請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55035完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林讚標 | |
| dc.contributor.author | I-Ming Wang | en |
| dc.contributor.author | 王一明 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:45:01Z | - |
| dc.date.available | 2015-03-16 | |
| dc.date.copyright | 2015-03-16 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-02-05 | |
| dc.identifier.citation | 郭文捷。(2013) 。轉錄因子 ERF1 會與 COP1、SCE1 和 At4g25210 交互作用並且在
黑暗中的降解影響脯胺酸的日夜韻律。國立台灣大學植物科學研究所碩士論文。 1-72 頁 Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15: 63-78 Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284: 2148–2152 Bayer P, Arndt A, Metzger S, Mahajan R, Melchior F, Jaenicke R, Becker J (1998) Structure determination of the small ubiquitin related modifier SUMO-1. J Mol Biol 280: 275-286 Berrocal M, Molina A (2004) Ethylene Response Factor 1 Mediates Arabidopsis Resistance to the Soilborne Fungus Fusarium oxysporum. Mol Plant Microbe Interact 17: 763-770 Bu Q, Li H, Zhao Q, Jiang H, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, Wang D, et al (2009) The Arabidopsis RING finger E3 ligase RHA2a is a novel positive regulator of abscisic acid signaling during seed germination and early seedling development. Plant Physiol 150: 463–481 Budhiraja R, Hermkes R, Muller S, Schmidt J, Colby T, Panigrahi K, Coupland G, Bachmair A (2009) Substrates related to chromatin and to RNA-dependent processes are modified by Arabidopsis SUMO isoforms that differ in a conserved residue with influence on desumoylation. Plant Physiol 149: 1529–1540 Cao Y, Dai Y, Cui S, Ma L (2008) Histone H2B monoubiquitination in the chromatin 21 of FLOWERING LOCUS C regulates flowering time in Arabidopsis. Plant Cell 20: 2586–2602 Cheng MC, Hsieh EJ, Chen JH, Chen HY, Lin TP (2012) Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response. Plant Physiol 158: 363–375 Cheng MC, Liao PM, Kuo WW, Lin TP (2013) The Arabidopsis ETHYLENE-RESPONSE-FACTOR1 regulates abiotic-stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol 162: 1566–1582 Colby T, Matthai A, Boeckelmann A, Stuible HP (2006) SUMO-conjugating and SUMO-deconjugating enzymes from Arabidopsis. Plant Physiol 142: 318–332 Desterro JM, Rodriguez MS, Hay RT (1998) SUMO-1 modification of IκBα inhibits NF-κb activation. Mol Cell 2: 233–239 Dreher K, Callis J (2007) Ubiquitin, hormones and biotic stress in plants. Ann Bot 99: 787–822 Ecker JR (1995) The ethylene signal transduction pathway in plants. Science 268: 667–675 Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran P, Yamaguchi-Shinozaki K, Shinozaki K (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39: 863–876 Hatfield PM, Gosink MM, Carpenter TB, Vierstra RD (1997) The ubiquitin-activating enzyme (E1) gene family in Arabidopsis thaliana. Plant J 11: 213-226 22 Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419: 135–141 Huang TK, Han CL, Lin SI, Chen YJ, Tsai YC, Chen YR, Chen JW, Lin WY, Chen PM, Liu TY, Chen YS, Chiou TJ (2013) Identification of downstream components of ubiquitin-conjugating enzyme PHOSPHATE2 by quantitative membrane proteomics in Arabidopsis roots. Plant Cell 25: 4044–4060 Huang L, Yang S, Zhang S, Liu M, Lai J, Qi Y, Shi S, Wang J, Wang Y, Xie Q, Yang C (2009) The Arabidopsis SUMO E3 ligase AtMMS21, a homologue of NSE2/MMS21, regulates cell proliferation in the root. Plant J 60: 666–678 Ishida T, Fujiwara S, Miura K, Stacey N, Yoshimura, Schneider K, Adachi S, Minamisawa K, Umeda M, Sugimoto K (2009) SUMO E3 Ligase HIGH PLOIDY2 regulates endocycle onset and meristem maintenance in Arabidopsis. Plant Cell 21: 2284–2297 Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73: 355–382 Kalchman MA, Graham RK, Xia G, Koide HB, Hodgson JG, Graham KC, Goldberg YP, Gietz RD, Pickart CM, Hayden MR (1996) Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme. J Biol Chem 271: 19385–19394 Kizis DLV, Pages M (2001) Role of AP2/REBP transcription factors in gene regulation during abiotic stress. FEBS Lett 498: 187-189 Koyama T, Nii H, Mitsuda N, Ohta M, Kitajima S, Ohme-Takagi M, Sato F (2013) A regulatory cascade involving class II ETHYLENE RESPONSE FACTOR transcriptional repressors operates in the progression of leaf senescence. Plant Physiol 162: 991–1005 23 Kraft E, Stone SL, Ma L, Su N, Gao Y, Lau OS, Deng XW, Callis J (2005) Genome analysis and functional characterization of the E2 and RING-type E3 ligase ubiquitination enzymes of Arabidopsis. Plant Physiol 139: 1597–1611 Kurepa J, Walker JM, Smalle J, Gosink MM, Davis SJ, Durham TL, Sung DY, Vierstra RD (2003) The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress. J Biol Chem 278: 6862–6872 Li H, Jiang H, Bu Q, Zhao Q, Sun J, Xie Q, Li C (2011) The Arabidopsis RING finger E3 ligase RHA2b acts additively with RHA2a in regulating abscisic acid signaling and drought response. Plant Physiol 156: 550–563 Liu TY, Huang TK, Tseng CY, Lai YS, Lin SI, Lin WY, Chen JW, Chiou TJ (2012) PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis. Plant Cell 24: 2168–2183 Lin WY, Huang TK, Chiou TJ (2013) NITROGEN LIMITATION ADAPTATION, a target of microRNA827, mediates degradation of plasma membrane–localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis. Plant Cell 25: 4061–4074 Liu LJ, Zhang YC, Li QH, Sang Y, Mao J, Lian HL, Wang L, Yang HQ (2008) COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell 20: 292-306 Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15: 165-178 Melchior F (2000) SUMO-nonclassical ubiquitin. Annu Rev Cell Dev Biol 16: 591–626 24 Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA, Yun DJ, Hasegawa PM (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci USA 102: 7760-7765 Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan RA, Yun DJ, Hasegawa PM (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19: 1403–1414 Miura K, Lee J, Jin JB, Yoo CY, Miura T, Hasegawa PM (2009) Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proc Natl Acad Sci USA 106: 5418–5423 Muller S, Hoege C, Pyrowolakis G, Jentsch S (2001) SUMO, ubiquitin’s mysterious cousin. Nat Rev Mol Cell Biol 2: 202–210 Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473-97 Nacerddine K, Lehembre F, Bhaumik M, Artus J, Cohen-Tannoudji M, Babinet C, Pandolfi PP, Dejean A (2005) The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev Cell 9: 769–779 Nakkano T, Shinozaki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140: 411-432 Novatchkova M, Budhiraja R, Coupland G, Eisenhaber F, Bachmair A (2004) SUMO conjugation in plants. Planta 220: 1–8 O’Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO, Bowles DJ (1996) Ethylene as a signal mediating the wound response of tomato plants. Science 274: 1914–1917 25 Penninckx IA, Eggermont K, Terras FR, Thomma BP, De Samblanx GW, Buchala A, Metraux JP, Manners JM, Broekaert WF (1996) Pathogen induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8: 2309–2323 Pickart CM (2001) Mechanisms underlying ubiquitination. Ann Rev Biochem 70: 503-533 Pfander B, Moldovan GL, Sacher M, Hoege C, Jentsch S (2005) SUMO modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436: 428–433 Qin F, Sakuma Y, Tran LS, Maruyama K, Kidokoro S, Fujita Y, Fujita M, Umezawa T, Sawano Y, Miyazono K, Tanokura M, Shinozaki K, Yamaguchi-Shinozak K (2008) Arabidopsis DREB2A interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell 20: 1693–1707 Rajan S, Plant LD, Rabin ML, Butler MH, Goldstein SA (2005) Sumoylation silences the plasma membrane leak K1channel K2P1. Cell 121: 37–47 Ross S, Best JL, Zon LI, Gill G (2002) SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol Cell 10: 831–842 Sadanandom A, Bailey M, Ewan R, Lee J, Nelis S (2012) The ubiquitin-proteasome system: central modifier of plant signalling. New Phytol 196: 13–28 Sapetschnig A, Rischitor G, Braun H, Doll A, Schergaut M, Melchior F, Suske G (2002) Transcription factor Sp3 is silenced through SUMO modification by PIAS1. EMBO J 21: 5206–5215 Saracco SA, Miller MJ, Kurepa J, Vierstra RD (2007) Genetic analysis of sumoylation in Arabidopsis: conjugation of SUMO1 and SUMO2 to nuclear proteins 26 is essential. Plant Physiol 145: 119−134 Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58: 221–227 Smalle J, Haegman M, Kurepa J, Van Montagu M, Straeten DV (1997) Ethylene can stimulate Arabidopsis hypocotyl elongationin in the light. Proc Natl Acad Sci USA 94: 2756–2761 Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55: 555–590 Solano R, Stepanovsa A, Qimin C, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Gene & Dev 12: 3703-3714 Son GH, Park BS, Song JT, Seo HS (2014) FLC-mediated flowering repression is positively regulated by sumoylation. J Exp Bot 65: 339–351 Steffan JS, Bodai L, Pallos J, Poelman M, McCampbell A, Apostol BL, Kazantsev A, Schmidt E, Zhu YZ, Greenwald M, et al (2001) Histone deacetylase inhibitors arrest polyglutamine dependent neurodegeneration in Drosophila. Nature 413: 739–743 Ulrich HD (2005) Mutual interactions between the SUMO and ubiquitin system: a plea of no contest. Trends Cell Biol 15: 525–532 Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Nati Acad Sci USA 97: 11632 Vierstra RD (2009) The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol 10: 385–397 27 Welchman RL, Gordon C, Mayer RJ (2005) Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat Rev Mol Cell Bio l6: 599–609 Xiong R, Wang A (2013) SCE1, the SUMO-conjugating enzyme in plants that interacts with NIb, the RNA-dependent RNA polymerase of Turnip mosaic virus, is required for viral infection. J Virol 87: 4704–4715 Zhang Y, Yang C, Li Y, Zheng N, Chen H, Zhao Q, Gao T, Guo H, Xie Q (2007) SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell 19: 1912–1929 Zhong S, Shi H, Xue C, Wang L, Xi Y, Li J, Quail PH, Deng XW, Guo H (2012) A molecular framework of light-controlled phytohormone action in Arabidopsis. Curr Biol 22: 1530-1535 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55035 | - |
| dc.description.abstract | 為了抵禦環境多重的改變,植物發展出複雜的調控系統來適應逆境,阿拉伯芥中的 Ethylene Response Factor 1 (ERF1)為乙烯及茉莉酸訊息傳遞的下游成員,並且對於防禦病原菌和非生物性逆境的反應扮演著正向調控的角色,在我們實驗室先前的研究中發現, ERF1 會在黑暗中不穩定並且藉由 26S 蛋白質酶體路徑而降解,透過酵母菌雙雜合系統(Y2H),我們挑選到 51 個蛋白質可能會和 ERF1 交互作用,其中我們對於 UBIQUITIN-CONJUGATING ENZYME 18 (UBC18)和SUMO-CONJUGATING ENZYME 1 (SCE1)感到高度興趣,它們分別參與在泛素化和 SUMO 化路徑中。利用 pull down assay 和雙分子螢光互補系統(BiFC)進一步證實 SCE1 和 UBC18 會與 ERF1 交互作用。當利用農桿菌感染同時表現 ERF1 和UBC18 於菸草葉子中,越多的 UBC18 表現時,ERF1 表現會減少,表示說 ERF1的降解需要 UBC18 的參與。並且觀察到在黑暗處理後,相對於 WT,ubc18 knockdown 突變株有較多的 ERF1 累積,相反地,UBC18 過度表現植株則 ERF1 較少,這也表示說 UBC18 可能會調控 ERF1 於黑暗中的降解,另外也發現到 sce1 knockdown 突變株展現出對逆境敏感的表型,而 ubc18 knockdown 突變株展現出對逆境耐受的表型。綜合以上,在黑暗時,UBC18 可能會與 ERF1 交互作用並藉由26S 蛋白質酶體路徑使其降解,相反地,在光照時,SCE1 可能會與 ERF1 交互作用並藉由 SUMO 化來增加其穩定性。 | zh_TW |
| dc.description.abstract | Plants have developed a sophisticated regulatory system to adapt to various environmental stresses. The Arabidopsis ETHYLENE RESPONSE FACTOR 1 (ERF1) is a downstream component of jasmonic acid (JA) and ethylene (ET) signaling to positively regulate pathogen defense and is also involved in abiotic stress response. We found that ERF1 protein became unstable and was degraded through the 26S proteasome pathway under darkness. A yeast two-hybrid (Y2H) screening has identified 51 proteins that could interact with ERF1. Among these candidates, we were mostly interested in UBIQUITIN-CONJUGATING ENZYME 18 (UBC18) and SUMO-CONJUGATING ENZYME 1 (SCE1) which participate in ubiquitylation and sumoylation, respectively. Pull down assays and bimolecular fluorescence complementation assays were carried out to further confirm the interactions between
SCE1, UBC18 and ERF1. When ERF1 and UBC18 were coexpressed in tobacco leaves using agro- infiltration, the increment of UBC18 coincided with the decrease of ERF1, indicating that UBC18 is required for the degradation of ERF1. Furthermore, we found that more ERF1 protein accumulated in ubc18 knockdown mutants, whereas less ERF1 protein accumulated in UBC18 overexpressers compared with that of wild type. These results suggest that UBC18 may mediate ERF1 degradation under darkness. We also found that sce1 knockdown mutants showed stress-sensitive phenotype while ubc18 knockdown mutants displayed stress tolerant phenotype. Taken together, UBC18 may interact with ERF1 to promote its degradation through 26S proteasome pathway in the dark. By contrast, SCE1 may interact with ERF1 to increase its stability via sumoylation in the light. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:45:01Z (GMT). No. of bitstreams: 1 ntu-104-R01b42023-1.pdf: 2078910 bytes, checksum: 60a0149b74ea627f80d2918a7b184904 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 中文摘要 ...................................................................................................................... I
英文摘要 .................................................................................................................... II 目錄 ................................................................................................................... III 圖表目錄 .................................................................................................................... V 附錄目錄 ................................................................................................................... VI 第一章 序論 ............................................................................................................. 1 1.1 乾旱和高鹽的非生物性逆境訊息傳導 ................................................... 1 1.2 ERF1 的背景 ............................................................................................. 2 1.3 Ubiquitylation 的背景 ............................................................................... 3 1.4 Sumoylation 的背景 .................................................................................. 4 1.5 實驗策略與目標 ....................................................................................... 5 第二章 材料與方法 ................................................................................................. 7 2.1 植物材料與生長條件 ............................................................................... 7 2.2 SCE1 和 UBC18 基因序列分析 ............................................................... 7 2.3 Genomic DNA 萃取 .................................................................................. 7 2.4 RNA 萃取及 cDNA 合成之 reverse transcriptase PCR (RT -PCR) .......... 8 2.5 即時定量聚合酶連鎖反應 (real-time PCR) ............................................ 9 2.6 西方墨點法分析 ....................................................................................... 9 2.7 重組蛋白的表現與純化 ........................................................................... 9 2.8 Pull-down assay ....................................................................................... 10 2.9 雙分子螢光互補系統 (BiFC) ................................................................ 10 2.10 利用農桿菌短暫表現蛋白質於菸草葉子中 ....................................... 11 2.11 突變株的非生物性逆境容忍分析 ....................................................... 11 第三章 結果 ................................................................................................................ 12 IV 3.1 SCE1 和 UBC18 會與 ERF1 在 in vitro 下交互作用 ............................ 12 3.2 ERF1 與 SCE1 及 UBC18 在細胞中的表現位置 ................................. 12 3.3 利用雙分子螢光互補系統,證實 SCE1 和 UBC18 會與 ERF1 交互作 用 ........................................................................................................... 13 3.4 UBC18 的存在會促進 ERF1 的降解 ..................................................... 13 3.5 篩選 sce1 和 ubc18 T -DNA 插入突變株 ............................................... 13 3.6 當植物於黑暗時,UBC18 會影響 ERF1 的降解 ................................. 14 3.7 sce1-1 和 sce1-2 突變株在乾旱和高鹽逆境下有較低的耐受性 ......... 14 3.8 ubc18-1 在乾旱和高鹽逆境下有較好的耐受性,而 ubc18-2 突變株則 有較低的耐受性 ................................................................................... 15 第四章 討論 ................................................................................................................ 16 4.1 UBC18 藉由後轉譯修飾來調控 ERF1 的表現 ..................................... 16 4.2 SCE1 可能藉由 sumolylaion 來使 ERF1 穩定 ...................................... 16 4.3 UBC18 和 SCE1 可能參與 ERF1 的日夜韻律調控 ............................. 17 4.4 其他因子可能參與在 ERF1 的調控進而影響逆境耐受性 .................. 18 4.5 總結論與未來展望 ................................................................................. 19 參考文獻 ................................................................................................................... 20 圖表 ................................................................................................................... 28 附錄 ................................................................................................................... 41 | |
| dc.language.iso | zh-TW | |
| dc.subject | 非生物逆境 | zh_TW |
| dc.subject | ERF1 | zh_TW |
| dc.subject | SUMO 化 | zh_TW |
| dc.subject | UBC18 | zh_TW |
| dc.subject | SCE1 | zh_TW |
| dc.subject | 泛素化 | zh_TW |
| dc.subject | abiotic stress | en |
| dc.subject | ERF1 | en |
| dc.subject | ubiquitylation | en |
| dc.subject | sumoylation | en |
| dc.subject | UBC18 | en |
| dc.subject | SCE1 | en |
| dc.title | SCE1 和 UBC18 與 ERF1 交互作用並調控其蛋白質穩定
性 | zh_TW |
| dc.title | SCE1 and UBC18 Interact with ERF1 and Regulate its
Protein Stability | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭石通,張英?,鄭貽生,謝明勳 | |
| dc.subject.keyword | ERF1,泛素化,SUMO 化,UBC18,SCE1,非生物逆境, | zh_TW |
| dc.subject.keyword | ERF1,ubiquitylation,sumoylation,UBC18,SCE1,abiotic stress, | en |
| dc.relation.page | 45 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-02-06 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
