Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55066
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 林榮信(Jung-Hsin Lin) | |
dc.contributor.author | Yu-Hsuan Chen | en |
dc.contributor.author | 陳侑宣 | zh_TW |
dc.date.accessioned | 2021-06-16T03:46:03Z | - |
dc.date.available | 2020-03-12 | |
dc.date.copyright | 2015-03-12 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-02-03 | |
dc.identifier.citation | 1. Dixon, R. A. F.; Kobilka, B. K.; Strader, D. J.; Benovic, J. L.; Dohlman, H. G.; Frielle, T.; Bolanowski, M. A.; Bennett, C. D.; Rands, E.; Diehl, R. E.; Mumford, R. A.; Slater, E. E.; Sigal, I. S.; Caron, M. G.; Lefkowitz, R. J.; Strader, C. D. Cloning of the Gene and Cdna for Mammalian Beta-Adrenergic-Receptor and Homology with Rhodopsin. Nature 1986, 321, 75-79. 2. Pierce, K. L.; Premont, R. T.; Lefkowitz, R. J. Seven-transmembrane receptors. Nature Reviews Molecular Cell Biology 2002, 3, 639-650. 3. Fredriksson, R.; Lagerstrom, M. C.; Lundin, L. G.; Schioth, H. B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Molecular Pharmacology 2003, 63, 1256-1272. 4. Attwood, T. K.; Findlay, J. B. C. Fingerprinting G-Protein-Coupled Receptors. Protein Engineering 1994, 7, 195-203. 5. Kolakowski, L. F. Gcrdb - a G-Protein-Coupled Receptor Database. Receptors Channels 1994, 2, 1-7. 6. Flower, D. R. Modelling G-protein-coupled receptors for drug design. Biochimica Et Biophysica Acta-Reviews on Biomembranes 1999, 1422, 207-234. 7. Salon, J. A.; Lodowski, D. T.; Palczewski, K. The Significance of G Protein-Coupled Receptor Crystallography for Drug Discovery. Pharmacological Reviews 2011, 63, 901-937. 8. Schertler, G. F. X.; Villa, C.; Henderson, R. Projection Structure of Rhodopsin. Nature 1993, 362, 770-772. 9. Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C. A.; Motoshima, H.; Fox, B. A.; Le Trong, I.; Teller, D. C.; Okada, T.; Stenkamp, R. E.; Yamamoto, M.; Miyano, M. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 2000, 289, 739-745. 10. Park, J. H.; Scheerer, P.; Hofmann, K. P.; Choe, H. W.; Ernst, O. P. Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 2008, 454, 183-U33. 11. Park, P. S. H.; Lodowski, D. T.; Palczewski, K. Activation of G protein-coupled receptors: Beyond two-state models and tertiary conformational changes. Annual Review of Pharmacology and Toxicology 2008, 48, 107-141. 12. Scheerer, P.; Park, J. H.; Hildebrand, P. W.; Kim, Y. J.; Krauss, N.; Choe, H. W.; Hofmann, K. P.; Ernst, O. P. Crystal structure of opsin in its G-protein-interacting conformation. Nature 2008, 455, 497-U30. 13. Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. The Protein Data Bank. Nucleic Acids Research 2000, 28, 235-242. 14. Katritch, V.; Cherezov, V.; Stevens, R. C. Diversity and modularity of G protein-coupled receptor structures. Trends in Pharmacological Sciences 2012, 33, 17-27. 15. Katritch, V.; Cherezov, V.; Stevens, R. C. Structure-Function of the G Protein-Coupled Receptor Superfamily. Annual Review of Pharmacology and Toxicology, Vol 53, 2013 2013, 53, 531-556. 16. Gonzalez, A.; Cordomi, A.; Caltabiano, G.; Pardo, L. Impact of Helix Irregularities on Sequence Alignment and Homology Modeling of G Protein-Coupled Receptors. Chembiochem 2012, 13, 1393-1399. 17. Rasmussen, S. G. F.; Choi, H. J.; Fung, J. J.; Pardon, E.; Casarosa, P.; Chae, P. S.; DeVree, B. T.; Rosenbaum, D. M.; Thian, F. S.; Kobilka, T. S.; Schnapp, A.; Konetzki, I.; Sunahara, R. K.; Gellman, S. H.; Pautsch, A.; Steyaert, J.; Weis, W. I.; Kobilka, B. K. Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 2011, 469, 175-180. 18. Rasmussen, S. G. F.; DeVree, B. T.; Zou, Y. Z.; Kruse, A. C.; Chung, K. Y.; Kobilka, T. S.; Thian, F. S.; Chae, P. S.; Pardon, E.; Calinski, D.; Mathiesen, J. M.; Shah, S. T. A.; Lyons, J. A.; Caffrey, M.; Gellman, S. H.; Steyaert, J.; Skiniotis, G.; Weis, W. I.; Sunahara, R. K.; Kobilka, B. K. Crystal structure of the beta(2) adrenergic receptor-Gs protein complex. Nature 2011, 477, 549-U311. 