請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55077完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 宋孔彬 | |
| dc.contributor.author | Ching-An Chen | en |
| dc.contributor.author | 陳慶安 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:46:25Z | - |
| dc.date.available | 2016-03-13 | |
| dc.date.copyright | 2015-03-13 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-02-02 | |
| dc.identifier.citation | 參考文獻
[1] 張平穎. 認識貧血. [2] R. A. McPherson, M. R. Pincus, and J. B. Henry, Henry's clinical diagnosis and management by laboratory methods. Philadelphia: Saunders Elsevier, 2007. [3] B. Bhaduri, K. Tangella, and G. Popescu, 'Fourier phase microscopy with white light,' Biomed Opt Express, vol. 4, pp. 1434-41, 2013. [4] Y. Jang, J. Jang, and Y. Park, 'Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells,' Opt Express, vol. 20, pp. 9673-81, Apr 23 2012. [5] Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, 'Diffraction phase and fluorescence microscopy,' Opt Express, vol. 14, pp. 8263-8, Sep 4 2006. [6] G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, 'Observation of dynamic subdomains in red blood cells,' J Biomed Opt, vol. 11, p. 040503, Jul-Aug 2006. [7] G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, 'Diffraction phase microscopy for quantifying cell structure and dynamics,' Opt Lett, vol. 31, pp. 775-7, Mar 15 2006. [8] G. Popescu, Y. Park, R. R. Dasari, K. Badizadegan, and M. S. Feld, 'Coherence properties of red blood cell membrane motions,' Phys Rev E Stat Nonlin Soft Matter Phys, vol. 76, p. 031902, Sep 2007. [9] N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, 'Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,' J Biomed Opt, vol. 16, p. 030506, Mar 2011. [10] Y. Park, T. Yamauchi, W. Choi, R. Dasari, and M. S. Feld, 'Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells,' Opt Lett, vol. 34, pp. 3668-70, Dec 1 2009. [11] H. Pham, B. Bhaduri, H. Ding, and G. Popescu, 'Spectroscopic diffraction phase microscopy,' Opt Lett, vol. 37, pp. 3438-40, Aug 15 2012. [12] K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, 'High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,' J Biomed Opt, vol. 19, p. 011005, Jan 2014. [13] Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, 'Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,' Proc Natl Acad Sci U S A, vol. 105, pp. 13730-5, Sep 16 2008. [14] V. Yashunsky, V. Lirtsman, A. Zilbershtein, A. Bein, B. Schwartz, B. Aroeti, and M. Golosovsky, 'Surface plasmon-based infrared spectroscopy for cell biosensing,' J Biomed Opt, vol. 17, pp. 081409-1, Aug 2012. [15] F. Zernike, 'How I discovered phase contrast,' Science, vol. 121, pp. 345-9, Mar 11 1955. [16] T. N. Salthouse, 'Nomarski differential-interference contrast microscopy: application in dermal wound healing studies,' Surgery, vol. 75, pp. 59-63, Jan 1974. [17] A. C. Kak and M. Slaney, Principles of computerized tomographic imaging: Society for Industrial and Applied Mathematics, 2001. 67 [18] R. Barer and S. Tkaczyk, 'Refractive index of concentrated protein solutions,' Nature, vol. 173, pp. 821-2, May 1 1954. [19] M. Friebel and M. Meinke, 'Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250-1100 nm dependent on concentration,' Applied optics, vol. 45, pp. 2838-2842, 2006. [20] 'Performing a Blood Count,' in Blood Cells: A Practical Guide, ed: Barbara J. Bain, 2007, pp. 20-60. [21] 劉培柏; 劉敏主. 血液學檢查法. Available: http://vettech.nvri.gov.tw/Articles/handbook/73.html [22] R. Sheldon and T. R. Parsons, A practical manual on the use of the Coulter Counter in marine research: Coulter Electronics Sales, 1967. [23] 'Normal Ranges,' in Blood Cells: A Practical Guide, ed: Barbara J. Bain, 2007, pp. 198-216. [24] R. Barer, 'Refractometry and interferometry of living cells,' J Opt Soc Am, vol. 47, pp. 545-56, Jun 1957. [25] J. W. Su, W. C. Hsu, C. Y. Chou, C. H. Chang, and K. B. Sung, 'Digital holographic microtomography for high-resolution refractive index mapping of live cells,' J Biophotonics, vol. 6, pp. 416-24, May 2013. [26] Molecular Expressions Microscopy Primer. Available: http://micro.magnet.fsu.edu/primer/techniques/darkfieldindex.html [27] wikipedia, 'Dark field microscopy image,' ed. [28] P. Gabriel, 'Holography,' in Quantitative Phase Imaging of Cells and Tissues, ed: McGraw Hill Professional, Access Engineering, 2011. [29] M. V. Mantravadi and D. Malacara, 'Newton, Fizeau, and Haidinger Interferometers,' in Optical Shop Testing, ed: John Wiley & Sons, Inc., 2006, pp. 1-45. [30] H.