shadrach, Amy J. Wagers, and Andrew B. Lassar. 2009. Id3 is a direct transcriptional target of Pax7 in quiescent satellite cells Molecular Biology of the Cell 20: 3170–3177 de la Pompa JL. 1998. Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature 392:182–186. Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI. 1997. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386:855–58 Doris Heidysch Beylkin, David L. Allen and Leslie A. Leinwand. 2006. MyoD, Myf5, and the calcineurin pathway activate the developmental myosin heavy chain genes. Developmental Biology 294: 541–553 Edmondson DG and Olson EN. 1993. Helix-loop-helix proteins as regulators of muscle-specific transcription. J Biol Chem 268: 755–758. Epstein, J.A., Shapiro, D.N., Cheng, J., Lam, P.Y. and Maas, R.L. 1996. Pax3 modulates expression of the c-Met receptor during limb muscle development. Proc Natl Acad Sci USA 93: 4213–4218. F. D. Montarras, S. Zaffran, B. Gayraud-Morel, D. Rocancourt, S. Tajbakhsh, A. Mansouri, A. Cumano, and M. Buckingham. 2006. Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J. Cell Biol. 172:91–102. Friday, B. B., Horsley, V. and Pavlath, G. K. 2000. Calcineurin activity is required for the initiation of skeletal muscle differentiation. J. Cell Biol. 149: 657-666. Furmanczyk PS, Quinn LS. 2003. Interleukin-15 increases myosin accretion in human skeletal myogenic cultures. Cell Biol Int, 27:845–51 Gabrielle Kardon. 2011. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138: 3625-3637 Graef IA, Chen F, Chen L, Kuo A, Crabtree GR. 2001. Signals transduced by Ca2+/Cn and NFATc3/c4 pattern the developing vasculature. Cell 105:863–875. Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin Jr AS. 1999. NFκB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol. 19: 5785–99. Guttridge DC, Mayo MW, Madrid LV, Wang CY, Baldwin Jr AS. 2000. NFκB -induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science. 289: 2363–6. Hamamori, Y., Wu, H. Y., Sartorelli, V., and Kedes, L. 1997. The Basic Domain of Myogenic Basic Helix-Loop-Helix (bHLH) Proteins Is the Novel Target for Direct Inhibition by Another bHLH Protein, Twist Mol. Cell. Biol. 17: 6563–6573 Henthorn, P., McCarrick-Walmsley, R. and Kadesch, T. (1990). Sequence of the cDNA encoding ITF-1, a positive acting transcription factor. Nucl. Acids Res. 18(3):677. Horsley, V., Friday, B. B., Matteson, S., Kegley, K. M., Gephart, J. and Pavlath, G. K. 2001. Regulation of the growth of multinucleated muscle cells by an NFATC2-dependent pathway. J. Cell Biol. 153: 329-338. Hu, P., Geles, K. G., Paik, J. H., DePinho, R. A., and Tjian, R. 2008. Codependent activators direct myoblast-specific MyoD transcription. Dev. Cell 15: 534–546. J.C. Braz, O.F. Bueno, Q. Liang, B.J. Wilkins, Y.S. Dai, S. Parsons, J. Braunwart, B.J. Glascock, R. Klevitsky, T.F. Kimball, T.E. Hewett, J.D. Molkentin. 2003. Targeted inhibition of p38 MAPK promotes hypertrophic cardiomyopathy through upregulation of calcineurin-NFAT signaling. J. Clin. Invest. 111:1475–1486 Jen, Y., Weintraub, H. and Benezra, R. 1992. Overexpression of Id protein inhibits the muscle differentiation program: in vivo association of Id with E2A proteins. Genes Dev. 8: 1466–1479 Jostes B, Walther C, Gruss P. 1990. The murine paired box gene, Pax7, is expressed specifically during the development of the nervous and muscular system. Mech Dev 33: 27–37 Julie Rumi-Masante, Farai I. Rusinga, Terrence E. Lester, Tori B. Dunlap, Todd D. Williams, A. Keith Dunker, David D. Weis, and Trevor P. Creamer. 2013. Structural basis for activation of calcineurin by calmodulin. J Mol Biol. 415(2): 307–317. Kami K, Morikawa Y, Sekimoto M, Senba E. 2000. Gene expression of receptors for IL-6, LIF, and CNTF in regenerating skeletal muscles. J Histochem Cytochem 48(9):1203–1213. Kazuyoshi Yagishita. 2013. Enhancement of satellite cell differentiation and functional recovery in injured skeletal muscle by hyperbaric oxygen treatment. J Appl Physiol 116: 149–155. Kegley KM, Gephart J, Warren GL, Pavlath GK. 2001. Altered primary myogenesis in NFATC3-/- mice leads to decreased muscle size in the adult. Dev Biol 232:115–126. Kuang, S., Kuroda, K., Le Grand, F., and Rudnicki, M.A. 2007. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell. 129: 999–1010. Kuang, S., S.B. Charge, P. Seale, M. Huh, and M.A. Rudnicki. 2006. Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. J. Cell Biol.172:103–113. Le Grand F, Rudnicki MA. 2007. Skeletal muscle satellite cells and adult myogenesis. Curr Opin Cell Biol 19: 628–633. Lluis F, Perdiguero E, Nebreda AR, Munoz-Canoves P. 2005. Regulation of skeletal muscle gene expression by p38 MAP Kinases. Trends Cell Biol 16: 36–44. Lu, J.,McKinsey, T.A., Nicol, R.L., Naya, F.J., Passier, R., and Olson, E.N. 2000. Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc. Natl. Acad. Sci. USA 97:4070–4075. Mansouri A, Gruss P. 1998. Pax3 and Pax7 are expressed in commissural neurons and restrict ventral neuronal identity in the spinal cord. Mech Dev 78: 171–178 Mansouri A, Stoykova A, Torres M, Gruss P. 1996. Dysgenesis of cephalic neural crest derivatives in Pax7-/- mutant mice. Development 122: 831–838 Marques MJ, Neto HS. 1997. Ciliary neurotrophic factor stimulates in vivo myotube formation in mice. Neurosci Lett. 234(1):43–46. Mauro, A. 1961. Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9: 493–495. McFarlane, C., A. Hennebry, M. Thomas, E. Plummer, N. Ling, M. Sharma, and R. Kambadur. 2008. Myostatin signals through Pax7 to regulate satellite cell self-renewal. Exp. Cell Res. 314:317–329. McKinnell IW, Ishibashi J, Le Grand F, Punch VG, Addicks GC, Greenblatt JF, Dilworth FJ, Rudnicki MA. 2008. Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex. Nat Cell Biol 10:77–84. McCullagh, K.J., Calabria, E., Pallafacchina, G., Ciciliot, S., Serrano, A.L., Argentini, C. 2004. NFAT is a nerve activity sensor in skeletal muscle and controls activity-dependent myosin switching. Proc. Natl. Acad. Sci. U.S.A. 101: 10590–10595. Molkentin, J. D., Black, B. L., Martin, J. F. and Olson, E. N. 1995. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83: 1125–1136. Montarras, D., Morgan, J., Collins, C., Relaix, F., Zaffran, S., Cumano, A., Partridge, T., and Buckingham, M. 2005. Direct isolation of satellite cells for skeletal muscle regeneration. Science. 309: 2064–2067. Murre, C., McCaw, P.S. and Baltimore, D. 1989. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell. 56:777-783. Ni, Y.G., Berenji, K.,Wang, N., Oh, M., Sachan, N., Dey, A. 2006. Foxo transcriptionfactors blunt cardiac hypertrophy by inhibiting calcineurin signaling. Circulation 114: 1159–1168. O’Connor, R. S., Mills, S. T., Jones, K. A., Ho, S. N. and Pavlath, G. K. 2007. A combinatorial role for NFAT5 in both myoblast migration and differentiation during skeletal muscle myogenesis. J. Cell Sci. 120: 149-159. Olguin, H.C., and B.B. Olwin. 2004. Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal. Dev. Biol. 275:375–388. Olson, E.N. & Sanders Williams, R. Calcineurin signaling and muscle remodeling. 2000. Cell 101: 689–692 Olson, E.N., Williams, R.S. 2000. Remodeling muscles with calcineurin. Bioessays 22: 510–519. Oustanina, S., G. Hause, and T. Braun. 2004. Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification. EMBO J. 23:3430–3439. Passier, R., Zeng, H., Frey, N., McKinsey, T.A., Overbeek, P., Rich- ardson, J.A., Grant, S.R., and Olson, E.N. 2000. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J. Clin. Invest. 105:1395–1406. Penn, B. H., Bergstrom, D. A., Dilworth, F. J., Bengal, E. & Tapscott, S. J. A. 2004. MyoD-generated feed-forward circuit temporally patterns gene expression during skeletal muscle differentiation. Genes Dev. 18: 2348–2353. Relaix, F., D. Rocancourt, A. Mansouri, and M. Buckingham. 2004. Divergent functions of murine Pax3 and Pax7 in limb muscle development. Genes Dev.18:1088–1105. Sakuma, K., Nishikawa, J., Nakao, R., Watanabe, K., Totsuka, T., Nakano, H., Sano, M. and Yasuhara, M. 2003. Calcineurin is a potent regulator for skeletal muscle regeneration by association with NFATc1 and GATA-2. Acta Neuropathol. 105: 271-280. Schiaffino, S. 2010. Fibre types in skeletal muscle: a personal account. Acta Physiol.(Oxf.) 199: 451–463. Seale, P., Sabourin, L. A., Girgis-Gabardo, A., Mansouri, A., Gruss, P. and Rudnicki, M. A. 2000. Pax7 is required for the specification of myogenic satellite cells. Cell 102: 777-786. Stoykova, A. and Gruss, P. 1994. Roles of Pax-genes in developing and adult brain as suggested by expression patterns. J. Neurosci. 14: 1395-1412. Rao, A., C. Luo, and P. G. Hogan. 1997. Transcription factors of the NFAT family: regulation and function. Annu. Rev. Immunol. 15:707–747. Serrano AL, Baeza-Raja B, Perdiguero E, Jardi M, Munoz-Canoves P. 2008. Interleukin-6 is an essential regulator of satellite cell-mediated skeletalmuscle hypertrophy. Cell Metab. 7:33–44. Sherwood, R.I., Christensen, J.L., Conboy, I.M., Conboy, M.J., Rando, T.A., Weissman, I.L., and Wagers, A.J. 2004. Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell. 119: 543–554 Spicer, D. B., Rhee, J., Cheung, W. L., and Lassar, A. B. 1996. Inhibition of myogenic bHLH and MEF2 transcription factors by the bHLH protein Twist. Science 272:1476–1480 Stupka, N., Gregorevic, P., Plant, D. R. and Lynch, G. S. 2004. The calcineurin signal transduction pathway is essential for successful muscle regeneration in mdx dystrophic mice. Acta Neuropathol. 107: 299-310. Stupka, N., Schertzer, J. D., Bassel-Duby, R., Olson, E. N. and Lynch, G. S. 2007. Calcineurin-A alpha activation enhances the structure and function of regenerating muscles after myotoxic injury. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293: 686-694. Talmadge, R.J., Otis, J.S., Rittler, M.R., Garcia, N.D., Spencer, S.R., Lees, S.J.. 2004.Calcineurin activation influences muscle phenotype in a muscle-specific fashion. BMC Cell Biol. 5, 28. Thomas Braun and Mathias Gautel. 2011. Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nature reviews / Molecular Cell Biology 12:349–361 Tsai, T.C., Y.L. Lee, W.C. Hsiao, Y.P. Tsao, and S.L. Chen. 2005. NRIP, anovel nuclear receptor interaction protein, enhances the transcriptional activity of nuclear receptors. J. Biol. Chem. 280:20000-20009 U. Delling, J. Tureckova,H.W. Lim, L. J. DeWindt, P. Rotwein, and J. D. Molkentin. 2000. A calcineurin-NFATc3-dependent pathway regulates skeletal muscle differentiation and slow myosin heavy-chain expression. Molecular and Cellular Biology. 20(17) 6600–6611 Warren GL, Hulderman T, Jensen N. 2002. Physiological role of tumor necrosis factor alpha in traumaticmuscle injury. FASEB J, 16:1630–2. Wu H, Rothermel B, Kanatous S, Rosenberg P, Naya FJ. 2001. Activation of MEF2 by muscle activity is mediated through a calcineurin-dependent pathway. EMBOJ. 20:6414–23 Xiaozhong Shi and Daniel J. Garry. 2006. Muscle stem cells in development, regeneration, and disease. GENES & DEVELOPMENT. 20:1692–1708 Zammit, P.S., F. Relaix, Y. Nagata, A.P. Ruiz, C.A. Collins, T.A. Partridge, and J.R. Beauchamp. 2006. Pax7 and myogenic progression in skeletal muscle satellite cells. J. Cell Sci. 119:1824–1832. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55093 | - |
dc.description.abstract | 核受體交互作用蛋白(Nuclear receptor interaction protein, NRIP),是一種可以藉由Ca2+ 和攜鈣素 (calmodulin, CaM)結合的蛋白質,其可以活化下游蛋白鈣調磷酸酶( calcineurin),進而活化calcineurin-NFAT 和 CaMKII 訊號傳遞路徑,使得特定基因可以在肌肉修復時表現。此外,我們實驗室之前發現骨骼肌中含有大量的NRIP 蛋白,因此我們生產出NRIP 剔除小鼠來進行實驗;目前已知缺乏NRIP蛋白會延遲肌肉修復的速度。 因此,我們假設NRIP可能會藉由活化下游的calcineurin-NFAT 和 CaMKII 訊號傳遞路徑,使得衛星細胞(satellite cell)活化,參與肌肉損傷修復。衛星細胞是一種肌肉前驅細胞,在肌肉發生損傷時會被活化來修復受損的區域。在一般狀態下,大部分的衛星細胞會處於靜置時期,但是當肌肉發損傷時,這群靜置的細胞就會被活化並且進行增生,之後移動到受傷區域;接著這群細胞會分化成成肌細胞(myoblast),最終變成肌小管(myotube),並且合併到舊的肌纖維裡完成整個肌肉修復。在本次實驗中,我們將探討NRIP是否會影響衛星細胞的活化、增生和分化,因此我們檢視了MyoD和Pax7這兩個衛星細胞的指標蛋白,探討其在正常小鼠和NRIP敲除小鼠有何差異。由免疫螢光染色的實驗結果得知,NRIP敲除小鼠Pax7+細胞的數量在損傷後第三天較正常小鼠要來得少;此外正常小鼠的Pax7+BrdU+ 細胞也較NRIP敲除小鼠多。有鑑於衛星細胞會同時表現Pax7和MyoD兩種蛋白,我們也想探討缺乏NRIP蛋白是否亦會影響MyoD蛋白表現。實驗結果顯示在正常小鼠上的MyoD 和MyoD+BrdU+ 細胞在損傷後第三天都會增加,並且在損傷後第六天下降;然而,NRIP敲除小鼠的細胞則是到了損傷後第六天才增加;此外,正常小鼠的MyoD+Pax7+ 細胞也較NRIP敲除小鼠高。一言以蔽之,缺乏NRIP蛋白會影響衛星細胞的Pax7和MyoD蛋白表現。藉由西方點墨法 (Western blot)的實驗結果使我們得知NRIP蛋白的表現量會在損傷後第三天開始攀升並在第六天達到高峰,之後逐漸下降。此外,正常小鼠Pax7和MyoD兩種蛋白的表現量會在損傷後第三天達到峰值,之後逐漸回復水平;然而,NRIP敲除小鼠的蛋白表現則是到了第六天才達到頂峰。藉由所有實驗結果可得知,缺乏NRIP蛋白會延遲整個肌肉修復的進行。 | zh_TW |
dc.description.abstract | NRIP (nuclear receptor interaction protein) is a Ca2+ dependent calmodulin binding protein that can activate its downstream protein, calcineurin. Due to calmodulin can activate calcineurin-NFAT and CaMKII pathways those involve in muscle specific gene expression during muscle regeneration. Besides our previous finding demonstrates that NRIP protein is abundant in skeletal muscle. We therefore generated NRIP conventional knock out mice; and currently characterized that NRIP deficiency would delay muscle regeneration. Therefore, we hypothesize that NRIP may involve in muscle regeneration through activating downstream calcineurin-NFAT pathway or CaMKII to activate satellite cells. Satellite cell is a kind of muscle progenitor cell that would be activated by muscle injury to repair the injury lesions. In resting muscle, the majority of satellite cells are quiescent, but when the muscle injury is occurred, the quiescent satellite cells will be activated and proliferated, and migrate to the injury lesions. Then these cells will be differentiated into myoblast to become myotube. Finally, they will incorporate into the pre-existing myofiber, or fused together to finish the muscle repair.
In this study, we focus on whether NRIP would affect satellite cell activation, proliferation and differentiation. Therefore, we examined MyoD and Pax7, two satellite cell markers between WT and NRIP KO mice. First we demonstrate the amount of Pax7 cells would be reduced in NRIP KO mice at day 3 post injury by immunofluorescence assay to compare with WT. The amount of Pax7+BrdU+ cells is higher in WT mice compared with NRIP KO mice. Since satellite cell would coexpress Pax7 and MyoD, we tend to investigate whether NRIP deficiency would also have effect on MyoD expression. Both the number MyoD and MyoD+BrdU+ cells in WT mice are enhanced at day 3 and then fell down at day 6. However, NRIP KO mice is increased at day 6 post injury. Besides, the amount of MyoD+Pax7+ cells in WT mice is higher than NRIP KO mice. In sum, NRIP deficiency would affect Pax7 and MyoD expression in satellite cell; the result of western blot further support that NRIP expression level would increase at day 3 and reach to the peak at day 6 post injury, then gradually fell down. In addition, The Pax7 and MyoD expression in WT mice would get to the maximum at day 3, than gradually return to normal level. However, it is until day 6 that the Pax7 and MyoD expression level reach to the maximum in NRIP KO mice. Taken together, NRIP deficiency would postpone the speed of muscle regeneration. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T03:46:59Z (GMT). No. of bitstreams: 1 ntu-104-R01445127-1.pdf: 1314550 bytes, checksum: cb757409c0233f21d69c79151144a82c (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 口試委員審定書...........................................i
致謝...................................................ii 中文摘要...............................................iii ABSTRACT................................................v CHAPTER 1 Introduction..................................1 1.1 The characteristic of nuclear receptor interaction protein (NRIP)..........................................1 1.2 Properties of satellite cells during muscle regeneration............................................2 1.3 The characteristic of MyoD..........................3 1.4 The function of Pax7 and the relationship with MyoD 4 1.5 Calcium dependent pathway involved in muscle regeneration............................................5 1.6 Aim of the thesis...................................8 CHAPTER 2 MATERIAL AND METHODS.........................10 2.1 Mice cohort and muscle injury......................10 2.2 Western blot.......................................11 2.3 Double-labeled immunofluorescence assay............11 2.4 Statistical analyses...............................12 CHAPTER 3 RESULTS......................................13 3.1 NRIP deficiency would reduce the Pax7 expression during muscle regeneration.............................13 3.2 The number of Pax7+BrdU+ cells are reduced in NRIP KO mice...................................................14 3.3 MyoD expression in NRIP KO mice is delayed during muscle regeneration....................................14 3.4 The expression MyoD+BrdU+ satellite cells are delayed during muscle regeneration in NRIP KO mice.............15 3.5 The number of MyoD+Pax7+ satellite cells are decreased in NRIP KO mice..............................16 3.6 NRIP deficiency would delay the whole speed of muscle regeneration...........................................16 CHAPTER 4 DISCUSSION...................................18 REFERENCES.............................................26 FIGURES................................................35 | |
dc.language.iso | en | |
dc.title | 探討NRIP在骨骼肌再生扮演的角色 | zh_TW |
dc.title | NRIP role in skeletal muscle regeneration | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 符文美(Wen-Mei Fu),陳文彬(Wen-Pin Chen),王培育(Pei-Yu Wang) | |
dc.subject.keyword | NRIP,肌肉修復,MyoD,Pax7,BrdU, | zh_TW |
dc.subject.keyword | NRIP,muscle regeneration,MyoD,Pax7,BrdU, | en |
dc.relation.page | 40 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-01-30 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 1.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。