19. Gether, U. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocrine Reviews 2000, 21, 90-113. 20. Samama, P.; Cotecchia, S.; Costa, T.; Lefkowitz, R. J. A Mutation-Induced Activated State of the Beta(2)-Adrenergic Receptor - Extending the Ternary Complex Model. Journal of Biological Chemistry 1993, 268, 4625-4636. 21. Seifert, R.; Wenzel-Seifert, K. Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors. Naunyn-Schmiedebergs Archives of Pharmacology 2002, 366, 381-416. 22. Gether, U.; Kobilka, B. K. G protein-coupled receptors - II. Mechanism of agonist activation. Journal of Biological Chemistry 1998, 273, 17979-17982. 23. Schwartz, T. W.; Frimurer, T. M.; Holst, B.; Rosenkilde, M. M.; Elling, C. E. Molecular mechanism of 7TM receptor activation - A global toggle switch model. Annual Review of Pharmacology and Toxicology 2006, 46, 481-519. 24. Ballesteros, J. A.; Jensen, A. D.; Liapakis, G.; Rasmussen, S. G. F.; Shi, L.; Gether, U.; Javitch, J. A. Activation of the beta(2)-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. Journal of Biological Chemistry 2001, 276, 29171-29177. 25. Li, J.; Edwards, P. C.; Burghammer, M.; Villa, C.; Schertler, G. F. X. Structure of bovine rhodopsin in a trigonal crystal form. Journal of Molecular Biology 2004, 343, 1409-1438. 26. G Protein-Coupled Receptors - Modeling and Simulation. Springer: 2014. 27. Rosenkilde, M. M.; Benned-Jensen, T.; Frimurer, T. M.; Schwartz, T. W. The minor binding pocket: a major player in 7TM receptor activation. Trends in Pharmacological Sciences 2010, 31, 567-574. 28. Joost, P.; Methner, A. Phylogenetic analysis of 277 human G-protein-coupled receptors as a tool for the prediction of orphan receptor ligands. Genome Biology 2002, 3. 29. Kobilka, B. K. Structural insights into adrenergic receptor function and pharmacology. Trends in Pharmacological Sciences 2011, 32, 213-218. 30. Deupi, X.; Kobilka, B. K. Energy Landscapes as a Tool to Integrate GPCR Structure, Dynamics, and Function. Physiology 2010, 25, 293-303. 31. Dror, R. O.; Arlow, D. H.; Maragakis, P.; Mildorf, T. J.; Pan, A. C.; Xu, H. F.; Borhani, D. W.; Shaw, D. E. Activation mechanism of the beta(2)-adrenergic receptor. Proceedings of the National Academy of Sciences of the United States of America 2011, 108, 18684-18689. 32. Nygaard, R.; Zou, Y. Z.; Dror, R. O.; Mildorf, T. J.; Arlow, D. H.; Manglik, A.; Pan, A. C.; Liu, C. W.; Fung, J. J.; Bokoch, M. P.; Thian, F. S.; Kobilka, T. S.; Shaw, D. E.; Mueller, L.; Prosser, R. S.; Kobilka, B. K. The Dynamic Process of beta(2)-Adrenergic Receptor Activation. Cell 2013, 152, 532-542. 33. Rosenbaum, D. M.; Zhang, C.; Lyons, J. A.; Holl, R.; Aragao, D.; Arlow, D. H.; Rasmussen, S. G. F.; Choi, H. J.; DeVree, B. T.; Sunahara, R. K.; Chae, P. S.; Gellman, S. H.; Dror, R. O.; Shaw, D. E.; Weis, W. I.; Caffrey, M.; Gmeiner, P.; Kobilka, B. K. Structure and function of an irreversible agonist-beta(2) adrenoceptor complex. Nature 2011, 469, 236-240. 34. Kohlhoff, K. J.; Shukla, D.; Lawrenz, M.; Bowman, G. R.; Konerding, D. E.; Belov, D.; Altman, R. B.; Pande, V. S. Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways. Nature Chemistry 2014, 6, 15-21. 35. Ghanouni, P.; Gryczynski, Z.; Steenhuis, J. J.; Lee, T. W.; Farrens, D. L.; Lakowicz, J. R.; Kobilka, B. K. Functionally different agonists induce distinct conformations in the G protein coupling domain of the beta(2) adrenergic receptor. Journal of Biological Chemistry 2001, 276, 24433-24436. 36. Ghanouni, P.; Steenhuis, J. J.; Farrens, D. L.; Kobilka, B. K. Agonist-induced conformational changes in the G-protein-coupling domain of the beta(2) adrenergic receptor. Proceedings of the National Academy of Sciences of the United States of America 2001, 98, 5997-6002. 37. Peleg, G.; Ghanouni, P.; Kobilka, B. K.; Zare, R. N. Single-molecule spectroscopy of the beta(2) adrenergic receptor: Observation of conformational substates in a membrane protein. Proceedings of the National Academy of Sciences of the United States of America 2001, 98, 8469-8474. 38. Swaminath, G.; Xiang, Y.; Lee, T. W.; Steenhuis, J.; Parnot, C.; Kobilka, B. K. Sequential binding of agonists to the beta(2) adrenoceptor - Kinetic evidence for intermediate conformational states. Journal of Biological Chemistry 2004, 279, 686-691. 39. Swaminath, G.; Deupi, X.; Lee, T. W.; Zhu, W.; Thian, F. S.; Kobilka, T. S.; Kobilka, B. Probing the beta(2) adrenoceptor binding site with catechol reveals differences in binding and activation by agonists and partial agonists. Journal of Biological Chemistry 2005, 280, 22165-22171. 40. Liu, J. J.; Horst, R.; Katritch, V.; Stevens, R. C.; Wuthrich, K. Biased Signaling Pathways in beta(2)-Adrenergic Receptor Characterized by F-19-NMR. Science 2012, 335, 1106-1110. 41. Saam, J.; Tajkhorshid, E.; Hayashi, S.; Schulten, K. Molecular dynamics investigation of primary photoinduced events in the activation of rhodopsin. Biophysical Journal 2002, 83, 3097-3112. 42. Crozier, P. S.; Stevens, M. J.; Woolf, T. B. How a small change in retinal leads to G-protein activation: Initial events suggested by molecular dynamics calculations. Proteins-Structure Function and Bioinformatics 2007, 66, 559-574. 43. Grossfield, A.; Pitman, M. C.; Feller, S. E.; Soubias, O.; Gawrisch, K. Internal hydration increases during activation of the G-protein-coupled receptor rhodopsin. Journal of Molecular Biology 2008, 381, 478-486. 44. Ahuja, S.; Smith, S. O. Multiple Switches in G Protein-Coupled Receptor Activation. Trends in Pharmacological Sciences 2009, 30, 494-502. 45. Dror, R. O.; Pan, A. C.; Arlow, D. H.; Borhani, D. W.; Maragakis, P.; Shan, Y. B.; Xu, H. F.; Shaw, D. E. Pathway and mechanism of drug binding to G-protein-coupled receptors. Proceedings of the National Academy of Sciences of the United States of America 2011, 108, 13118-13123. 46. Miao, Y. L.; Nichols, S. E.; Gasper, P. M.; Metzger, V. T.; McCammon, J. A. Activation and dynamic network of the M2 muscarinic receptor. Proceedings of the National Academy of Sciences of the United States of America 2013, 110, 10982-10987. 47. Okada, T.; Sugihara, M.; Bondar, A. N.; Elstner, M.; Entel, P.; Buss, V. The retinal conformation and its environment in rhodopsin in light of a new 2.2 angstrom crystal structure. Journal of Molecular Biology 2004, 342, 571-583. 48. Nakamichi, H.; Okada, T. Local peptide movement in the photoreaction intermediate of rhodopsin. Proceedings of the National Academy of Sciences of the United States of America 2006, 103, 12729-12734. 49. Standfuss, J.; Edwards, P. C.; D'Antona, A.; Fransen, M.; Xie, G. F.; Oprian, D. D.; Schertler, G. F. X. The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature 2011, 471, 656-660. 50. Choe, H. W.; Park, J. H.; Kim, Y. J.; Ernst, O. P. Transmembrane signaling by GPCRs: Insight from rhodopsin and opsin structures. Neuropharmacology 2011, 60, 52-57. 51. Deupi, X.; Edwards, P.; Singhal, A.; Nickle, B.; Oprian, D.; Schertler, G.; Standfuss, J. Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II. Proceedings of the National Academy of Sciences of the United States of America 2012, 109, 119-124. 52. Rosenbaum, D. M.; Cherezov, V.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Yao, X. J.; Weis, W. I.; Stevens, R. C.; Kobilka, B. K. GPCR engineering yields high-resolution structural insights into beta(2)-adrenergic receptor function. Science 2007, 318, 1266-1273. 53. Cherezov, V.; Rosenbaum, D. M.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Kuhn, P.; Weis, W. I.; Kobilka, B. K.; Stevens, R. C. High-resolution crystal structure of an engineered human beta(2)-adrenergic G protein-coupled receptor. Science 2007, 318, 1258-1265. 54. Rasmussen, S. G. F.; Choi, H. J.; Rosenbaum, D. M.; Kobilka, T. S.; Thian, F. S.; Edwards, P. C.; Burghammer, M.; Ratnala, V. R. P.; Sanishvili, R.; Fischetti, R. F.; Schertler, G. F. X.; Weis, W. I.; Kobilka, B. K. Crystal structure of the human beta(2) adrenergic G-protein-coupled receptor. Nature 2007, 450, 383-U4. 55. Hanson, M. A.; Cherezov, V.; Griffith, M. T.; Roth, C. B.; Jaakola, V. P.; Chien, E. Y. T.; Velasquez, J.; Kuhn, P.; Stevens, R. C. A specific cholesterol binding site is established by the 2.8 angstrom structure of the human beta(2)-adrenergic receptor. Structure 2008, 16, 897-905. 56. Bokoch, M. P.; Zou, Y. Z.; Rasmussen, S. G. F.; Liu, C. W.; Nygaard, R.; Rosenbaum, D. M.; Fung, J. J.; Choi, H. J.; Thian, F. S.; Kobilka, T. S.; Puglisi, J. D.; Weis, W. I.; Pardo, L.; Prosser, R. S.; Mueller, L.; Kobilka, B. K. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature 2010, 463, 108-U121. 57. Wacker, D.; Fenalti, G.; Brown, M. A.; Katritch, V.; Abagyan, R.; Cherezov, V.; Stevens, R. C. Conserved Binding Mode of Human beta(2) Adrenergic Receptor Inverse Agonists and Antagonist Revealed by X-ray Crystallography. Journal of the American Chemical Society 2010, 132, 11443-11445. 58. Warne, T.; Serrano-Vega, M. J.; Baker, J. G.; Moukhametzianov, R.; Edwards, P. C.; Henderson, R.; Leslie, A. G. W.; Tate, C. G.; Schertler, G. F. X. Structure of a beta(1)-adrenergic G-protein-coupled receptor. Nature 2008, 454, 486-U2. 59. Moukhametzianov, R.; Warne, T.; Edwards, P. C.; Serrano-Vega, M. J.; Leslie, A. G. W.; Tate, C. G.; Schertler, G. F. X. Two distinct conformations of helix 6 observed in antagonist-bound structures of a beta(1)-adrenergic receptor. Proceedings of the National Academy of Sciences of the United States of America 2011, 108, 8228-8232. 60. Warne, T.; Edwards, P. C.; Leslie, A. G. W.; Tate, C. G. Crystal Structures of a Stabilized beta(1)-Adrenoceptor Bound to the Biased Agonists Bucindolol and Carvedilol. Structure 2012, 20, 841-849. 61. Warne, T.; Moukhametzianov, R.; Baker, J. G.; Nehme, R.; Edwards, P. C.; Leslie, A. G. W.; Schertler, G. F. X.; Tate, C. G. The structural basis for agonist and partial agonist action on a beta(1)-adrenergic receptor. Nature 2011, 469, 241-244. 62. Jaakola, V. P.; Griffith, M. T.; Hanson, M. A.; Cherezov, V.; Chien, E. Y. T.; Lane, J. R.; IJzerman, A. P.; Stevens, R. C. The 2.6 Angstrom Crystal Structure of a Human A(2A) Adenosine Receptor Bound to an Antagonist. Science 2008, 322, 1211-1217. 63. Dore, A. S.; Robertson, N.; Errey, J. C.; Ng, I.; Hollenstein, K.; Tehan, B.; Hurrell, E.; Bennett, K.; Congreve, M.; Magnani, F.; Tate, C. G.; Weir, M.; Marshall, F. H. Structure of the Adenosine A(2A) Receptor in Complex with ZM241385 and the Xanthines XAC and Caffeine. Structure 2011, 19, 1283-1293. 64. Hino, T.; Arakawa, T.; Iwanari, H.; Yurugi-Kobayashi, T.; Ikeda-Suno, C.; Nakada-Nakura, Y.; Kusano-Arai, O.; Weyand, S.; Shimamura, T.; Nomura, N.; Cameron, A. D.; Kobayashi, T.; Hamakubo, T.; Iwata, S.; Murata, T. G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature 2012, 482, 237-U130. 65. Congreve, M.; Andrews, S. P.; Dore, A. S.; Hollenstein, K.; Hurrell, E.; Langmead, C. J.; Mason, J. S.; Ng, I. W.; Tehan, B.; Zhukov, A.; Weir, M.; Marshall, F. H. Discovery of 1,2,4-Triazine Derivatives as Adenosine A(2A) Antagonists using Structure Based Drug Design. Journal of Medicinal Chemistry 2012, 55, 1898-1903. 66. Liu, W.; Chun, E.; Thompson, A. A.; Chubukov, P.; Xu, F.; Katritch, V.; Han, G. W.; Roth, C. B.; Heitman, L. H.; IJzerman, A. P.; Cherezov, V.; Stevens, R. C. Structural Basis for Allosteric Regulation of GPCRs by Sodium Ions. Science 2012, 337, 232-236. 67. Xu, F.; Wu, H. X.; Katritch, V.; Han, G. W.; Jacobson, K. A.; Gao, Z. G.; Cherezov, V.; Stevens, R. C. Structure of an Agonist-Bound Human A(2A) Adenosine Receptor. Science 2011, 332, 322-327. 68. Lebon, G.; Warne, T.; Edwards, P. C.; Bennett, K.; Langmead, C. J.; Leslie, A. G. W.; Tate, C. G. Agonist-bound adenosine A(2A) receptor structures reveal common features of GPCR activation. Nature 2011, 474, 521-U154. 69. Fredholm, B. B.; Ijzerman, A. P.; Jacobson, K. A.; Klotz, K. N.; Linden, J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacological Reviews 2001, 53, 527-552. 70. Fredholm, B. B.; Chen, J. F.; Masino, S. A.; Vaugeois, J. M. Actions of adenosine at its receptors in the CNS: Insights from knockouts and drugs. Annual Review of Pharmacology and Toxicology 2005, 45, 385-412. 71. Chen, J. F.; Eltzschig, H. K.; Fredholm, B. B. Adenosine receptors as drug targets - what are the challenges? Nature Reviews Drug Discovery 2013, 12, 265-286. 72. Al Jaroudi, W.; Iskandrian, A. E. Regadenoson: A New Myocardial Stress Agent. Journal of the American College of Cardiology 2009, 54, 1123-1130. 73. Shook, B. C.; Jackson, P. F. Adenosine A(2A) Receptor Antagonists and Parkinson's Disease. Acs Chemical Neuroscience 2011, 2, 555-567. 74. Huang, N. K.; Lin, J. H.; Lin, J. T.; Lin, C. I.; Liu, E. M. W.; Lin, C. J.; Chen, W. P.; Shen, Y. C.; Chen, H. M.; Chen, J. B.; Lai, H. L.; Yang, C. W.; Chiang, M. C.; Wu, Y. S.; Chang, C.; Chen, J. F.; Fang, J. M.; Lin, Y. L.; Chern, Y. J. A New Drug Design Targeting the Adenosinergic System for Huntington's Disease. Plos One 2011, 6. 75. Rivkees, S. A.; Wendler, C. C. Regulation of Cardiovascular Development by Adenosine and Adenosine-Mediated Embryo Protection. Arteriosclerosis Thrombosis and Vascular Biology 2012, 32, 851-855. 76. Linden, J.; Cekic, C. Regulation of Lymphocyte Function by Adenosine. Arteriosclerosis Thrombosis and Vascular Biology 2012, 32, 2097-2103. 77. Johnston-Cox, H. A.; Koupenova, M.; Ravid, K. A2 Adenosine Receptors and Vascular Pathologies. Arteriosclerosis Thrombosis and Vascular Biology 2012, 32, 870-878. 78. Poucher, S. M.; Keddie, J. R.; Singh, P.; Stoggall, S. M.; Caulkett, P. W. R.; Jones, G.; Collis, M. G. The in-Vitro Pharmacology of Zm-241385, a Potent, Nonxanthine, a(2a) Selective Adenosine Receptor Antagonist. British Journal of Pharmacology 1995, 115, 1096-1102. 79. Eswar, N.; Webb, B.; Marti-Renom, M. A.; Madhusudhan, M. S.; Eramian, D.; Shen, M. Y.; Pieper, U.; Sali, A. Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics 2006, Chapter 5, Unit 5 6. 80. Li, H.; Robertson, A. D.; Jensen, J. H. Very fast empirical prediction and rationalization of protein pK(a) values. Proteins-Structure Function and Bioinformatics 2005, 61, 704-721. 81. O'Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. R. Open Babel: An open chemical toolbox. Journal of Cheminformatics 2011, 3. 82. Bayly, C. I.; Cieplak, P.; Cornell, W. D.; Kollman, P. A. A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges - the Resp Model. Journal of Physical Chemistry 1993, 97, 10269-10280. 83. Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT. 84. Wang, J. M.; Wang, W.; Kollman, P. A.; Case, D. A. Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics Modelling 2006, 25, 247-260. 85. Lin, J. H.; Baker, N. A.; McCammon, J. A. Bridging implicit and explicit solvent approaches for membrane electrostatics. Biophysical Journal 2002, 83, 1374-1379. 86. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. Journal of Chemical Physics 1983, 79, 926-935. 87. D.A. Case, T. A. D., T.E. Cheatham, III, C.L. Simmerling, J. Wang, R.E. Duke, R.; Luo, R. C. W., W. Zhang, K.M. Merz, B. Roberts, S. Hayik, A. Roitberg, G. Seabra,; J. Swails, A. W. G., I. Kolossvary, K.F.Wong, F. Paesani, J. Vanicek, R.M.Wolf, J. Liu,; X. Wu, S. R. B., T. Steinbrecher, H. Gohlke, Q. Cai, X. Ye, J. Wang, M.-J. Hsieh, G.; Cui, D. R. R., D.H. Mathews, M.G. Seetin, R. Salomon-Ferrer, C. Sagui, V. Babin, T.; Luchko, S. G., A. Kovalenko, and P.A. Kollman. AMBER 12. 2012. 88. Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins-Structure Function and Bioinformatics 2006, 65, 712-725. 89. Wang, J. M.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and testing of a general amber force field. Journal of Computational Chemistry 2004, 25, 1157-1174. 90. Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald - an N.Log(N) Method for Ewald Sums in Large Systems. Journal of Chemical Physics 1993, 98, 10089-10092. 91. Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. Numerical-Integration of Cartesian Equations of Motion of a System with Constraints - Molecular-Dynamics of N-Alkanes. Journal of Computational Physics 1977, 23, 327-341. 92. Beauchamp, K. A.; Bowman, G. R.; Lane, T. J.; Maibaum, L.; Haque, I. S.; Pande, V. S. MSMBuilder2: Modeling Conformational Dynamics on the Picosecond to Millisecond Scale. Journal of Chemical Theory and Computation 2011, 7, 3412-3419. 93. Senne, M.; Trendelkamp-Schroer, B.; Mey, A. S. J. S.; Schutte, C.; Noe, F. EMMA: A Software Package for Markov Model Building and Analysis. Journal of Chemical Theory and Computation 2012, 8, 2223-2238. 94. Jimenez-Cruz, C. A.; Garcia, A. E. Equilibrium thermodynamics and folding kinetics of a short, fast-folding, beta-hairpin. Physical Chemistry Chemical Physics 2014, 16, 6422-6429. 95. Morcos, F.; Chatterjee, S.; McClendon, C. L.; Brenner, P. R.; Lopez-Rendon, R.; Zintsmaster, J.; Ercsey-Ravasz, M.; Sweet, C. R.; Jacobson, M. P.; Peng, J. W.; Izaguirre, J. A. Modeling Conformational Ensembles of Slow Functional Motions in Pin1-WW. Plos Computational Biology 2010, 6. 96. Silva, D. A.; Bowman, G. R.; Sosa-Peinado, A.; Huang, X. H. A Role for Both Conformational Selection and Induced Fit in Ligand Binding by the LAO Protein. Plos Computational Biology 2011, 7. 97. Deng, N. J.; Dai, W.; Levy, R. M. How Kinetics within the Unfolded State Affects Protein Folding: An Analysis Based on Markov State Models and an Ultra-Long MD Trajectory. Journal of Physical Chemistry B 2013, 117, 12787-12799. 98. Dickson, A.; Brooks, C. L. Native States of Fast-Folding Proteins Are Kinetic Traps. Journal of the American Chemical Society 2013, 135, 4729-4734. 99. Gu, C.; Chang, H. W.; Maibaum, L.; Pande, V. S.; Carlsson, G. E.; Guibas, L. J. Building Markov state models with solvent dynamics. Bmc Bioinformatics 2013, 14. 100. Qiao, Q.; Bowman, G. R.; Huang, X. H. Dynamics of an Intrinsically Disordered Protein Reveal Metastable Conformations That Potentially Seed Aggregation. Journal of the American Chemical Society 2013, 135, 16092-16101. 101. Bowman, G. R. Improved coarse-graining of Markov state models via explicit consideration of statistical uncertainty. Journal of Chemical Physics 2012, 137. 102. Lange, O. F.; Grubmuller, H. Generalized correlation for biomolecular dynamics. Proteins-Structure Function and Bioinformatics 2006, 62, 1053-1061. 103. Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation 2008, 4, 435-447. 104. Dahl, A. C. E.; Chavent, M.; Sansom, M. S. P. Bendix: intuitive helix geometry analysis and abstraction. Bioinformatics 2012, 28, 2193-2194. 105. Quinlan, J. R. C5.0 [Release 2.07 GPL Edition] RuleQuest Research. http://www.rulequest.com/. 106. Freund, Y.; Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 1997, 55, 119-139. 107. Todde, S.; Moresco, R. M.; Simonelli, F.; Baraldi, P. G.; Cacciari, B.; Spalluto, G.; Varani, K.; Monopoli, A.; Matarrese, M.; Carpinelli, A.; Magni, F.; Kienle, M. G.; Fazio, F. Design, radiosynthesis, and biodistribution of a new potent and selective ligand for in vivo imaging of the adenosine A(2A) receptor system using positron emission tomography. Journal of Medicinal Chemistry 2000, 43, 4359-4362. 108. Shinkre, B. A.; Kumar, T. S.; Gao, Z. G.; Deflorian, F.; Jacobson, K. A.; Trenkle, W. C. Synthesis and evaluation of 1,2,4-triazolo[1,5-c]pyrimidine derivatives as A(2A) receptor-selective antagonists. Bioorganic Medicinal Chemistry Letters 2010, 20, 5690-5694. 109. Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. Journal of Computational Chemistry 2009, 30, 2785-2791. 110. Wang, J. C.; Lin, J. H.; Chen, C. M.; Perryman, A. L.; Olson, A. J. Robust Scoring Functions for Protein-Ligand Interactions with Quantum Chemical Charge Models. Journal of Chemical Information and Modeling 2011, 51, 2528-2537. 111. Thomas Williams, C. K. a. m. o. Gnuplot. last modified 2012-03-04. 112. The PyMOL Molecular Graphics System, Version 1.3 Schrodinger, LLC. 113. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. UCSF chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry 2004, 25, 1605-1612. 114. Cronkite-Ratcliff, B.; Pande, V. MSMExplorer: visualizing Markov state models for biomolecule folding simulations. Bioinformatics 2013, 29, 950-952. 115. Ng, H. W.; Laughton, C. A.; Doughty, S. W. Molecular Dynamics Simulations of the Adenosine A2a Receptor: Structural Stability, Sampling, and Convergence. Journal of Chemical Information and Modeling 2013, 53, 1168-1178. 116. Fritze, O.; Filipek, S.; Kuksa, V.; Palczewski, K.; Hofmann, K. P.; Ernst, O. P. Role of the conserved NPxxY(x)(5,6)F motif in the rhodopsin ground state and during activation. Proceedings of the National Academy of Sciences of the United States of America 2003, 100, 2290-2295. 117. Lei, S.; Liapakis, G.; Xu, R.; Guarnieri, F.; Ballesteros, J. A.; Javitch, J. A. beta(2) adrenergic receptor activation - Modulation of the proline kink in transmembrane 6 by a rotamer toggle switch. Journal of Biological Chemistry 2002, 277, 40989-40996. 118. Wichard, J. D.; ter Laak, A.; Krause, G.; Heinrich, N.; Kuhne, R.; Kleinau, G. Chemogenomic Analysis of G-Protein Coupled Receptors and Their Ligands Deciphers Locks and Keys Governing Diverse Aspects of Signalling. Plos One 2011, 6. 119. Roth, C. B.; Hanson, M. A.; Stevens, R. C. Stabilization of the human beta(2)-adrenergic receptor TM4-TM3-TM5 helix interface by mutagenesis of Glu122(3.41), a critical residue in GPCR structure. Journal of Molecular Biology 2008, 376, 1305-1319. 120. Yang, W. Y.; Gruebele, M. Folding at the speed limit. Nature 2003, 423, 193-197. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55066 | - |
dc.description.abstract | 原則上來說,不同的配體 (ligand) 所誘發的蛋白質動力學特性應可加以區別並可反映其配體的功能 (functional type)。然而,A型G蛋白耦合受體 (G protein-coupled receptor, GPCRs) 所具有的構型異質性 (conformational heterogeneity,即結合不同功能配體的蛋白質具有相似的分子構型),使得探究不同配體對於蛋白質動力學特性之影響成為一極富挑戰的工作。 本論文中,我們運用分子動力學模擬 (molecular dynamics, MD) 技術,以中間態 (intermediate state) 構型為起點,探討三種促效劑 (agonist) 、三種拮抗劑 (antagonist) 與腺苷酸受體IIA亞型 (A2A adenosine receptor, A2AAR) 結合後、以及沒有任何配體存在下腺苷酸受體IIA亞型的構形變化。所產生的大量分子構型進一步運用馬可夫模型 (Markov state model, MSM) 分析,首先將幾何上的相似的分子構型組合成許多微觀態 (microstate),接著將動力性質相似的微觀態合併為宏觀態 (macrostate)。這些宏觀態呈現出A型G蛋白耦合受體所具有的構型異質性,此外,我們意外地發現某些宏觀態幾乎是由與特定類型配體結合的構型所組成。這些相對同質的宏觀態清楚地刻畫了不同功能配體對於腺苷酸受體IIA亞型所造成的典型影響,使其所誘發的蛋白質動力學特性得以區別。利用這些宏觀態,我們建立了功能分析計算模式可用以區別腺苷酸受體IIA亞型的促效劑與拮抗劑。此模式可進一步推廣至A型G蛋白耦合受體,應用於藥物發展過程中快速地預測化合物對於受體之作用。 | zh_TW |
dc.description.abstract | In principle, the differential dynamics of a protein perturbed by various ligands should be able to reflect ligands’ different functions. However, in the field of G protein-coupled receptor (GPCR), the phenomenon of conformational heterogeneity, i.e., the sharing of conformations traversed by differently liganded receptors, poses a challenge for delineating ligand’s action on perturbing protein dynamics. In this work, we conduct multiple molecular dynamics (MD) simulations of the agonists- and antagonists-bound human A2A adenosine receptor (A2AAR) starting from an intermediate state structure to maximize the sensitivity of ligand-perturbed dynamics. Conformational heterogeneity can be visualized directly by the Markov state model (MSM) analysis, which is a two-stage procedure first by performing clustering based on conformational similarity to form microstates, and then kinetic lumping based on state inter-convertibility to aggregate microstates into macrostates. To our surprise, some macrostates exhibit significantly less conformational heterogeneity, which are designated as the agonist-enriched, the apo-enriched, and the antagonist-enriched macrostates, respectively, according to ligands’ function types in these macrostates. Analyses on these purer macrostates show that the ensembles of these less-mixed states clearly characterize the “classical” dynamical features of A2AAR in different ligand-bound states. With the constructed macrostates we are able to propose general schemes to predict the functional types of ligands acting on GPCRs. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T03:46:03Z (GMT). No. of bitstreams: 1 ntu-104-F96423001-1.pdf: 4860917 bytes, checksum: 665801b329214fd2adb846b82e2651cd (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 中文摘要 i Abstract ii Table of Contents iii List of Figures v List of Tables vii Chapter 1: Introduction 1 1.1 G protein-coupled receptor (GPCR) 1 1.1.1 Classification of GPCRs 1 1.1.2 Architectures of GPCRs 2 1.1.3 Ballesteros-Weinstein nomenclature in GPCRs 7 1.1.4 Activation features of GPCRs 9 1.1.5 Dynamics of GPCRs 15 1.2 Adenosine receptor 21 1.2.1 Classification of adenosine receptor 21 1.2.2 Therapeutic significance of adenosine receptor 21 1.2.3 Crystal structures of A2A adenosine receptor 24 1.3 Specific Aims 29 Chapter 2: Material and Methods 30 2.1 Structural refinement and system preparation 30 2.2 Computational details of molecular dynamics (MD) simulation 34 2.3 Markov state model (MSM) construction 35 2.4 Analyzing methods and tools 43 2.4.1 Distance analysis 43 2.4.2 Atomic fluctuation analysis 44 2.4.3 Cross-correlation calculation 44 2.4.4 Principal component analysis (PCA) 45 2.4.5 Helix geometry analysis 45 2.4.6 Hydrogen bond and decision tree analysis 45 2.4.7 Graphic softwares 46 Chapter 3: Results and Discussions 47 3.1 Markov state models analysis 47 3.2 Structural analyses on the coarse-grained Markov states 55 3.3 Dynamics analyses on the coarse-grained Markov states 60 3.4 Residue in contact with ligands 72 3.5 Principal component analysis on molecular dynamics trajectories 75 3.6 Helix geometry analysis on molecular dynamics trajectories 79 3.7 Hydrogen bond analysis on the microstates 81 3.8 Prediction of ligand functional type 85 3.8.1 Based on hydrogen bond fingerprint and Decision tree 85 3.8.2 Based on dynamically discriminable states 87 Chapter 4: Concluding Remarks 90 References 91 | |
dc.language.iso | en | |
dc.title | A型G蛋白耦合受體之分子動力學模擬與其配體之功能預測 | zh_TW |
dc.title | Molecular Dynamics Simulations of a Class A G Protein-Coupled Receptor and the Functional Type Prediction for Its Ligands | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 方俊民,陳儀莊,許世宜,孫英傑 | |
dc.subject.keyword | G蛋白耦合受體,腺?酸受體IIA亞型,分子動力學模擬,馬可夫模型,構型異質性, | zh_TW |
dc.subject.keyword | G protein-coupled receptor,A2A adenosine receptor,molecular dynamics simulation,Markov state model,conformational heterogeneity, | en |
dc.relation.page | 106 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-02-03 | |
dc.contributor.author-college | 藥學專業學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
Appears in Collections: | 藥學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-104-1.pdf Restricted Access | 4.75 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.