-s. Chang, 'The Calibration of Phase-Shifting Interferometer and the Application of Asphere Testing,' Master Thesis, National Central University, Taiwan, 2010. [31] J. W. Goodman, 'Digital Image Formation From Electronically Detected Holograms,' 1967, pp. 176-181. [32] K. J. Chalut, W. J. Brown, and A. Wax, 'Quantitative phase microscopy with asynchronous digital holography,' Optics Express, vol. 15, pp. 3047-3052, Mar 19 2007. [33] I. Yamaguchi, T. Matsumura, and J. Kato, 'Phase-shifting color digital holography,' Optics Letters, vol. 27, pp. 1108-1110, Jul 1 2002. [34] I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, 'Image formation in phase-shifting digital holography and applications to microscopy,' Appl Opt, vol. 40, pp. 6177-86, Dec 1 2001. [35] I. Yamaguchi and T. Zhang, 'Phase-shifting digital holography,' Opt Lett, vol. 22, pp. 1268-70, Aug 15 1997. [36] K. Creath, 'Phase-Shifting Holographic Interferometry,' in Holographic Interferometry. vol. 68, P. Rastogi, Ed., ed: Springer Berlin Heidelberg, 1994, pp. 109-150. [37] Z. Wang and B. Han, 'Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms,' Opt Lett, vol. 29, pp. 1671-3, Jul 15 2004. [38] E. N. Leith and J. Upatnieks, 'Reconstructed Wavefronts and Communication Theory,' Journal of the Optical Society of America, vol. 52, pp. 1123-1128, 68 1962/10/01 1962. [39] T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, 'Hilbert phase microscopy for investigating fast dynamics in transparent systems,' Opt Lett, vol. 30, pp. 1165-7, May 15 2005. [40] G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, 'Fourier phase microscopy for investigation of biological structures and dynamics,' Opt Lett, vol. 29, pp. 2503-5, Nov 1 2004. [41] Z. Wang and G. Popescu, 'Quantitative phase imaging with broadband fields,' Applied Physics Letters, vol. 96, pp. -, 2010. [42] B. Bhaduri, H. Pham, M. Mir, and G. Popescu, 'Diffraction phase microscopy with white light,' Opt Lett, vol. 37, pp. 1094-6, Mar 15 2012. [43] E. Wolf, 'Solution of the phase problem in the theory of structure determination of crystals from x-ray diffraction experiments,' Phys Rev Lett, vol. 103, p. 075501, Aug 14 2009. [44] Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu,'Spatial light interference microscopy (SLIM),' Opt Express, vol. 19, pp. 1016-26, Jan 17 2011. [45] W. C. Hsu, J. W. Su, C. C. Chang, and K. B. Sung, 'Investigating the backscattering characteristics of individual normal and cancerous cells based on experimentally determined three-dimensional refractive index distributions,' 2012, pp. 85531O-85531O-7. [46] Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, 'Optical diffraction tomography for high resolution live cell imaging,' Opt Express, vol. 17, pp. 266-77, Jan 5 2009. [47] W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, 'Extended depth of focus in tomographic phase microscopy using a propagation algorithm,' Opt Lett, vol. 33, pp. 171-3, Jan 15 2008. [48] F. Charriere, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, 'Cell refractive index tomography by digital holographic microscopy,' Opt Lett, vol. 31, pp. 178-80, Jan 15 2006. [49] I. Bergoend, C. Arfire, N. Pavillon, and C. Depeursinge, 'Diffraction tomography for biological cells imaging using digital holographic microscopy,' 2010, pp. 737613-737613-8. [50] W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, 'Tomographic phase microscopy,' Nat Methods, vol. 4, pp. 717-9, Sep 2007. [51] G. N. Vishnyakov, G. G. Levin, V. L. Minaev, V. V. Pickalov, and A. V. Likhachev, 'Tomographic interference microscopy of living cells,' Microscopy and Analysis, pp. 15-18, 2004. [52] Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge,'Marker-free phase nanoscopy,' Nat Photon, vol. 7, pp. 113-117, 02//print 2013. [53] Y. Cotte, M. F. Toy, and C. Depeursinge, 'Beyond the lateral resolution limit by phase imaging,' J Biomed Opt, vol. 16, p. 106007, Oct 2011. [54] A. Thaer, 'The refractive index and dry mass distribution of mammalian erythrocytes,' J Microsc, vol. 89, pp. 237-50, 1969. [55] C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, A. K. Nugent, and L. Delbridge,'Refractive index measurement in viable cells using quantitative phase ‐ amplitude microscopy and confocal 69 microscopy,' Cytometry Part A, vol. 65, pp. 88-92, 2005. [56] N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, 'Live cell refractometry using microfluidic devices,' Optics letters, vol. 31, pp. 2759-2761, 2006. [57] B. Kemper, J. Schnekenburger, M. Schafer, W. Domschke, G. von Bally, I. Bredebusch, and D. Carl,'Investigation of living pancreas tumor cells by digital holographic microscopy,' Journal of biomedical optics, vol. 11, pp. 034005-034005-8, 2006. [58] B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, 'Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,' Optics express, vol. 13, pp. 9361-9373, 2005. [59] B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, 'Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,' Cytometry Part A, vol. 73, pp. 895-903, 2008. [60] H. Ding and G. Popescu, 'Instantaneous spatial light interference microscopy,' Optics express, vol. 18, pp. 1569-1575, 2010. [61] M. Mir, K. Tangella, and G. Popescu, 'Blood testing at the single cell level using quantitative phase and amplitude microscopy,' Biomedical optics express, vol. 2, pp. 3259-3266, 2011. [62] G. Mazarevica, T. Freivalds, and A. Jurka, 'Properties of erythrocyte light refraction in diabetic patients,' J Biomed Opt, vol. 7, pp. 244-7, Apr 2002. [63] R. M. Goldstein, H. A. Zebker, and C. L. Werner, 'Satellite radar interferometry: Two‐dimensional phase unwrapping,' Radio Science, vol. 23, pp. 713-720, 1988. [64] E. Wolf, 'Principles and development of diffraction tomography,' Trends in Optics, vol. 3, pp. 83-110, 1996. [65] P. J. de Groot, P. A. M. Wijnen, and R. B. F. Janssen, 'Real-time frequency determination of acoustic emission for different fracture mechanisms in carbon/epoxy composites,' Composites Science and Technology, vol. 55, pp. 405-412, // 1995. [66] W. C. Hsu, J. W. Su, T. Y. Tseng, and K. B. Sung, 'Tomographic diffractive microscopy of living cells based on a common-path configuration,' Opt Lett, vol. 39, pp. 2210-3, Apr 1 2014. [67] M. Friebel and M. Meinke, 'Determination of the complex refractive index of highly concentrated hemoglobin solutions using transmittance and reflectance measurements,' Journal of biomedical optics, vol. 10, pp. 064019-064019-5, 2005. [68] S. Prahl. Optical Absorption of Hemoglobin. Available: http://omlc.org/spectra/hemoglobin/ [69] K. G. Phillips, S. L. Jacques, and O. J. T. McCarty, 'Measurement of Single Cell Refractive Index, Dry Mass, Volume, and Density Using a Transillumination Microscope,' Physical Review Letters, vol. 109, p. 118105, 09/13/ 2012. [70] M. Rinehart, Y. Zhu, and A. Wax, 'Quantitative phase spectroscopy,' Biomed Opt Express, vol. 3, pp. 958-65, May 1 2012. [71] O. Zhernovaya, O. Sydoruk, V. Tuchin, and A. Douplik, 'The refractive index of human hemoglobin in the visible range,' Phys Med Biol, vol. 56, pp. 4013-21, Jul 7 2011. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55077 | - |
| dc.description.abstract | 貧血為一種常見的人體疾病,可以看成是一種單一臨床上的疾病也可能是某
種慢性疾病的症狀之一,這是由於血液當中的紅血球攜帶氧氣的能力不足,無法 正常地將氧氣輸送到人體各個器官,所產生的一種症狀。透過抽血進行血液檢驗, 藉由全血自動分析儀計算出血液中的紅血球、白血球、血小板等相關的數值是否 介於人體的正常參考區間內。 檢驗是否有貧血症狀目前可以從紅血球體積以及紅血球內的血紅素含量作為 初步的判斷依據,目前臨床上使用的全自動血液分析儀在紅血球細胞的測量方 式,大多採用直流電阻抗技術法去計算細胞的體積以及數量,此方法的優點可以 在短時間內測量大量細胞平均結果,速度快、信息量大,但無法比較單一紅血球 細胞之間的差異性以及提供型態上的判讀。因此,全自動血液分析儀在初步檢驗 上是一項很好的工具,但仍需仰賴後續的人工處理分析進一步情況。基於實驗室 所開發的三維折射率顯微鏡(術),透過干涉全像術以及電腦斷層影像的概念,重建 出細胞的三維折射率分布,即為細胞的三維結構。將此方法應用在紅血球細胞上, 可以重建出紅血球的三維折射率分布,並量化單一細胞的體積以及血紅素含量, 更可以同時觀察細胞間的型態差異。透過此系統,將可以在無需染色標定的情況 下,得到紅血球多項的內生性資訊,如體積、血紅素濃度、折射率值分布以及三 維結構等等。 藉由三維折射率顯微鏡的測量,我們已經初步定量出正常以及貧血疾病的紅 血球在各項數值上的結果,並與全自動血液分析儀測得的臨床數值做比較。目前 統計結果在體積以及濃度表現上雖與全自動血液分析儀有所差異,但仍呈現出正 相關的結果,而從細胞折射率值的表現上,也能夠看出正常及貧血兩者之間存在 明顯的不同,並能清楚的表現出紅血球細胞的三維型態。現階段由於細胞統計的 樣本數量較少,在病患上也只有輕微的地中海型貧血的資料,因此在未來希望能 量化出更多的紅血球細胞,及提升系統的準確性,獲得更為可信的統計結果。 | zh_TW |
| dc.description.abstract | Anemia is a common disease caused by low amount of red blood cells
(RBCs)/hemoglobin in the blood, or a lowered ability of the blood to carry oxygen. The symptoms include fatigue, dyspnea, confusion or syncope. Volume and hemoglobin contents of the RBCs are the indices to determine if the patient has the anemia symptom in the initial blood test. The current method in the clinical hospital is the fully-automated whole blood analyzer for calculating the indices of RBCs. Using this method, the RBCs analysis can be finished in a short time and acquire high throughput data. The fully-automated whole blood analyzer is good for RBCs clinical analysis in the initial blood test although it also needs more manual process by clinical laboratory technologist when the machine detects the abnormal state on the blood. Furthermore, the automated machine cannot provide morphology of the RBCs. The goal of the thesis is to establish a method that can reconstruct 3D morphology of RBCs and quantify the volume and hemoglobin contents by a novel optical microscopy technique: three-dimensional (3D) refractive-index (RI) microscopy which is based on digital holography and optical diffraction tomography. Using this technique, we can reconstruct the 3D-RI mapping of the BRCs and evaluate the deviation between individual RBCs without staining or other extra process. 3D-RI microscopy have been used for the measurement of normal and thalassemia RBCs and the statistical result of volume and Hb concentration are compared with the clinical blood tests. The 3D-RI microscopy was practically performed on mapping 3D-RI distribution of RBCs and we found that the RI and morphology difference between normal and the thalassemia patients are clear to be observed in our results. In the future, we will measure more RBCs from normal and anemia patients with different symptoms to establish a more reliable statistics. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:46:25Z (GMT). No. of bitstreams: 1 ntu-104-R01945041-1.pdf: 3314772 bytes, checksum: 245d7c89cd8e58b65d2bc56bb6ab4ac2 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 目錄
口試委員會審定書 ........................................................................................................... # 致謝 ....................................................................................................................................i 摘要 .................................................................................................................................. ii Abstract ............................................................................................................................ iii 目錄 ................................................................................................................................... v 圖目錄 ............................................................................................................................ vii 表目錄 ............................................................................................................................... x 第一章 導論 ................................................................................................................. 1 1.1 研究背景 ........................................................................................................ 1 1.2 研究動機及目標 ............................................................................................ 1 第二章 相關研究介紹 ................................................................................................. 4 2.1 血液臨床檢驗方法回顧 ................................................................................. 4 2.1.1 血紅素測定(Hgb) ................................................................................ 4 2.1.2 紅血球壓積(Packed cell volume)與紅血球細胞計數(RBC count) ... 4 2.1.3 紅血球臨床指數 .................................................................................. 6 2.2 相關研究回顧 ................................................................................................ 7 2.2.1 相位體 ................................................................................................... 7 2.2.2 全像術 ................................................................................................. 10 2.2.3 常見的干涉移架構 ............................................................................. 11 2.3 各種基於全像干涉術的定量式相位影像系統 .......................................... 14 vi 2.3.1 相移式系統(phase-shifting methods) ................................................. 14 2.3.2 離軸式系統(off-axis methods) ........................................................... 18 2.3.3 共光路式系統(Common-path methods) ............................................ 19 2.3.4 白光式系統 ........................................................................................ 21 2.4 三維折射率顯微術的發展 .......................................................................... 23 2.5 定量式顯微術在紅血球上的相關研究 ...................................................... 26 第三章 光學系統架構以及方法 ............................................................................... 33 3.1 二維相位影像重建 Advanced Iterative Algorithm ................................... 33 3.2 繞射斷層掃描理論 Diffraction tomography ............................................ 36 3.3 三維折射率顯微術的實現----Digital Holography Microtomogram(DHμT)38 3.3.1 系統架設DHμT ................................................................................. 38 3.3.2 系統架設CP-DHμT ........................................................................... 40 3.4 實驗方法和理論 .......................................................................................... 41 3.4.1 血紅素 ................................................................................................. 41 3.4.2 紅血球 ................................................................................................. 43 第四章 實驗結果 ....................................................................................................... 45 4.1 血紅素 .......................................................................................................... 45 4.2 紅血球 .......................................................................................................... 51 第五章 討論與結論 ................................................................................................... 60 5.1 實驗結果討論 .............................................................................................. 60 5.2 總結以及未來展望 ...................................................................................... 64 參考文獻 …………………………………………………………………………..66 | |
| dc.language.iso | zh-TW | |
| dc.subject | 紅血球 | zh_TW |
| dc.subject | 血紅素 | zh_TW |
| dc.subject | 貧血 | zh_TW |
| dc.subject | 全像干涉術 | zh_TW |
| dc.subject | 三維折射率影像 | zh_TW |
| dc.subject | holography | en |
| dc.subject | three-dimensional refractive index image | en |
| dc.subject | anemia | en |
| dc.subject | hemoglobin | en |
| dc.subject | imaging | en |
| dc.subject | cells | en |
| dc.subject | blood | en |
| dc.subject | Red | en |
| dc.title | 利用三維折射率顯微術定量式分析紅血球細胞 | zh_TW |
| dc.title | Three-dimensional refractive-index microscope for analyzing red
blood cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林致廷,黃念祖,吳尚儒 | |
| dc.subject.keyword | 紅血球,血紅素,貧血,全像干涉術,三維折射率影像, | zh_TW |
| dc.subject.keyword | Red,blood,cells,imaging,hemoglobin,anemia,holography,three-dimensional refractive index image, | en |
| dc.relation.page | 70 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-02-02 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
