Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 健康政策與管理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55079
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾國彪(Kuo-Piao Chung)
dc.contributor.authorChieh-Min Fanen
dc.contributor.author范傑閔zh_TW
dc.date.accessioned2021-06-16T03:46:30Z-
dc.date.available2015-03-12
dc.date.copyright2015-03-12
dc.date.issued2015
dc.date.submitted2015-02-01
dc.identifier.citation1. Donabedian A. Evaluating the Quality of Medical Care. Milbank Q. 1966;44(3,suppl):166-206.
2. Masoudi FA. Reflections on Performance Measurement in Cardiovascular Disease. Circulation-Cardiovascular Quality and Outcomes. 2011;4(1):2-4.
3. Spertus JA, Bonow RO, Chan P, Diamond GA, Drozda JP, Kaul S, et al. ACCF/AHA New Insights Into the Methodology of Performance Measurement A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Performance Measures. Circulation. 2010;122(20):2091-U340.
4. Peterson ED, DeLong ER, Masoudi FA, O'Brien SM, Peterson PN, Rumsfeld JS, et al. ACCF/AHA 2010 Position Statement on Composite Measures for Healthcare Performance Assessment A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Performance Measures (Writing Committee to Develop a Position Statement on Composite Measures). Circulation. 2010;121(15):1780-91.
5. Shwartz M, Cohen AB, Restuccia JD, Ren ZJ, Labonte A, Theokary C, et al. How Well Can We Identify the High-Performing Hospital? Med Care Res Rev. 2011;68(3):290-310.
6. Chen TT, Lai MS, Lin IC, Chung KP. Exploring and Comparing the Characteristics of Nonlatent and Latent Composite Scores: Implications for Pay-for-Performance Incentive Design. Med Decis Making. 2012;32(1):132-44.
7. Couralet M, Guerin S, Le Vaillant M, Loirat P, Minvielle E. Constructing a Composite Quality Score for the Care of Acute Myocardial Infarction Patients at Discharge Impact on Hospital Ranking. Med Care. 2011;49(6):569-76.
8. Fong J, Marsh GM, Stokan LA, Sang W, Vinson C, Ruhl L. Hospital Quality Performance Report: An application of composite scoring. Am J Med Qual. 2008;23(4):287-95.
9. Keroack MA, Youngberg BJ, Cerese JL, Krsek C, Prellwitz LW, Trevelyan EW. Organizational factors associated with high performance in quality and safety in academic medical centers. Acad Med. 2007;82(12):1178-86.
10. Nolan T, Berwick DM. All-or-none measurement raises the bar on performance. JAMA. 2006;295(10):1168-70.
11. Normand SLT, Wolf RE, McNeil BJ. Discriminating quality of hospital care in the United States. Med Decis Making. 2008;28(3):308-22.
12. O'Brien SM, Shahian DM, DeLong ER, Normand S-LT, Edwards FH, Ferraris VA, et al. Quality Measurement in Adult Cardiac Surgery: Part 2--Statistical Considerations in Composite Measure Scoring and Provider Rating. Ann Thorac Surg. 2007;83(4_Supplement):S13-26.
13. Reeves D, Campbell SM, Adams J, Shekelle PG, Kontopantelis E, Roland MO. Combining multiple indicators of clinical quality - An evaluation of different analytic approaches. Med Care. 2007;45(6):489-96.
14. Rosenthal MB, Landrum MB, Meara E, Huskamp HA, Conti RM, Keating NL. Using performance data to identify preferred hospitals. Health Serv Res. 2007;42(6):2109-19.
15. Staiger DO, Dimick JB, Baser O, Fan Z, Birkmeyer JD. Empirically Derived Composite Measures of Surgical Performance. Med Care. 2009;47(2):226-33.
16. Teixeira-Pinto A, Normand S-LT. Statistical methodology for classifying units on the basis of multiple-related measures. Stat Med. 2008;27(9):1329-50.
17. Willis CD, Stoelwinder JU, Lecky FE, Woodford M, Jenks T, Bouamra O, et al. Applying Composite Performance Measures to Trauma Care. J Trauma. 2010;69(2):256-62.
18. Fonarow GC, Albert NM, Curtis AB, Gheorghiade M, Heywood JT, Liu Y, et al. Associations Between Outpatient Heart Failure Process-of-Care Measures and Mortality. Circulation. 2011;123(15):1601-10.
19. Jaber WA, Lennon RJ, Mathew V, Holmes Jr DR, Lerman A, Rihal CS. Application of Evidence-Based Medical Therapy Is Associated With Improved Outcomes After Percutaneous Coronary Intervention and Is a Valid Quality Indicator. J Am Coll Cardiol. 2005;46(8):1473-8.
20. Lahoud R, Howe M, Krishnan SM, Zacharias S, Jackson EA. Effect of use of combination evidence-based medical therapy after acute coronary syndromes on long-term outcomes. Am J Cardiol. 2012;109(2):159-64.
21. Mukherjee D, Fang J, Chetcuti S, Moscucci M, Kline-Rogers E, Eagle KA. Impact of Combination Evidence-Based Medical Therapy on Mortality in Patients With Acute Coronary Syndromes. Circulation. 2004;109(6):745-9.
22. Yan RT, Yan AT, Tan M, McGuire DK, Leiter L, Fitchett DH, et al. Underuse of evidence-based treatment partly explains the worse clinical outcome in diabetic patients with acute coronary syndromes. Am Heart J. 2006;152(4):676-83.
23. Bhattacharyya T, Freiberg AA, Mehta P, Katz JN, Ferris T. Measuring The Report Card: The Validity Of Pay For-Performance Metrics In Orthopedic Surgery. Health Aff (Millwood). 2009;28(2):526-32.
24. Bradley EH, Herrin J, Elbel B, McNamara RL, Magid DJ, Nallamothu BK, et al. Hospital Quality for Acute Myocardial Infarction: Correlation Among Process Measures and Relationship With Short-term Mortality. JAMA. 2006;296(1):72-8.
25. Glickman SW, Boulding W, Roos JMT, Staelin R, Peterson ED, Schulman KA. Alternative Pay-for-Performance Scoring Methods Implications for Quality Improvement and Patient Outcomes. Med Care. 2009;47(10):1062-8.
26. Granger CB, Steg PG, Peterson E, López-Sendón J, Van de Werf F, Kline-Rogers E, et al. Medication performance measures and mortality following acute coronary syndromes. The American Journal of Medicine. 2005;118(8):858-65.
27. Heidenreich PA, Hernandez AF, Yancy CW, Liang L, Peterson ED, Fonarow GC. Get With The Guidelines Program Participation, Process of Care, and Outcome for Medicare Patients Hospitalized With Heart Failure. Circulation-Cardiovascular Quality and Outcomes. 2012;5(1):37-43.
28. Heidenreich PA, Lewis WR, LaBresh KA, Schwamm LH, Fonarow GC. Hospital performance recognition with the Get With The Guidelines Program and mortality for acute myocardial infarction and heart failure. Am Heart J. 2009;158(4):546-53.
29. Hernandez AF, Fonarow GC, Liang L, Heidenreich PA, Yancy C, Peterson ED. The Need for Multiple Measures of Hospital Quality Results From the Get With The Guidelines-Heart Failure Registry of the American Heart Association. Circulation. 2011;124(6):712-9.
30. Ingraham AM, Cohen ME, Bilimoria KY, Dimick JB, Richards KE, Raval MV, et al. Association of Surgical Care Improvement Project Infection-Related Process Measure Compliance with Risk-Adjusted Outcomes: Implications for Quality Measurement. J Am Coll Surg. 2010;211(6):705-14.
31. Kurlansky PA, Argenziano M, Dunton R, Lancey R, Nast E, Stewart A, et al. Quality, not volume, determines outcome of coronary artery bypass surgery in a university-based community hospital network. J Thorac Cardiovasc Surg. 2012;143(2):287-93.
32. Nicholas LH, Osborne NH, Birkmeyer JD, Dimick JB. Hospital Process Compliance and Surgical Outcomes in Medicare Beneficiaries. Arch Surg. 2010;145(10):999-1004.
33. Patterson ME, Hernandez AF, Hammill BG, Fonarow GC, Peterson ED, Schulman KA, et al. Process of Care Performance Measures and Long-Term Outcomes in Patients Hospitalized With Heart Failure. Med Care. 2010;48(3):210-6.
34. Peterson ED, Roe MT, Mulgund J, DeLong ER, Lytle BL, Brindis RG, et al. Association Between Hospital Process Performance and Outcomes Among Patients With Acute Coronary Syndromes. JAMA. 2006;295(16):1912-20.
35. Ross JS, Arling G, Ofner S, Roumie CL, Keyhani S, Williams LS, et al. Correlation of Inpatient and Outpatient Measures of Stroke Care Quality Within Veterans Health Administration Hospitals. Stroke. 2011;42(8):2269-75.
36. Ryan AM, Burgess JF, Jr., Tompkins CP, Wallack SS. The Relationship between Medicare's Process of Care Quality Measures and Mortality. Inquiry-the Journal of Health Care Organization Provision and Financing. 2009;46(3):274-90.
37. Werner RM, Bradlow ET. Relationship Between Medicare’s Hospital Compare Performance Measures and Mortality Rates. JAMA. 2006;296(22):2694-702.
38. Glickman SW, Ou F-S, DeLong ER, Roe MT, Lytle BL, Mulgund J, et al. Pay for Performance, Quality of Care, and Outcomes in Acute Myocardial Infarction. JAMA. 2007;297(21):2373-80.
39. Moore L, Lavoie A, Sirois MJ, Belcaid A, Bourgeois G, Lapointe J, et al. A comparison of methods to obtain a composite performance indicator for evaluating clinical processes in trauma care. Journal of Trauma and Acute Care Surgery. 2013;74(5):1344-50.
40. 2010 statistics of causes of death. Department of Health, Executive Yuan, Taiwan; 2011; Available from: http://www.mohw.gov.tw.
41. Jha AK, Orav EJ, Li Z, Epstein AM. The Inverse Relationship Between Mortality Rates And Performance In The Hospital Quality Alliance Measures. Health Aff (Millwood). 2007;26(4):1104-10.
42. Eapen ZJ, Fonarow GC, Dai D, O'Brien SM, Schwamm LH, Cannon CP, et al. Comparison of Composite Measure Methodologies for Rewarding Quality of Care An Analysis From the American Heart Association's Get With The Guidelines Program. Circulation-Cardiovascular Quality and Outcomes. 2011;4(6):610-8.
43. Simms AD, Batin PD, Weston CF, Fox KAA, Timmis A, Long WR, et al. An evaluation of composite indicators of hospital acute myocardial infarction care: A study of 136,392 patients from the Myocardial Ischaemia National Audit Project. Int J Cardiol. 2013;170(1):81-7.
44. Finney JW, Humphreys K, Kivlahan DR, Harris AHS. Why Health Care Process Performance Measures Can Have Different Relationships to Outcomes for Patients and Hospitals: Understanding the Ecological Fallacy. Am J Public Health. 2011;101(9):1635-42.
45. Finney JW, Humphreys K, Harris AHS. Cross-Level Bias and Variations in Care. Jama-Journal of the American Medical Association. 2011;306(19):2096-7.
46. Nardo M, Saisana M, Saltelli A, Tarantola S, Hoffman A, Giovannini E. Handbook on Constructing Composite Indicators: Methodology and User Guide. Paris, France: OECD, 2008.
47. Institute-of-Medicine. Crossing the Quality Chasm: National Academy of Sciences; 2001.
48. Profit J, Typpo KV, Hysong SJ, Woodard LD, Kallen MA, Petersen LA. Improving benchmarking by using an explicit framework for the development of composite indicators: an example using pediatric quality of care. Implementation Science. 2010;5.
49. Tutorial on Quality Measures. Agency for Healthcare Reserch and Quality - National Quality Measures Clearinghouse; Available from: http://www.qualitymeasures.ahrq.gov/tutorial/index.aspx.
50. Measure Evaluation Criteria. National Quality Forum; Available from: http://www.qualityforum.org/Measuring_Performance/Submitting_Standards/Measure_Evaluation_Criteria.aspx.
51. O'Brien SM, DeLong ER, Dokholyan RS, Edwards FH, Peterson ED. Exploring the behavior of hospital composite performance measures - An example from coronary artery bypass surgery. Circulation. 2007;116(25):2969-75.
52. Hayward RA. All-or-nothing treatment targets make bad performance measures. Am J Manag Care. 2007;13(3):126-8.
53. Feinstein AR. Clinimetric perspectives. J Chronic Dis. 1987;40(6):635-40.
54. Fayers PM, Hand DJ. Causal variables, indicator variables and measurement scales: an example from quality of life. Journal of the Royal Statistical Society: Series A (Statistics in Society). 2002;165(2):233-53.
55. Lieberthal RD. Hospital Quality: A PRIDIT Approach. Health Serv Res. 2008;43(3):988-1005.
56. Shafi S, Parks J, Ahn C, Gentilello LM, Nathens AB, Hemmila MR, et al. Centers for Medicare and Medicaid Services Quality Indicators Do Not Correlate With Risk-Adjusted Mortality at Trauma Centers. J Trauma. 2010;68(4):771-6.
57. Hospital Compare. U.S. Department of Health & Human Services; Available from: http://www.hospitalcompare.hhs.gov/.
58. Mehta RH, Liang L, Karve AM, Hernandez AF, Rumsfeld JS, Fonarow GC, et al. Association of Patient Case-Mix Adjustment, Hospital Process Performance Rankings, and Eligibility for Financial Incentives. JAMA. 2008;300(16):1897-903.
59. Pitches DW, Mohammed MA, Lilford RJ. What is the empirical evidence that hospitals with higher-risk adjusted mortality rates provide poorer quality care? A systematic review of the literature. Bmc Health Services Research. 2007;7.
60. Stukel TA, Alter DA, Schull MJ, Ko DT, Li P. Association Between Hospital Cardiac Management and Outcomes for Acute Myocardial Infarction Patients. Med Care. 2010;48(2):157-65.
61. Joynt KE, Jha AK. Thirty-Day Readmissions — Truth and Consequences. N Engl J Med. 2012;0(0):null.
62. Shahian DM, Wolf RE, Iezzoni LI, Kirle L, Normand S-LT. Variability in the Measurement of Hospital-wide Mortality Rates. N Engl J Med. 2010;363(26):2530-9.
63. Krumholz HM, Anderson JL, Bachelder BL, Fesmire FM, Fihn SD, Foody JM, et al. ACC/AHA 2008 Performance Measures for Adults With ST-Elevation and Non–ST-Elevation Myocardial Infarction. Circulation. 2008;118(24):2596-648.
64. International Library of Measures for Hospital & CCPC Programs. Joint Commission International; 2010; Available from: http://www.jointcommissioninternational.org/common/PDFs/JCIA/JCI_Measures_for_Posting2_08.04.10.pdf.
65. Dimick JB, Staiger DO, Baser O, Birkmeyer JD. Composite Measures For Predicting Surgical Mortality In The Hospital. Health Aff (Millwood). 2009;28(4):1189-98.
66. Shahian DM, Edwards FH, Jacobs JP, Prager RL, Normand SLT, Shewan CM, et al. Public Reporting of Cardiac Surgery Performance: Part 2-Implementation. Ann Thorac Surg. 2011;92(3):S12-S23.
67. Chen LM, Staiger DO, Birkmeyer JD, Ryan AM, Zhang WY, Dimick JB. Composite Quality Measures for Common Inpatient Medical Conditions. Med Care. 2013;51(9):832-7.
68. Cohen J. WEIGHTED KAPPA - NOMINAL SCALE AGREEMENT WITH PROVISION FOR SCALED DISAGREEMENT OR PARTIAL CREDIT. Psychol Bull. 1968;70(4):213-&.
69. Landis JR, Koch GG. MEASUREMENT OF OBSERVER AGREEMENT FOR CATEGORICAL DATA. Biometrics. 1977;33(1):159-74.
70. Efron B, Tibshirani R. Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy. Statistical Science. 1986;1(1):54-75.
71. Werner RM, Bradlow ET, Asch DA. Does Hospital Performance on Process Measures Directly Measure High Quality Care or Is It a Marker of Unmeasured Care? Health Serv Res. 2008;43(5p1):1464-84.
72. Mehta RH, Peterson ED, Califf RM. Performance measures have a major effect on cardiovascular outcomes: A review. Am J Med. 2007;120(5):398-U6.
73. Vogeli C, Kang R, Landrum MB, Hasnain-Wynia R, Weissman JS. Quality of Care Provided to Individual Patients in US Hospitals Results From an Analysis of National Hospital Quality Alliance Data. Med Care. 2009;47(5):591-9.
74. Kolfschoten NE, Gooiker GA, Bastiaannet E, van Leersum NJ, van de Velde CJH, Eddes EH, et al. Combining process indicators to evaluate quality of care for surgical patients with colorectal cancer: are scores consistent with short-term outcome? BMJ Quality & Safety. 2012;21(6):481-9.
75. Chung KP, Chen LJ, Chang YJ. Can composite performance measures predict survival of patients with colorectal cancer? World Journal of Gastroenterology. 2014;20(42):15805-14.
76. Shahian DM, Meyer GS, Mort E, Atamian S, Liu X, Karson AS, et al. Association of National Hospital Quality Measure adherence with long-term mortality and readmissions. BMJ Quality & Safety. 2012;21(4):325-36.
77. Abrahamyan L, Austin PC, Donovan LR, Tu JV. Standard admission orders can improve the management of acute myocardial infarction. Int J Qual Health Care. 2012;24(4):425-32.
78. Schiele F, Capuano F, Loirat P, Desplanques-Leperre A, Derumeaux G, Thebaut JF, et al. Hospital Case Volume and Appropriate Prescriptions at Hospital Discharge After Acute Myocardial Infarction A Nationwide Assessment. Circulation-Cardiovascular Quality and Outcomes. 2013;6(1):50-7.
79. Tu JV, Donovan LR, Lee DS, Wang JT, Austin PC, Alter DA, et al. Effectiveness of Public Report Cards for Improving the Quality of Cardiac Care The EFFECT Study: A Randomized Trial. Jama-Journal of the American Medical Association. 2009;302(21):2330-7.
80. Shyu KG, Wu CJ, Mar GY, Hou CJY, Li AH, Wen MS, et al. Clinical Characteristics, Management and In-Hospital Outcomes of Patients with Acute Coronary Syndrome - Observations from the Taiwan ACS Full Spectrum Registry. Acta Cardiologica Sinica. 2011;27(3):135-44.
81. Tung YC, Chang GM, Chien KL, Tu YK. The Relationships Among Physician and Hospital Volume, Processes, and Outcomes of Care for Acute Myocardial Infarction. Med Care. 2014;52(6):519-27.
82. Shwartz M, Ren J, Pekoz EA, Wang X, Cohen AB, Restuccia JD. Estimating a composite measure of hospital quality from the hospital compare database - Differences when using a Bayesian hierarchical latent variable model versus denominator-based weights. Med Care. 2008;46(8):778-85.
83. Jacobs R, Goddard M, Smith PC. How robust are hospital ranks based on composite performance measures? Med Care. 2005;43(12):1177-84.
84. Chatterjee P, Joynt KE. Do Cardiology Quality Measures Actually Improve Patient Outcomes? Journal of the American Heart Association. 2014;3(1).
85. Krumholz HM, Lin ZQ, Drye EE, Desai MM, Han LF, Rapp MT, et al. An Administrative Claims Measure Suitable for Profiling Hospital Performance Based on 30-Day All-Cause Readmission Rates Among Patients With Acute Myocardial Infarction. Circulation-Cardiovascular Quality and Outcomes. 2011;4(2):243-52.
86. Kocher RP, Adashi EY. Hospital Readmissions and the Affordable Care Act Paying for Coordinated Quality Care. Jama-Journal of the American Medical Association. 2011;306(16):1794-5.
87. Dharmarajan K, Hsieh AF, Lin Z, Bueno H, Ross JS, Horwitz LI, et al. Diagnoses and Timing of 30-Day Readmissions After Hospitalization for Heart Failure, Acute Myocardial Infarction, or Pneumonia. Jama-Journal of the American Medical Association. 2013;309(4):355-63.
88. Krumholz HM, Lin Z, Keenan PS, Chen J, Ross JS, Drye EE, et al. Relationship Between Hospital Readmission and Mortality Rates for Patients Hospitalized With Acute Myocardial Infarction, Heart Failure, or Pneumonia. Jama-Journal of the American Medical Association. 2013;309(6):587-93.
89. Stefan MS, Pekow PS, Nsa W, Priya A, Miller LE, Bratzler DW, et al. Hospital Performance Measures and 30-day Readmission Rates. J Gen Intern Med. 2013;28(3):377-85.
90. McConnell KJ, Lindrooth RC, Wholey DR, Maddox TM, Bloom N. Management Practices and the Quality of Care in Cardiac Units. Jama Internal Medicine. 2013;173(8):684-92.
91. Southern DA, Ngo J, Martin BJ, Galbraith PD, Knudtson ML, Ghali WA, et al. Characterizing Types of Readmission After Acute Coronary Syndrome Hospitalization: Implications for Quality Reporting. Journal of the American Heart Association. 2014;3(1/4/1900).
92. Brodie BR, Stone GW, Cox DA, Stuckey TD, Turco M, Tcheng JE, et al. Impact of treatment delays on outcomes of primary percutaneous coronary intervention for acute myocardial infarction: analysis from the CADILLAC trial. Am Heart J. 2006;151(6):1231-8.
93. Cannon CP, Gibson CM, Lambrew CT, Shoultz DA, Levy D, French WJ, et al. Relationship of symptom-onset-to-balloon time and door-to-balloon time with mortality in patients undergoing angioplasty for acute myocardial infarction. JAMA. 2000;283(22):2941-7.
94. McNamara RL, Wang Y, Herrin J, Curtis JP, Bradley EH, Magid DJ, et al. Effect of door-to-balloon time on mortality in patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2006;47(11):2180-6.
95. Nallamothu B, Fox KA, Kennelly BM, Van de Werf F, Gore JM, Steg PG, et al. Relationship of treatment delays and mortality in patients undergoing fibrinolysis and primary percutaneous coronary intervention. The Global Registry of Acute Coronary Events. Heart. 2007;93(12):1552-5.
96. Martsolf GR, Scanlon DP, Christianson JB. Multistakeholder Perspectives on Composite Measures of Ambulatory Care Quality: A Qualitative Descriptive Study. Med Care Res Rev. 2013;70(4):434-48.
97. Fornasini M, Yarzebski J, Chiriboga D, Lessard D, Spencer FA, Aurigemma P, et al. Contemporary Trends in Evidence-based Treatment for Acute Myocardial Infarction. Am J Med. 2010;123(2):166-72.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55079-
dc.description.abstract前言:為了更廣範及便利地呈現照護流程測量,以及機構間比較的需要,組合測量是一種新的評估照護品質的方法,正大量的被發展及應用。然而,臨床上應用時卻出現了部分缺點。一、不同的組合方式會導致不同的機構排名。二、組合分數和其他構面指標(例如結果)間的關係仍不清楚。
目的:探討病人層級及醫院層級急性心肌梗塞照護流程組合分數和病人短期預後間的關係,並比較不同方法醫院層級組合分數間的關係。最終希望能找出一種最好的組合分數方法能代表醫院在急性心肌梗塞的照護品質。
方法:資料來源為台灣國家健康保險研究資料庫2005年1月1日到2009年12月31日第一次急性心肌梗塞(國際疾病分類代碼,第9版,ICD-9-CM 410.xx,排院410.x2)的病人。組合流程分數是依據六個照護流程指標(包含阿斯匹靈使用,乙型阻斷劑使用,Statin類降血脂藥物使用,左心室功能評估,左心室心輸功能不良病人使用ACEI/ARB類藥物,純藥物治療病人使用Clopidogrel)所完成並分別計算出三種病人層級組合分數(包含病人平均patient average,70%標準,及全有全無All-or-none) 及四種醫院層級組合分數(包含全平均overall average,簡單權重平均simple weighted average,全有全無All-or-none,及因素分析Factor analysis)。預後則選用住院後30天內死亡及出院後30天內再住院。多因子羅吉斯迴歸用來檢驗病人層級組合分數和病人預後間的關係,而醫院層級組合分數和病人預後間的關係則利用多層次階層羅吉斯迴歸完成。
結果:於2006年1月1日至2009年9月30日,分別有31899及25119名病人資料分別用於住院後30天內死亡及出院後30天內再住院分析。全部的病人分佈於19間醫學中心、71間區域醫院及34間地區醫院。三種病人層級組合分數的表現均和病人住院後30天內死亡及出院後30天內再住院有關。全體醫院在四種醫院層級組合分數的表現分別為全平均0.57±0.17,簡單權重平均0.62±0.16,全有全無0.18±0.15,及因素分析0.61±0.17(平均±標準差)。醫院中心在四種組合分數的表現均明顯高於區域及地區醫院。四種組合分數間不論是原始分數或醫院排名上,均高度相關,但不同方法會導致醫院落入不同的等級分類。在多層次分析方面,當病人層級照護品質當成控制變項時,只有區域醫院間,在全平均、簡單權重平均、及因素分析這三種醫院層級組合分數表現較高的醫院,其病人的住院後30天內死亡機率較低。當病人層級組合分數或醫院評鑑層級被當成控制變項時,四種醫院層級組合分數均和病人出院後30天內再住院無關。
結論:醫療服務在價值競爭的觀點上,病人預後是個重要的決定因素。三種病人層級組合分數均能和病人短期預後有關。70%標準在病人層級對和病人預後的關係並不差於全有全無。然而,不同的醫院層級組合分數會導致機構不同的排名,若要在急性心肌梗塞疾病上要使用組合流程分數來當成公開資訊或是論質計酬基礎必須要相當謹慎。進一步發展新的醫院層級組合分數是必須的。
zh_TW
dc.description.abstractBackground: Composite quality-of-care measures have been increasingly developed and applied for public reporting and pay-for-performance initiative. However, some defects have been noted when composite measures were applied in a clinical setting. First, different methods of computing composite scores can lead to unfair ranking. Second, the relationship between the composite score and other indicators, such as patient outcomes, remains unclear.
Objective: We explored the relationship between composite process scores, at the patient and hospital levels, and short-term patient outcomes and compared the differences types of hospital-level composite score. Ultimately, we intended to determine the composite score that most accurately represents the quality of hospital care for patients with acute myocardial infarction (AMI).
Methods: All patients who were admitted for AMI (International Classification of Diseases, Ninth Revision, Clinical Modification 410.xx [excluding 410.x2]) for the first time in Taiwan between January 1, 2005 and December 31, 2009 were identified in the National Health Insurance Research Database. Six process indicators (ie, Aspirin usage, Beta-blocker usage, Statin usage, Left ventricle function evaluation, ACEI/ARB usage on left ventricular systolic dysfunction, and Clopidogrel usage on medical treatment) were used to assemble the composite process scores. Three methods for calculating patient-level composite scores (ie, patient average, 70% standard, and all or none) and 4 methods for calculating hospital-level composite scores (ie, overall average, simple weighted average, all or none, and factor analysis) were employed. The outcomes were 30-day mortality after hospitalization and 30-day all-cause readmission after discharge. Multivariate logistic regression was applied to examine the relationship of the patient outcomes to the patient-level composite process measures. A multilevel hierarchical logistic regression model was applied to examine the relationships between the patient outcomes and factors at the two levels.
Results: Between January 1, 2006 and September 31, 2009, we identified 31 899 patients with 30-day mortality and 25 119 patients with all-cause readmission. The patients were distributed among 19 medical centers, 71 regional hospitals, and 34 district hospitals. All 3 patient-level composite scores were inversely related to 30-day mortality and all-cause readmission in the multivariate logistic regression. The mean ± standard deviation was calculated for each method for calculating hospital-level composite scores: overall average (0.57 ± 0.17), simple weighted average (0.62 ± 0.16), all or none (0.18 ± 0.15), and factor analysis (0.61 ± 0.17). The 4 hospital-level composite scores of medical centers were significantly higher than those of the regional and district hospitals. The 4 hospital-level composite scores, including both the raw scores and those determined according to hospital rankings, were highly correlated to each other, but using different methods caused the hospitals to be categorized into different categories. In the multilevel analysis, only the hospital-level composite overall average, simple average, and factor analysis scores for the regional hospitals were inversely associated with patient 30-day mortality when the patient-level quality of care was controlled for. The 4 hospital-level composite scores were not correlated to patient 30-day all-cause readmission when the hospital accreditation level or patient-level quality of care were controlled for.
Conclusion: Because of value competition among medical services, patient outcomes are a critical factor. All 3 patient-level composite scores can be used to represent patient-level quality of care related to short-term outcomes for patients with AMI. 70% standard is not inferior to all-or-none in patient-level. The hospital-level composite scores were related to patient outcomes only under certain conditions, and using different composite scoring methods might lead to different rankings. Selecting methods for public reporting or pay-for-performance initiatives for patients with AMI should be considered carefully. Further research on developing new hospital-level composite quality scoring is warranted.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:46:30Z (GMT). No. of bitstreams: 1
ntu-104-D95843005-1.pdf: 12082856 bytes, checksum: 2b2706bda45f9cd87305d4f8c8ccc268 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents中文摘要 I
Abstract III
Table of Contents VI
List of Figures IX
List of Tables XI
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 3
1.3 Objectives 5
Chapter 2 Literatures Review 7
2.1 Composite Score 7
2.1.1 Development of Composite Indicators 7
2.1.2 Methods of Combining Items 13
2.1.3 Advantages and Disadvantages 22
2.1.4 Summary 24
2.2 Relationship Between the Hospital-level Composite Process Scores and Patient Outcomes 24
Chapter 3 Methods 46
3.1 Data Source 46
3.2 Patient Population 46
3.3 Process Performance Measures 47
3.4 Composite Process Scores 54
3.5 Outcomes 57
3.6 Conceptual Framework 58
3.7 Hypotheses 65
3.8 Statistical Analysis 65
Chapter 4 Results 71
4.1 Patients’ Basic Characteristics 71
4.2 Association Between Patient-Level Quality of Care and Patient Outcomes 77
4.2.1 30-Day Mortality 77
4.2.2 30-Day All-Cause Readmission 83
4.2.3 Summary 89
4.3 Correlation and Agreement Between Various Hospital-Level Composite Scores 90
4.4 Association Between Hospital-Level Quality of Care and Patient Outcomes 108
4.4.1 30-Day Mortality 108
4.4.2 30-Day All-Cause Readmission 139
4.4.3 Summary 163
4.5 Identifying the Most Effective Composite Indicator for Representing the Quality of Care 167
Chapter 5 Discussion 171
5.1 Advantages of This Study 171
5.2 Study Findings and Interpretation 171
5.2.1 Association of Patient-Level Quality of Care and Patient Outcomes 171
5.2.2 Correlation and Agreement Between Various Hospital-Level Composite Scores 173
5.2.3 Association Between the Hospital-Level Quality of Care and Patient Outcomes 174
5.2.4 Identifying the Most Effective Composite Indicator for Representing the Quality of Care 178
5.2.5 Validation of the Hypotheses 180
5.3 Limitations 183
Chapter 6 Conclusions and Recommendations 185
6.1 Conclusions 185
6.2 Policy Implications 186
6.2.1 Clinical and Managerial Implication 186
6.2.2 Governmental Implication 187
6.3 Future Research 187
Reference 188
Appendix 201
dc.language.isoen
dc.title探討台灣醫院照護流程組合分數和病患預後之關係-以急性心肌梗塞為例zh_TW
dc.titleExploring the Association Between Disease-Specific Composite Process Scores and Patient Outcomes in Patients with Acute Myocardial Infarction in Taiwanen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree博士
dc.contributor.oralexamcommittee簡國龍,陳端容,陳文鍾,吳肖琪,李玉春
dc.subject.keyword組合分數,急性心肌梗塞,30天死亡率,30天再住院率,多層次分析,zh_TW
dc.subject.keywordComposite score,Acute myocardial infarction (AMI),30-day mortality,30-day readmission,Multilevel analysis,en
dc.relation.page201
dc.rights.note有償授權
dc.date.accepted2015-02-02
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept健康政策與管理研究所zh_TW
顯示於系所單位:健康政策與管理研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
11.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved