Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55060
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林郁真
dc.contributor.authorHank Hui-Hsiang Linen
dc.contributor.author林煇翔zh_TW
dc.date.accessioned2021-06-16T03:45:50Z-
dc.date.available2015-03-13
dc.date.copyright2015-03-13
dc.date.issued2015
dc.date.submitted2015-02-03
dc.identifier.citationAlvaro, M., Carbonell, E., Fornes, V., Garcia, H., 2006. Enhanced Photocatalytic Activity of Zeolite-Encapsulated TiO2 Clusters by Complexation with Organic Additives and N-Doping. ChemPhysChem 7, 200-205.
Andreas Eitel, M.S., Klaus Kummerer, 2000. Handing Cytostatic Drugs.
Anpo, M., Aikawa, N., Kodama, S., Kubokawa, Y., 1984. PHOTOCATALYTIC HYDROGENATION OF ALKYNES AND ALKENES WITH WATER OVER TIO2. HYDROGENATION ACCOMPANIED BY BOND FISSION. J. Phys. Chem. 88, 2569-2572.
Arana, J., Nieto, J.L.M., Melian, J.A.H., Rodriguez, J.M.D., Diaz, O.G., Pena, J.P., Bergasa, O., Alvarez, C., Mendez, J., 2004. Photocatalytic degradation of formaldehyde containing wastewater from veterinarian laboratories. Chemosphere 55, 893-904.
Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y., 2001. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 293, 269-271.
Bhatkhande, D.S., Kamble, S.P., Sawant, S.B., Pangarkar, V.G., 2004. Photocatalytic and photochemical degradation of nitrobenzene using artificial ultraviolet light. Chem. Eng. J. 102, 283-290.
Buerge, I.J., Buser, H.R., Poiger, T., Muller, M.D., 2006. Occurrence and fate of the cytostatic drugs cyclophosphamide and ifosfamide in wastewater and surface waters. Environ. Sci. Technol. 40, 7242-7250.
Burda, C., Lou, Y., Chen, X., Samia, A.C.S., Stout, J., Gole, J.L., 2003. Enhanced Nitrogen Doping in TiO2 Nanoparticles. Nano Letters 3, 1049-1051.
Caliman, A.F., Cojocaru, C., Antoniadis, A., Poulios, I., 2007. Optimized photocatalytic degradation of Alcian Blue 8 GX in the presence of TiO2 suspensions. J. Hazard. Mater. 144, 265-273.
Carp, O., Huisman, C.L., Reller, A., 2004. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 32, 33-177.
Chen, D.W., Ray, A.K., 1998. Photodegradation kinetics of 4-nitrophenol in TiO2 suspension. Water Res. 32, 3223-3234.
Chen, J.Q., Wang, D., Zhu, M.X., Gao, C.J., 2007. Photocatalytic degradation of dimethoate using nanosized TiO2 powder. Desalination 207, 87-94.
Chen, Y., Cao, X., Lin, B., Gao, B., 2013. Origin of the visible-light photoactivity of NH3-treated TiO2: Effect of nitrogen doping and oxygen vacancies. Applied Surface Science 264, 845-852.
Chen, Y., Chen, F., Zhang, J., 2009. Effect of surface fluorination on the photocatalytic and photo-induced hydrophilic properties of porous TiO2 films. Applied Surface Science 255, 6290-6296.
Chen, Y., Yang, S., Wang, K., Lou, L., 2005. Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7. Journal of Photochemistry and Photobiology A: Chemistry 172, 47-54.
Cheng, X., Yu, X., Xing, Z., 2012. Characterization and mechanism analysis of N doped TiO2 with visible light response and its enhanced visible activity. Applied Surface Science 258, 3244-3248.
Chin, S.S., Lim, T.M., Chiang, K., Fane, A.G., 2007. Hybrid low-pressure submerged membrane photoreactor for the removal of bisphenol A. Desalination 202, 253-261.
Choi, W., Termin, A., Hoffmann, M.R., 1994. The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. The Journal of Physical Chemistry 98, 13669-13679.
Chong, M.N., Jin, B., Chow, C.W.K., Saint, C., 2010. Recent developments in photocatalytic water treatment technology: A review. Water Res. 44, 2997-3027.
Clarke, J., Hill, R.R., Roberts, D.R., 1997. Primary processes in the catalytic photooxidation of p-cresol. J. Chem. Technol. Biotechnol. 68, 397-404.
Colombo, D.P., Bowman, R.M., 1996. Does interfacial charge transfer compete with charge carrier recombination? A femtosecond diffuse reflectance investigation of TiO2 nanoparticles. J. Phys. Chem. 100, 18445-18449.
Cooke, J., Williams, J., Morgan, R.J., Cooke, P., Calvert, R.T., 1991. USE OF CYTOGENETIC METHODS TO DETERMINE MUTAGENIC CHANGES IN THE BLOOD OF PHARMACY PERSONNEL AND NURSES WHO HANDLE CYTOTOXIC AGENTS. Am. J. Hosp. Pharm. 48, 1199-1205.
Demeestere, K., De Visscher, A., Dewulf, J., Van Leeuwen, M., Van Langenhove, H., 2004. A new kinetic model for titanium dioxide mediated heterogeneous photocatalytic degradation of trichloroethylene in gas-phase. Appl. Catal. B-Environ. 54, 261-274.
Di Valentin, C., Finazzi, E., Pacchioni, G., Selloni, A., Livraghi, S., Paganini, M.C., Giamello, E., 2007. N-doped TiO2: Theory and experiment. Chemical Physics 339, 44-56.
Dijkstra, M.F.J., Michorius, A., Buwalda, H., Panneman, H.J., Winkelman, J.G.M., Beenackers, A., 2001. Comparison of the efficiency of immobilized and suspended systems in photocatalytic degradation. Catal. Today 66, 487-494.
Diwald, O., Thompson, T.L., Zubkov, T., Walck, S.D., Yates, J.T., 2004. Photochemical Activity of Nitrogen-Doped Rutile TiO2(110) in Visible Light. The Journal of Physical Chemistry B 108, 6004-6008.
Dong, F., Zhao, W., Wu, Z., 2008. Characterization and photocatalytic activities of C, N and S co-doped TiO 2 with 1D nanostructure prepared by the nano-confinement effect. Nanotechnology 19, 365607.
Dung, N.T., Khoa, N.V., Herrmann, J.M., 2005. Photocatalytic degradation of reactive dye RED-3BA in aqueous TiO2 suspension under UV-visible light. Int. J. Photoenergy 7, 11-15.
Evgenidou, E., Fytianos, K., Poulios, I., 2005. Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts. Appl. Catal. B-Environ. 59, 81-89.
Fang, X., Zhang, Z., Chen, Q., Ji, H., Gao, X., 2007. Dependence of nitrogen doping on TiO2 precursor annealed under NH3 flow. Journal of Solid State Chemistry 180, 1325-1332.
Fu, X.Z., Clark, L.A., Zeltner, W.A., Anderson, M.A., 1996. Effects of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene. J. Photochem. Photobiol. A-Chem. 97, 181-186.
Fujishima, A., Rao, T.N., Tryk, D.A., 2000. TiO2 photocatalysts and diamond electrodes. Electrochim. Acta 45, 4683-4690.
Furube, A., Asahi, T., Masuhara, H., Yamashita, H., Anpo, M., 1999. Charge carrier dynamics of standard TiO2 catalysts revealed by femtosecond diffuse reflectance spectroscopy. J. Phys. Chem. B 103, 3120-3127.
Gandhe, A.R., Fernandes, J.B., 2005. Methylation of phenol over Degussa P25 TiO2. Journal of Molecular Catalysis A: Chemical 226, 171-177.
Gaya, U.I., Abdullah, A.H., 2008. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. C-Photochem. Rev. 9, 1-12.
Goldberg, M.A., Antin, J.H., Guinan, E.C., Rappeport, J.M., 1986. CYCLOPHOSPHAMIDE CARDIOTOXICITY - AN ANALYSIS OF DOSING AS A RISK FACTOR. Blood 68, 1114-1118.
Gole, J.L., Stout, J.D., Burda, C., Lou, Y., Chen, X., 2003. Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale. The Journal of Physical Chemistry B 108, 1230-1240.
Guettai, N., Amar, H.A., 2005. Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part II: kinetics study. Desalination 185, 439-448.
Haque, M.M., Muneer, M., 2007. Photodegradation of norfloxacin in aqueous suspensions of titanium dioxide. J. Hazard. Mater. 145, 51-57.
Herrmann, J.M., 1999. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 53, 115-129.
Huang, L.H., Sun, C., Liu, Y.L., 2007. Pt/N-codoped TiO2 nanotubes and its photocatalytic activity under visible light. Applied Surface Science 253, 7029-7035.
Irie, H., Watanabe, Y., Hashimoto, K., 2003. Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders. The Journal of Physical Chemistry B 107, 5483-5486.
Irokawa, Y., Morikawa, T., Aoki, K., Kosaka, S., Ohwaki, T., Taga, Y., 2006. Photodegradation of toluene over TiO2-N under visible light irradiation. Physical Chemistry Chemical Physics 8, 1116-1121.
Kabra, K., Chaudhary, R., Sawhney, R.L., 2004. Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: A review. Ind. Eng. Chem. Res. 43, 7683-7696.
Kang, I.-C., Zhang, Q., Kano, J., Yin, S., Sato, T., Saito, F., 2007. Synthesis of nitrogen doped TiO2 by grinding in gaseous NH3. Journal of Photochemistry and Photobiology A: Chemistry 189, 232-238.
Kappe, C.O., 2007. 3.36 - Microwave-Assisted Chemistry. in: Editors-in-Chief: John, B.T., David, J.T. (Eds.). Comprehensive Medicinal Chemistry II. Elsevier, Oxford, pp. 837-860.
Kim, I., Tanaka, H., 2009. Photodegradation characteristics of PPCPs in water with UV treatment. Environ. Int. 35, 793-802.
Konstantinou, I.K., Albanis, T.A., 2004. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations - A review. Appl. Catal. B-Environ. 49, 1-14.
Kormann, C., Bahnemann, D.W., Hoffmann, M.R., 1991. PHOTOLYSIS OF CHLOROFORM AND OTHER ORGANIC-MOLECULES IN AQUEOUS TIO2 SUSPENSIONS. Environ. Sci. Technol. 25, 494-500.
Kosmulski, M., 2006. pH-dependent surface charging and points of zero charge III. Update. J. Colloid Interface Sci. 298, 730-741.
Kovalova, L., McArdell, C.S., Hollender, J., 2009. Challenge of high polarity and low concentrations in analysis of cytostatics and metabolites in wastewater by hydrophilic interaction chromatography/tandem mass spectrometry. J. Chromatogr. A 1216, 1100-1108.
Krysa, J., Keppert, M., Jirkovsky, J., Stengl, V., Subrt, J., 2004. The effect of thermal treatment on the properties of TiO2 photocatalyst. Mater. Chem. Phys. 86, 333-339.
Kummerer, K., StegerHartmann, T., Meyer, M., 1997. Biodegradability of the anti-tumour agent ifosfamide and its occurrence in hospital effluents and communal sewage. Water Research 31, 2705-2710.
Lachheb, H., Puzenat, E., Houas, A., Ksibi, M., Elaloui, E., Guillard, C., Herrmann, J.M., 2002. Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl. Catal. B-Environ. 39, 75-90.
Lin, A.Y.-C., Wang, X.-H., Lee, W.-N., 2013. Phototransformation Determines the Fate of 5-Fluorouracil and Cyclophosphamide in Natural Surface Waters. Environ. Sci. Technol. 47, 4104-4112.
Lin, H.H.-H., Lin, A.Y.-C., 2014. Photocatalytic oxidation of 5-fluorouracil and cyclophosphamide via UV/TiO2 in an aqueous environment. Water Research 48, 559-568.
Liu, G., Li, F., Chen, Z., Lu, G.Q., Cheng, H.-M., 2006. The role of NH3 atmosphere in preparing nitrogen-doped TiO2 by mechanochemical reaction. Journal of Solid State Chemistry 179, 331-335.
Liu, Y., Chen, X., Li, J., Burda, C., 2005. Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts. Chemosphere 61, 11-18.
Mahnik, S.N., Lenz, K., Weissenbacher, N., Mader, R.M., Fuerhacker, M., 2007. Fate of 5-fluorouracil, doxorubicin, epirubicin, and daunorubicin in hospital wastewater and their elimination by activated sludge and treatment in a membrane-bio-reactor system. Chemosphere 66, 30-37.
Malato, S., Fernandez-Ibanez, P., Maldonado, M.I., Blanco, J., Gernjak, W., 2009. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal. Today 147, 1-59.
Mills, A., LeHunte, S., 1997. An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A-Chem. 108, 1-35.
Minero, C., Vione, D., 2006. A quantitative evalution of the photocatalytic performance of TiO2 slurries. Appl. Catal. B-Environ. 67, 257-269.
Mullot, J.U., Karolak, S., Fontova, A., Huart, B., Levi, Y., 2009. Development and validation of a sensitive and selective method using GC/MS-MS for quantification of 5-fluorouracil in hospital wastewater. Anal. Bioanal. Chem. 394, 2203-2212.
Muradov, N.Z., Traissi, A., Muzzey, D., Painter, C.R., Kemme, M.R., 1996. Selective photocatalytic destruction of airborne VOCs. Sol. Energy 56, 445-453.
Ochuma, I.J., Fishwick, R.P., Wood, J., Winterbottom, J.M., 2007. Optimisation of degradation conditions of 1,8-diazabicyclo 5.4.0 undec-7-ene in water and reaction kinetics analysis using a cocurrent downflow contactor photocatalytic reactor. Appl. Catal. B-Environ. 73, 259-268.
Palmisano, G., Addamo, M., Augugliaro, V., Caronna, T., Di Paola, A., Lopez, E.G., Loddo, V., Marci, G., Palmisano, L., Schiavello, M., 2007. Selectivity of hydroxyl radical in the partial oxidation of aromatic compounds in heterogeneous photocatalysis. Catal. Today 122, 118-127.
Palominos, R.A., Mondaca, M.A., Giraldo, A., Penuela, G., Perez-Moya, M., Mansilla, H.D., 2009. Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions. Catal. Today 144, 100-105.
Park, H., Choi, W., 2004. Effects of TiO2 Surface Fluorination on Photocatalytic Reactions and Photoelectrochemical Behaviors. The Journal of Physical Chemistry B 108, 4086-4093.
Ribo, J.M., Kaiser, K.L.E., 1983. Effects of selected chemicals to photoluminescent bacteria and their correlations with acute and sublethal effects on other organisms. Chemosphere 12, 1421-1442.
Richard, C., Bosquet, F., Pilichowski, J.F., 1997. Photocatalytic transformation of aromatic compounds in aqueous zinc oxide suspensions: effect of substrate concentration on the distribution of products. Journal of Photochemistry and Photobiology A: Chemistry 108, 45-49.
Rincon, A.G., Pulgarin, C., 2003. Photocatalytical inactivation of E. coli: effect of (continuous-intermittent) light intensity and of (suspended-fixed) TiO2 concentration. Appl. Catal. B-Environ. 44, 263-284.
Rincon, A.G., Pulgarin, C., 2004. Effect of pH, inorganic ions, organic matter and H2O2 on E-coli K12 photocatalytic inactivation by TiO2 - Implications in solar water disinfection. Appl. Catal. B-Environ. 51, 283-302.
Rincon, A.G., Pulgarin, C., 2005. Use of coaxial photocatalytic reactor (CAPHORE) in the TiO2 photo-assisted treatment of mixed E-coli and Bacillus sp and bacterial community present in wastewater. Catal. Today 101, 331-344.
Sakthivel, S., Janczarek, M., Kisch, H., 2004. Visible Light Activity and Photoelectrochemical Properties of Nitrogen-Doped TiO2. The Journal of Physical Chemistry B 108, 19384-19387.
Saquib, M., Muneer, M., 2003. TiO2-mediated photocatalytic degradation of a triphenylmethane dye (gentian violet), in aqueous suspensions. Dyes Pigment. 56, 37-49.
Sathish, M., Viswanathan, B., Viswanath, R.P., Gopinath, C.S., 2005. Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2 Nanocatalyst. Chemistry of Materials 17, 6349-6353.
Senthilkumar, S., Yogeeta, S.K., Subashini, R., Devaki, T., 2006. Attenuation of cyclophosphamide induced toxicity by squalene in experimental rats. Chem.-Biol. Interact. 160, 252-260.
Serpone, N., Lawless, D., Khairutdinov, R., Pelizzetti, E., 1995. SUBNANOSECOND RELAXATION DYNAMICS IN TIO2 COLLOIDAL SOLS (PARTICLE SIZES R(P)=1.0-13.4 NM) - RELEVANCE TO HETEROGENEOUS PHOTOCATALYSIS. J. Phys. Chem. 99, 16655-16661.
Serpone, N., Sauve, G., Koch, R., Tahiri, H., Pichat, P., Piccinini, P., Pelizzetti, E., Hidaka, H., 1996. Standardization protocol of process efficiencies and activation parameters in heterogeneous photocatalysis: Relative photonic efficiencies zeta(r). J. Photochem. Photobiol. A-Chem. 94, 191-203.
Sharma, D., Sharma, S., Kaith, B.S., Rajput, J., Kaur, M., 2011. Synthesis of ZnO nanoparticles using surfactant free in-air and microwave method. Applied Surface Science 257, 9661-9672.
StegerHartmann, T., Kummerer, K., Hartmann, A., 1997. Biological degradation of cyclophosphamide and its occurrence in sewage water. Ecotox. Environ. Safe. 36, 174-179.
StegerHartmann, T., Kummerer, K., Schecker, J., 1996. Trace analysis of the antineoplastics ifosfamide and cyclophosphamide in sewage water by two-step solid-phase extraction and gas chromatography mass spectrometry. J. Chromatogr. A 726, 179-184.
Stylidi, M., Kondarides, D.I., Verykios, X.E., 2003. Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions. Appl. Catal. B-Environ. 40, 271-286.
Sun, J., Wang, X., Sun, J., Sun, R., Sun, S., Qiao, L., 2006a. Photocatalytic degradation and kinetics of Orange G using nano-sized Sn(IV)/TiO2/AC photocatalyst. Journal of Molecular Catalysis A: Chemical 260, 241-246.
Sun, J.H., Wang, X.L., Sun, J.Y., Sun, R.X., Sun, S.P., Qiao, L.P., 2006b. Photocatalytic degradation and kinetics of Orange G using nano-sized Sn(IV)/TiO2/AC photocatalyst. J. Mol. Catal. A-Chem. 260, 241-246.
Tai, C., Peng, J.-F., Liu, J.-F., Jiang, G.-B., Zou, H., 2004. Determination of hydroxyl radicals in advanced oxidation processes with dimethyl sulfoxide trapping and liquid chromatography. Analytica Chimica Acta 527, 73-80.
Toor, A.P., Verma, A., Jotshi, C.K., Bajpai, P.K., Singh, V., 2006. Photocatalytic degradation of Direct Yellow 12 dye using UV/TiO2 in a shallow pond slurry reactor. Dyes Pigment. 68, 53-60.
Tyler K. Linton, C.D.T., Nilesh Rickramanayake, David J. Soucek, Amy Dickinson 2008. ACUTE TOXICITY OF CHLORIDE TO SELECT FRESHWATER INVERTEBRATES. Great Lakes Environmental Center; Illinois Natural History Survey.
Valente, J.P.S., Padilha, P.M., Florentino, A.O., 2006. Studies on the adsorption and kinetics of photodegradation of a model compound for heterogeneous photocatalysis onto TiO2. Chemosphere 64, 1128-1133.
Verlicchi, P., Galletti, A., Petrovic, M., Barcelo, D., 2010. Hospital effluents as a source of emerging pollutants: An overview of micropollutants and sustainable treatment options. J. Hydrol. 389, 416-428.
Viswanathan, B., Krishanmurthy, K.R., 2012. Nitrogen Incorporation in TiO2: Does It Make a Visible Light Photo-Active Material? International Journal of Photoenergy 2012, 10.
Vohra, M.S., Kim, S., Choi, W., 2003. Effects of surface fluorination of TiO2 on the photocatalytic degradation of tetramethylammonium. Journal of Photochemistry and Photobiology A: Chemistry 160, 55-60.
Wang, L., Albasi, C., Faucet-Marquis, V., Pfohl-Leszkowicz, A., Dorandeu, C., Marion, B., Causserand, C., 2009. Cyclophosphamide removal from water by nanofiltration and reverse osmosis membrane. Water Res. 43, 4115-4122.
Wilke, K., Breuer, H.D., 1999. The influence of transition metal doping on the physical and photocatalytic properties of titania. J. Photochem. Photobiol. A-Chem. 121, 49-53.
Yang, G., Jiang, Z., Shi, H., Xiao, T., Yan, Z., 2010. Preparation of highly visible-light active N-doped TiO2 photocatalyst. Journal of Materials Chemistry 20, 5301-5309.
Yang, S., Lou, L., Wang, K., Chen, Y., 2006. Shift of initial mechanism in TiO2-assisted photocatalytic process. Applied Catalysis A: General 301, 152-157.
Yang, X., Tamai, N., 2001. How fast is interfacial hole transfer? In situ monitoring of carrier dynamics in anatase TiO2 nanoparticles by femtosecond laser spectroscopy. Physical Chemistry Chemical Physics 3, 3393-3398.
Yin, J., Shao, B., Zhang, J., Li, K.J., 2010. A Preliminary Study on the Occurrence of Cytostatic Drugs in Hospital Effluents in Beijing, China. Bull. Environ. Contam. Toxicol. 84, 39-45.
Ying CUI, H.D., Lishi WEN, 2008. Doped-TiO2 Photocatalysts and Synthesis Methods to Prepare TiO2 Films. J. Mater. Sci. Technol. 24, 675-689.
Zhao, J., Yang, X.D., 2003. Photocatalytic oxidation for indoor air purification: a literature review. Build. Environ. 38, 645-654.
Zounkova, R., Kovalova, L., Blaha, L., Dott, W., 2010. Ecotoxicity and genotoxicity assessment of cytotoxic antineoplastic drugs and their metabolites. Chemosphere 81, 253-260.
Zuccato, E., Calamari, D., Natangelo, M., Fanelli, R., 2000. Presence of therapeutic drugs in the environment. Lancet 355, 1789-1790.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55060-
dc.description.abstract全世界罹患癌症的人數在近十年有明顯的增加趨勢。相對的,抗癌藥物的使
用量也是逐年成長。而抗癌藥物經藥理學研究發現它本身具有致畸性、基因毒性
以及致癌性。研究亦發現,傳統家庭廢水處理廠及醫院廢水處理廠對於抗癌藥物
並無法有效地去除。5-氟尿嘧啶(5-fluorouracil)以及環磷醯胺(cyclophosphamide)為全世界兩種使用最廣泛的抗癌藥物,故本研究選用此兩種抗癌藥物當作主要的研究對象。
經初步光催化材料的篩選發現,Dagussa P25 TiO2為降解兩種抗癌藥物效果
較好的光催化材料,故作為後續的光催化反應研究中所使用的材料。5-氟尿嘧啶最佳處理的操作條件下(20 mg L-1的P25 TiO2以及溶液的pH=5.8),初始濃度為200 μg L-1的5-氟尿嘧啶可以在兩小時內被完全去除(k=0.0375 min-1)。在降解機制的研究結果中發現,5-氟尿嘧啶是經由靠近觸媒表面,經電洞(h_vb^+)所產生的氫氧自由基(˙OHfree)所氧化。而5-氟尿嘧啶在有較高初始濃度(27.6 mg L-1)且觸媒量為300 mg L-1時,去除效率可在4小時後達到99.9%以上,並在24小時後達完全礦化及96.7%的理論氟離子回收率。另一方面,環磷醯胺在初始濃度為27.6 mg L-1且觸媒量為300 mg L-1時,去除效率亦可在4小時後達到99.9%以上,但在16小時僅達51.1%的礦化及79.9%的理論氯離子回收率。在MicrotoxR毒性測試方面發現,環磷醯胺在反應後毒性有上升趨勢,經由研判應該是所產生的副產物所造成;而5-氟尿嘧啶在反應前後皆無任何毒性反應。
為了增加紫外光光觸媒的應用性,並使其可以在可見光的光源下進行反應,
近幾年相關的研究正在陸續進行中。而其中可見光應答型的N-doped TiO2則更
受重視,主要是因為它較其他元素改質後有較高的可見光催化效果,以及較為簡
易的合成方法。微波在近幾年被視為一種較為「綠色」的合成及處理的方法,因
為它擁有處理時間短的優勢,在合成步驟上可以大為降低能源的消耗。研究結果
發現,將微波應用在合成N-doped TiO2上,並用在可見光下進行5-氟尿嘧啶光
催化反應。其降解效果明顯比利用傳統氨氣鍛燒合成法所合成的N-doped TiO2
要來的好。而最佳化後的合成步驟是先經由濃度為1M的氨水浸潤一小時,接著
放入微波消化器中,在180˚C下反應三小時後取出,再進行550˚C氨氣鍛燒6
小時後得之最佳可見光應答行光觸媒(N6)。拿N6以及未改質的Dagussa P25 TiO2在可見光下進行光催化實驗,再20小時後N6可以去除88.8%的5-氟尿嘧啶,而Dagussa P25 TiO2則僅能去除61.5%。在環磷醯胺的可見光催化實驗中,亦N6有較高的去除效果。另外,在物性鑑定方面,合成後的N-doped TiO2顆粒尺寸變大、孔隙容量增加、比表面積減少、表面鹼量跟鹼度都減少,但表面的等電位點卻無太大的改變。
本研究顯示,利用光催化降解水中難分解之抗癌藥物有不錯的效果。若往後
能應用在醫院廢水處理廠進行高級氧化處理,應能有不錯的處理潛力。但處理廠
中,水質複雜性高,不同的水質參數皆會影響處理效果。另外,毒性的變化以及
副產物間的關係也是需要加以深入研究;而總有機物的去除結果也提供未來在廢
水處理廠設計時一個重要的參考依據。
zh_TW
dc.description.abstractCytostatic drugs are a class of pharmaceuticals that are increasingly used in cancer therapies. However, they have genotoxic, mutagenic, carcinogenic or teratogenic effects in non target organism. They have been detected in the both effluent of the municipal and hospital wastewater treatment plants due to their stability and persistency. 5-fluorouracil and cyclophosphamide are two of the most commonly used cytostatic (antineoplastic) drugs in the world.
This study applied photocatalytic oxidation to remove 5-fluorouracil and cyclophosphamide. Degussa P25 showed a higher photocatalytic degradation efficiency for 5-fluorouracil removal than Aldrich TiO2 and ZnO. Under optimal conditions (20 mg L-1 TiO2 at pH 5.8), 200 μg L-1 5-fluorouracil can be removed within 2 h (k = 0.0375 min-1). 5-fluorouracil was found to be decomposed by near-surface ˙OHfree radicals produced from valence holes (h_vb^+). At a relatively high concentration, 5-fluorouracil (27.6 mg L-1) is >99.9% removed within 4 h by 300 mg L-1 Degussa P25, while 24 h is required to reach complete mineralization with 96.7% fluoride recovery. On the other hand. cyclophosphamide (27.6 mg L-1) was also >99.9% eliminated within 4 h, but dechlorination and mineralization reached only 79.9% and 55.1%, respectively, after 16 h of irradiation. Together with the results for MicrotoxR, it is suggested that the oxidation products of cyclophosphamide are even more recalcitrant and toxic.
In order to apply photocatalytic oxidation system under visible light, visible light responsive TiO¬¬¬2 has been widely studied for several years. Among visible light responsive TiO2, N-doped TiO2 has been received much more attention because of its higher photoactivity and relatively simple manufacture process. Microwave has been considered as a promising and energy saving process as synthesis in the recent years. The microwave-treated N-doped TiO2 removed 5-fluorouracil with a higher degradation efficiency than N-doped TiO2 synthesized with the traditional thermal treatments. The most efficient N-doped TiO2 (N6) was synthesized using 1 M NH4OH pre-immersion and a 3 h 180°C microwave treatment, followed by 550°C calcination for 6 h. The photocatalytic degradation of 5-fluorouracil achieved 88.8% removal within 20 h of treatment by N6 under visible light, which is higher than that obtained by Degussa P25 TiO2 (61.5%). Higher concentrations of NH4OH and longer calcination times resulted in decreased 5-fluorouracil degradation; the particle size of the synthesized N-doped TiO2 increased after calcination. The surface area decreased while the pore volume and pore size increased after synthesis. Furthermore, the basicity of the sites on the synthesized N-doped TiO2 decreased after calcination.
Photocatalytic oxidation was shown to be effective in decomposing 5-fluorouracil and cyclophosphamide, therefore, it has potential to apply to hospital wastewater treatment plants. However, the effects of water matrix, the relationship between toxicity changes and by-products, mineralization must be the important considerations and necessarily investigated before real application.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:45:50Z (GMT). No. of bitstreams: 1
ntu-104-D97541001-1.pdf: 7122434 bytes, checksum: bc49b9957a34091e04ab07b25d606c8c (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致 謝……………………………………………………………………-i-
摘 要……...……………………………………………………………-ii-
Abstract…….…………………………………………………………-iv-
1 Introduction - 1 -
1.1 Hypothesis - 4 -
1.2 Objectives - 5 -
2 Literature Review - 7 -
2.1 Target compounds - 7 -
2.2 Mechanism of photocatalysis - 12 -
2.3 Mechanism of titania-assisted photocatalysis - 14 -
2.3.1 Effect of different types of photocatalyst - 21 -
2.3.2 Effect of light source and intensity - 23 -
2.3.3 Effect of temperature - 24 -
2.3.4 Effect of photocatalyst concentrations - 25 -
2.3.5 Effect of target compound concentrations - 26 -
2.3.6 Effect of solution pH - 27 -
2.4 Photocatalytic oxidation of pharmaceuticals - 29 -
2.5 N-doped TiO2 - 30 -
3 Materials and Methods - 33 -
3.1 Materials - 33 -
3.2 Apparatus - 34 -
3.3 Analysis - 35 -
3.4 Characterizations - 39 -
3.5 Methods - 40 -
3.5.1 Controlled experiments - 40 -
3.5.2 TiO2 system optimization and mechanism clarification - 41 -
3.5.3 N-doped TiO2 modification - 43 -
3.5.3.1 Determination of a synthesis procedure for N-doped TiO2 - 43 -
3.5.3.2 Optimization of a microwave-assisted process for N-doped TiO2 ………………………………………………………………...- 43 -
4 Results and discussions - 48 -
4.1 UV/TiO2 system optimization - 49 -
4.1.1 Effect of different photocatalysts - 49 -
4.1.2 Effect of photocatalyst loadings - 51 -
4.1.3 Effect of target compounds loadings - 53 -
4.1.4 Effect of initial pH value - 56 -
4.1.5 Proposed mechanism and verification scavengers - 58 -
4.1.6 Mineralization and defluorination of 5-fluorouracil - 64 -
4.1.7 Photocatalytic oxidation of cyclophosphamide - 70 -
4.2 N-doped TiO2 modification - 72 -
4.2.1 Synthesis procedure determination - 72 -
4.2.2 Optimization of the microwave-assisted synthesis procedure - 74 -
4.2.3 Characterization - 80 -
4.2.4 Photocatalytic degradation of 5-fluorouracil and cyclophosphamide ………………………………………………………………...- 89 -
5 Conclusions and Suggestions - 91 -
5.1 Conclusions - 91 -
5.2 Suggestions for future works - 93 -
6 References - 95 -
dc.language.isoen
dc.title利用紫外光及可見光應答型TiO2降解水中抗癌藥物之研究zh_TW
dc.titlePhotocatalytic oxidation of cytostatic drugs via UV and visible light responsive TiO2 in the aqueous environmenten
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree博士
dc.contributor.oralexamcommittee李公哲,林逸彬,吳嘉文,梁振儒
dc.subject.keyword5-氟尿嘧啶,環磷醯胺,光催化,抗癌藥物,微波,可見光應答型,zh_TW
dc.subject.keyword5-fluorouracil,cyclophosphamide,cytostatic drugs,microwave,N-doped TiO2,photocatalytic oxidation,en
dc.relation.page105
dc.rights.note有償授權
dc.date.accepted2015-02-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
6.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved