請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54984完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 易玲輝(Ling-Huei Yih) | |
| dc.contributor.author | Chieh-Ting Fang | en |
| dc.contributor.author | 方玠鼎 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:43:27Z | - |
| dc.date.available | 2022-08-06 | |
| dc.date.copyright | 2020-08-21 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-05 | |
| dc.identifier.citation | 1. Prosser SL, Pelletier L (2017) Mitotic spindle assembly in animal cells: a fine balancing act. Nature reviews Molecular cell biology 18 (3):187-201. 2. Levine MS, Holland AJ (2018) The impact of mitotic errors on cell proliferation and tumorigenesis. Genes development 32 (9-10):620-638. 3. Funk LC, Zasadil LM, Weaver BA (2016) Living in CIN: Mitotic Infidelity and Its Consequences for Tumor Promotion and Suppression. Developmental cell 39 (6):638-652. 4. Bakhoum SF, Silkworth WT, Nardi IK, Nicholson JM, Compton DA, Cimini D (2014) The mitotic origin of chromosomal instability. Current biology : CB 24 (4):R148-149. 5. Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability--an evolving hallmark of cancer. Nature reviews Molecular cell biology 11 (3):220-228. 6. Chavali PL, Putz M, Gergely F (2014) Small organelle, big responsibility: the role of centrosomes in development and disease. Philosophical transactions of the Royal Society of London Series B, Biological sciences 369 (1650). 7. Muller-Reichert T, Kiewisz R, Redemann S (2018) Mitotic spindles revisited - new insights from 3D electron microscopy. Journal of cell science 131 (3). 8. Mann BJ, Wadsworth P (2019) Kinesin-5 Regulation and Function in Mitosis. Trends in cell biology 29 (1):66-79. 9. Moritz M, Zheng Y, Alberts BM, Oegema K (1998) Recruitment of the gamma-tubulin ring complex to Drosophila salt-stripped centrosome scaffolds. The Journal of cell biology 142 (3):775-786. 10. Moritz M, Braunfeld MB, Sedat JW, Alberts B, Agard DA (1995) Microtubule nucleation by gamma-tubulin-containing rings in the centrosome. Nature 378 (6557):638-640. 11. Mennella V, Keszthelyi B, McDonald KL, Chhun B, Kan F, Rogers GC, Huang B, Agard DA (2012) Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization. Nature cell biology 14 (11):1159-1168. 12. Lawo S, Hasegan M, Gupta GD, Pelletier L (2012) Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Nature cell biology 14 (11):1148-1158. 13. Sonnen KF, Schermelleh L, Leonhardt H, Nigg EA (2012) 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes. Biology open 1 (10):965-976. 14. Lau L, Lee YL, Sahl SJ, Stearns T, Moerner WE (2012) STED microscopy with optimized labeling density reveals 9-fold arrangement of a centriole protein. Biophysical journal 102 (12):2926-2935. 15. Nigg EA, Stearns T (2011) The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries. Nature cell biology 13 (10):1154-1160. 16. Mennella V, Agard DA, Huang B, Pelletier L (2014) Amorphous no more: subdiffraction view of the pericentriolar material architecture. Trends in cell biology 24 (3):188-197. 17. Conduit PT, Wainman A, Raff JW (2015) Centrosome function and assembly in animal cells. Nature reviews Molecular cell biology 16 (10):611-624. 18. Woodruff JB, Wueseke O, Hyman AA (2014) Pericentriolar material structure and dynamics. Philosophical transactions of the Royal Society of London Series B, Biological sciences 369 (1650). 19. Mahen R, Venkitaraman AR (2012) Pattern formation in centrosome assembly. Current opinion in cell biology 24 (1):14-23. 20. Conduit Paul T, Feng Z, Richens Jennifer H, Baumbach J, Wainman A, Bakshi Suruchi D, Dobbelaere J, Johnson S, Lea Susan M, Raff Jordan W (2014) The Centrosome-Specific Phosphorylation of Cnn by Polo/Plk1 Drives Cnn Scaffold Assembly and Centrosome Maturation. Developmental cell 28 (6):659-669. 21. Conduit PT, Richens JH, Wainman A, Holder J, Vicente CC, Pratt MB, Dix CI, Novak ZA, Dobbie IM, Schermelleh L, Raff JW (2014) A molecular mechanism of mitotic centrosome assembly in Drosophila. eLife 3:e03399. 22. Wojcik EJ, Buckley RS, Richard J, Liu L, Huckaba TM, Kim S (2013) Kinesin-5: cross-bridging mechanism to targeted clinical therapy. Gene 531 (2):133-149. 23. Ferenz NP, Gable A, Wadsworth P (2010) Mitotic functions of kinesin-5. Seminars in cell developmental biology 21 (3):255-259. 24. Chen Y, Hancock WO (2015) Kinesin-5 is a microtubule polymerase. Nature communications 6:8160. 25. Gardner MK, Bouck DC, Paliulis LV, Meehl JB, O'Toole ET, Haase J, Soubry A, Joglekar AP, Winey M, Salmon ED, Bloom K, Odde DJ (2008) Chromosome congression by Kinesin-5 motor-mediated disassembly of longer kinetochore microtubules. Cell 135 (5):894-906. 26. Shimamoto Y, Forth S, Kapoor TM (2015) Measuring Pushing and Braking Forces Generated by Ensembles of Kinesin-5 Crosslinking Two Microtubules. Developmental cell 34 (6):669-681. 27. van den Wildenberg SM, Tao L, Kapitein LC, Schmidt CF, Scholey JM, Peterman EJ (2008) The homotetrameric kinesin-5 KLP61F preferentially crosslinks microtubules into antiparallel orientations. Current biology : CB 18 (23):1860-1864. 28. Kapitein LC, Kwok BH, Weinger JS, Schmidt CF, Kapoor TM, Peterman EJ (2008) Microtubule cross-linking triggers the directional motility of kinesin-5. The Journal of cell biology 182 (3):421-428. 29. Rath O, Kozielski F (2012) Kinesins and cancer. Nature reviews Cancer 12 (8):527-539. 30. DeBonis S, Skoufias DA, Lebeau L, Lopez R, Robin G, Margolis RL, Wade RH, Kozielski F (2004) In vitro screening for inhibitors of the human mitotic kinesin Eg5 with antimitotic and antitumor activities. Molecular cancer therapeutics 3 (9):1079-1090. 31. Kapoor TM, Mayer TU, Coughlin ML, Mitchison TJ (2000) Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. The Journal of cell biology 150 (5):975-988. 32. Mayer TU, Kapoor TM, Haggarty SJ, King RW, Schreiber SL, Mitchison TJ (1999) Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286 (5441):971-974. 33. Song IS, Jeong YJ, Nyamaa B, Jeong SH, Kim HK, Kim N, Ko KS, Rhee BD, Han J (2015) KSP inhibitor SB743921 induces death of multiple myeloma cells via inhibition of the NF-kappaB signaling pathway. BMB reports 48 (10):571-576. 34. Holen KD, Belani CP, Wilding G, Ramalingam S, Volkman JL, Ramanathan RK, Vasist LS, Bowen CJ, Hodge JP, Dar MM, Ho PT (2011) A first in human study of SB-743921, a kinesin spindle protein inhibitor, to determine pharmacokinetics, biologic effects and establish a recommended phase II dose. Cancer chemotherapy and pharmacology 67 (2):447-454. 35. Chattopadhyay S, Stewart AL, Mukherjee S, Huang C, Hartwell KA, Miller PG, Subramanian R, Carmody LC, Yusuf RZ, Sykes DB, Paulk J, Vetere A, Vallet S, Santo L, Cirstea DD, Hideshima T, Dancik V, Majireck MM, Hussain MM, Singh S, Quiroz R, Iaconelli J, Karmacharya R, Tolliday NJ, Clemons PA, Moore MAS, Stern AM, Shamji AF, Ebert BL, Golub TR, Raje NS, Scadden DT, Schreiber SL (2015) Niche-Based Screening in Multiple Myeloma Identifies a Kinesin-5 Inhibitor with Improved Selectivity over Hematopoietic Progenitors. Cell reports 10 (5):755-770. 36. Chen GY, Kang YJ, Gayek AS, Youyen W, Tuzel E, Ohi R, Hancock WO (2017) Eg5 Inhibitors Have Contrasting Effects on Microtubule Stability and Metaphase Spindle Integrity. ACS chemical biology 12 (4):1038-1046. 37. Dumas ME, Sturgill EG, Ohi R (2016) Resistance is not futile: Surviving Eg5 inhibition. Cell cycle 15 (21):2845-2847. 38. Sturgill EG, Ohi R (2013) Kinesin-12 differentially affects spindle assembly depending on its microtubule substrate. Current biology : CB 23 (14):1280-1290. 39. Sturgill EG, Norris SR, Guo Y, Ohi R (2016) Kinesin-5 inhibitor resistance is driven by kinesin-12. The Journal of cell biology 213 (2):213-227. 40. Talapatra SK, Anthony NG, Mackay SP, Kozielski F (2013) Mitotic kinesin Eg5 overcomes inhibition to the phase I/II clinical candidate SB743921 by an allosteric resistance mechanism. Journal of medicinal chemistry 56 (16):6317-6329. 41. Gerson-Gurwitz A, Thiede C, Movshovich N, Fridman V, Podolskaya M, Danieli T, Lakamper S, Klopfenstein DR, Schmidt CF, Gheber L (2011) Directionality of individual kinesin-5 Cin8 motors is modulated by loop 8, ionic strength and microtubule geometry. The EMBO journal 30 (24):4942-4954. 42. Roostalu J, Hentrich C, Bieling P, Telley IA, Schiebel E, Surrey T (2011) Directional switching of the kinesin Cin8 through motor coupling. Science 332 (6025):94-99. 43. Shapira O, Goldstein A, Al-Bassam J, Gheber L (2017) A potential physiological role for bi-directional motility and motor clustering of mitotic kinesin-5 Cin8 in yeast mitosis. Journal of cell science 130 (4):725-734. 44. Singh SK, Pandey H, Al-Bassam J, Gheber L (2018) Bidirectional motility of kinesin-5 motor proteins: structural determinants, cumulative functions and physiological roles. Cellular and molecular life sciences : CMLS 75 (10):1757-1771. 45. Thiede C, Fridman V, Gerson-Gurwitz A, Gheber L, Schmidt CF (2012) Regulation of bi-directional movement of single kinesin-5 Cin8 molecules. Bioarchitecture 2 (2):70-74. 46. Ma N, Titus J, Gable A, Ross JL, Wadsworth P (2011) TPX2 regulates the localization and activity of Eg5 in the mammalian mitotic spindle. The Journal of cell biology 195 (1):87-98. 47. Balchand SK, Mann BJ, Titus J, Ross JL, Wadsworth P (2015) TPX2 Inhibits Eg5 by Interactions with Both Motor and Microtubule. The Journal of biological chemistry 290 (28):17367-17379. 48. Eibes S, Gallisa-Sune N, Rosas-Salvans M, Martinez-Delgado P, Vernos I, Roig J (2018) Nek9 Phosphorylation Defines a New Role for TPX2 in Eg5-Dependent Centrosome Separation before Nuclear Envelope Breakdown. Current biology : CB 28 (1):121-129.e124. 49. Gable A, Qiu M, Titus J, Balchand S, Ferenz NP, Ma N, Collins ES, Fagerstrom C, Ross JL, Yang G, Wadsworth P (2012) Dynamic reorganization of Eg5 in the mammalian spindle throughout mitosis requires dynein and TPX2. Molecular biology of the cell 23 (7):1254-1266. 50. Mann BJ, Wadsworth P (2018) Distribution of Eg5 and TPX2 in mitosis: Insight from CRISPR tagged cells. Cytoskeleton (Hoboken, NJ) 75 (12):508-521. 51. Blangy A, Arnaud L, Nigg EA (1997) Phosphorylation by p34cdc2 protein kinase regulates binding of the kinesin-related motor HsEg5 to the dynactin subunit p150. The Journal of biological chemistry 272 (31):19418-19424. 52. Chatterjee S, Burns TF (2017) Targeting Heat Shock Proteins in Cancer: A Promising Therapeutic Approach. International journal of molecular sciences 18 (9). 53. Lianos GD, Alexiou GA, Mangano A, Mangano A, Rausei S, Boni L, Dionigi G, Roukos DH (2015) The role of heat shock proteins in cancer. Cancer letters 360 (2):114-118. 54. Jego G, Hazoume A, Seigneuric R, Garrido C (2013) Targeting heat shock proteins in cancer. Cancer letters 332 (2):275-285. 55. Goloubinoff P, De Los Rios P (2007) The mechanism of Hsp70 chaperones: (entropic) pulling the models together. Trends in biochemical sciences 32 (8):372-380. 56. Craig EA (2018) Hsp70 at the membrane: driving protein translocation. BMC biology 16 (1):11. 57. Döring K, Ahmed N, Riemer T, Suresh HG, Vainshtein Y, Habich M, Riemer J, Mayer MP, O'Brien EP, Kramer G, Bukau B (2017) Profiling Ssb-Nascent Chain Interactions Reveals Principles of Hsp70-Assisted Folding. Cell 170 (2):298-311.e220. 58. Willmund F, del Alamo M, Pechmann S, Chen T, Albanèse V, Dammer EB, Peng J, Frydman J (2013) The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis. Cell 152 (1-2):196-209. 59. Nillegoda NB, Kirstein J, Szlachcic A, Berynskyy M, Stank A, Stengel F, Arnsburg K, Gao X, Scior A, Aebersold R, Guilbride DL, Wade RC, Morimoto RI, Mayer MP, Bukau B (2015) Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation. Nature 524 (7564):247-251. 60. Nillegoda NB, Bukau B (2015) Metazoan Hsp70-based protein disaggregases: emergence and mechanisms. Front Mol Biosci 2:57. 61. Schopf FH, Biebl MM, Buchner J (2017) The HSP90 chaperone machinery. Nature reviews Molecular cell biology 18 (6):345-360. 62. Morán Luengo T, Mayer MP, Rüdiger SGD (2019) The Hsp70-Hsp90 Chaperone Cascade in Protein Folding. Trends in cell biology 29 (2):164-177. 63. Genest O, Wickner S, Doyle SM (2019) Hsp90 and Hsp70 chaperones: Collaborators in protein remodeling. The Journal of biological chemistry 294 (6):2109-2120. 64. Finka A, Sharma SK, Goloubinoff P (2015) Multi-layered molecular mechanisms of polypeptide holding, unfolding and disaggregation by HSP70/HSP110 chaperones. Front Mol Biosci 2:29. 65. Rosenzweig R, Nillegoda NB, Mayer MP, Bukau B (2019) The Hsp70 chaperone network. Nature reviews Molecular cell biology 20 (11):665-680. 66. Makhnevych T, Houry WA (2013) The control of spindle length by Hsp70 and Hsp110 molecular chaperones. FEBS letters 587 (8):1067-1072. 67. O'Regan L, Sampson J, Richards MW, Knebel A, Roth D, Hood FE, Straube A, Royle SJ, Bayliss R, Fry AM (2015) Hsp72 is targeted to the mitotic spindle by Nek6 to promote K-fiber assembly and mitotic progression. The Journal of cell biology 209 (3):349-358. 68. Sampson J, O'Regan L, Dyer MJS, Bayliss R, Fry AM (2017) Hsp72 and Nek6 Cooperate to Cluster Amplified Centrosomes in Cancer Cells. Cancer research 77 (18):4785-4796. 69. Hut HM, Kampinga HH, Sibon OC (2005) Hsp70 protects mitotic cells against heat-induced centrosome damage and division abnormalities. Molecular biology of the cell 16 (8):3776-3785. 70. Vertii A, Zimmerman W, Ivshina M, Doxsey S (2015) Centrosome-intrinsic mechanisms modulate centrosome integrity during fever. Molecular biology of the cell 26 (19):3451-3463. 71. Fang CT, Kuo HH, Pan TS, Yu FC, Yih LH (2016) HSP70 regulates the function of mitotic centrosomes. Cellular and molecular life sciences : CMLS 73 (20):3949-3960. 72. Stanbridge EJ, Flandermeyer RR, Daniels DW, Nelson-Rees WA (1981) Specific chromosome loss associated with the expression of tumorigenicity in human cell hybrids. Somatic cell genetics 7 (6):699-712. 73. Yih LH, Hsu NC, Kuo HH, Wu YC (2012) Inhibition of the heat shock response by PI103 enhances the cytotoxicity of arsenic trioxide. Toxicological sciences : an official journal of the Society of Toxicology 128 (1):126-136. 74. Bagchi S, Fredriksson R, Wallen-Mackenzie A (2015) In Situ Proximity Ligation Assay (PLA). Methods in molecular biology (Clifton, NJ) 1318:149-159. 75. Mennella V, Hanna R, Kim M (2015) Subdiffraction resolution microscopy methods for analyzing centrosomes organization. Methods Cell Biol 129:129-152. 76. Fang CT, Kuo HH, Hsu SC, Yih LH (2019) HSP70 is required for the proper assembly of pericentriolar material and function of mitotic centrosomes. Cell division 14:4. 77. Chen YJ, Lin YP, Chow LP, Lee TC (2011) Proteomic identification of Hsp70 as a new Plk1 substrate in arsenic trioxide-induced mitotically arrested cells. Proteomics 11 (22):4331-4345. 78. Gupta GD, Pelletier L (2017) Centrosome Biology: Polymer-Based Centrosome Maturation. Current biology : CB 27 (17):R836-r839. 79. Maiato H, Logarinho E (2014) Mitotic spindle multipolarity without centrosome amplification. Nature cell biology 16 (5):386-394. 80. Kimura M, Yoshioka T, Saio M, Banno Y, Nagaoka H, Okano Y (2013) Mitotic catastrophe and cell death induced by depletion of centrosomal proteins. Cell death disease 4:e603. 81. Chou E-J, Hung L-Y, Tang C-Ju C, Hsu W-B, Wu H-Y, Liao P-C, Tang Tang K (2016) Phosphorylation of CPAP by Aurora-A Maintains Spindle Pole Integrity during Mitosis. Cell reports 14 (12):2975-2987. 82. Chen CT, Hehnly H, Yu Q, Farkas D, Zheng G, Redick SD, Hung HF, Samtani R, Jurczyk A, Akbarian S, Wise C, Jackson A, Bober M, Guo Y, Lo C, Doxsey S (2014) A unique set of centrosome proteins requires pericentrin for spindle-pole localization and spindle orientation. Current biology : CB 24 (19):2327-2334. 83. Caracciolo V, D'agostino L, Dráberová E, Sládková V, Crozier-Fitzgerald C, Agamanolis DP, de Chadarévian J-P, Legido A, Giordano A, Dráber P, Katsetos CD (2010) Differential expression and cellular distribution of γ-tubulin and βIII-tubulin in medulloblastomas and human medulloblastoma cell lines. Journal of cellular physiology 223 (2):519-529. 84. Katsetos CD, Draberova E, Legido A, Draber P (2009) Tubulin targets in the pathobiology and therapy of glioblastoma multiforme. II. gamma-Tubulin. Journal of cellular physiology 221 (3):514-520. 85. Kishi K, van Vugt MA, Okamoto K, Hayashi Y, Yaffe MB (2009) Functional dynamics of Polo-like kinase 1 at the centrosome. Molecular and cellular biology 29 (11):3134-3150. 86. Hallen MA, Ho J, Yankel CD, Endow SA (2008) Fluorescence recovery kinetic analysis of gamma-tubulin binding to the mitotic spindle. Biophysical journal 95 (6):3048-3058. 87. Buchman JJ, Tseng HC, Zhou Y, Frank CL, Xie Z, Tsai LH (2010) Cdk5rap2 interacts with pericentrin to maintain the neural progenitor pool in the developing neocortex. Neuron 66 (3):386-402. 88. Wang Z, Wu T, Shi L, Zhang L, Zheng W, Qu JY, Niu R, Qi RZ (2010) Conserved motif of CDK5RAP2 mediates its localization to centrosomes and the Golgi complex. The Journal of biological chemistry 285 (29):22658-22665. 89. Kim S, Rhee K (2014) Importance of the CEP215-Pericentrin Interaction for Centrosome Maturation during Mitosis. PloS one 9 (1):e87016. 90. Woodruff JB, Wueseke O, Viscardi V, Mahamid J, Ochoa SD, Bunkenborg J, Widlund PO, Pozniakovsky A, Zanin E, Bahmanyar S, Zinke A, Hong SH, Decker M, Baumeister W, Andersen JS, Oegema K, Hyman AA (2015) Centrosomes. Regulated assembly of a supramolecular centrosome scaffold in vitro. Science 348 (6236):808-812. 91. Seki A, Coppinger JA, Jang CY, Yates JR, Fang G (2008) Bora and the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic entry. Science 320 (5883):1655-1658. 92. Joukov V, Walter JC, De Nicolo A (2014) The Cep192-organized aurora A-Plk1 cascade is essential for centrosome cycle and bipolar spindle assembly. Molecular cell 55 (4):578-591. 93. Meng L, Park JE, Kim TS, Lee EH, Park SY, Zhou M, Bang JK, Lee KS (2015) Bimodal Interaction of Mammalian Polo-Like Kinase 1 and a Centrosomal Scaffold, Cep192, in the Regulation of Bipolar Spindle Formation. Molecular and cellular biology 35 (15):2626-2640. 94. Gomez-Ferreria MA, Bashkurov M, Helbig AO, Larsen B, Pawson T, Gingras AC, Pelletier L (2012) Novel NEDD1 phosphorylation sites regulate gamma-tubulin binding and mitotic spindle assembly. Journal of cell science 125 (Pt 16):3745-3751. 95. Zhang X, Chen Q, Feng J, Hou J, Yang F, Liu J, Jiang Q, Zhang C (2009) Sequential phosphorylation of Nedd1 by Cdk1 and Plk1 is required for targeting of the γTuRC to the centrosome. Journal of cell science 122 (13):2240-2251. 96. Asteriti IA, Giubettini M, Lavia P, Guarguaglini G (2011) Aurora-A inactivation causes mitotic spindle pole fragmentation by unbalancing microtubule-generated forces. Molecular cancer 10:131. 97. Coquelle FM, Vitre B, Arnal I (2009) Structural basis of EB1 effects on microtubule dynamics. Biochemical Society transactions 37 (Pt 5):997-1001. 98. Kumar A, Rajendran V, Sethumadhavan R, Purohit R (2013) CEP proteins: the knights of centrosome dynasty. Protoplasma 250 (5):965-983. 99. Lee K, Rhee K (2011) PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis. The Journal of cell biology 195 (7):1093-1101. 100. Ganem NJ, Godinho SA, Pellman D (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460 (7252):278-282. 101. Conduit PT, Feng Z, Richens JH, Baumbach J, Wainman A, Bakshi SD, Dobbelaere J, Johnson S, Lea SM, Raff JW (2014) The centrosome-specific phosphorylation of Cnn by Polo/Plk1 drives Cnn scaffold assembly and centrosome maturation. Developmental cell 28 (6):659-669. 102. Chen Y-J, Lai K-C, Kuo H-H, Chow L-P, Yih L-H, Lee T-C (2014) HSP70 colocalizes with PLK1 at the centrosome and disturbs spindle dynamics in cells arrested in mitosis by arsenic trioxide. Archives of toxicology 88 (9):1711-1723. 103. Kashina AS, Baskin RJ, Cole DG, Wedaman KP, Saxton WM, Scholey JM (1996) A bipolar kinesin. Nature 379 (6562):270-272. 104. Kashina AS, Rogers GC, Scholey JM (1997) The bimC family of kinesins: essential bipolar mitotic motors driving centrosome separation. Biochimica et biophysica acta 1357 (3):257-271. 105. Sharp DJ, McDonald KL, Brown HM, Matthies HJ, Walczak C, Vale RD, Mitchison TJ, Scholey JM (1999) The bipolar kinesin, KLP61F, cross-links microtubules within interpolar microtubule bundles of Drosophila embryonic mitotic spindles. The Journal of cell biology 144 (1):125-138. 106. Kapoor TM, Mitchison TJ (2001) Eg5 is static in bipolar spindles relative to tubulin: evidence for a static spindle matrix. The Journal of cell biology 154 (6):1125-1133. 107. Kapitein LC, Peterman EJ, Kwok BH, Kim JH, Kapoor TM, Schmidt CF (2005) The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature 435 (7038):114-118. 108. Sharp DJ, Yu KR, Sisson JC, Sullivan W, Scholey JM (1999) Antagonistic microtubule-sliding motors position mitotic centrosomes in Drosophila early embryos. Nature cell biology 1 (1):51-54. 109. Peterman EJ, Scholey JM (2009) Mitotic microtubule crosslinkers: insights from mechanistic studies. Current biology : CB 19 (23):R1089-1094. 110. Uteng M, Hentrich C, Miura K, Bieling P, Surrey T (2008) Poleward transport of Eg5 by dynein-dynactin in Xenopus laevis egg extract spindles. The Journal of cell biology 182 (4):715-726. 111. He J, Zhang Z, Ouyang M, Yang F, Hao H, Lamb KL, Yang J, Yin Y, Shen WH (2016) PTEN regulates EG5 to control spindle architecture and chromosome congression during mitosis. Nature communications 7:12355. 112. Blangy A, Lane HA, d'Herin P, Harper M, Kress M, Nigg EA (1995) Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83 (7):1159-1169. 113. Rapley J, Nicolas M, Groen A, Regue L, Bertran MT, Caelles C, Avruch J, Roig J (2008) The NIMA-family kinase Nek6 phosphorylates the kinesin Eg5 at a novel site necessary for mitotic spindle formation. Journal of cell science 121 (Pt 23):3912-3921. 114. Bertran MT, Sdelci S, Regue L, Avruch J, Caelles C, Roig J (2011) Nek9 is a Plk1-activated kinase that controls early centrosome separation through Nek6/7 and Eg5. The EMBO journal 30 (13):2634-2647. 115. Makhnevych T, Wong P, Pogoutse O, Vizeacoumar FJ, Greenblatt JF, Emili A, Houry WA (2012) Hsp110 is required for spindle length control. The Journal of cell biology 198 (4):623-636. 116. Gayek AS, Ohi R (2014) Kinetochore-microtubule stability governs the metaphase requirement for Eg5. Molecular biology of the cell 25 (13):2051-2060. 117. Li K, Jiang Q, Bai X, Yang YF, Ruan MY, Cai SQ (2017) Tetrameric Assembly of K(+) Channels Requires ER-Located Chaperone Proteins. Molecular cell 65 (1):52-65. 118. Ungewickell E, Ungewickell H, Holstein SE, Lindner R, Prasad K, Barouch W, Martin B, Greene LE, Eisenberg E (1995) Role of auxilin in uncoating clathrin-coated vesicles. Nature 378 (6557):632-635. 119. Janke C, Montagnac G (2017) Causes and Consequences of Microtubule Acetylation. Current biology : CB 27 (23):R1287-r1292. 120. Salemi JD, McGilvray PT, Maresca TJ (2013) Development of a Drosophila cell-based error correction assay. Frontiers in oncology 3:187. 121. Chee MK, Haase SB (2010) B-cyclin/CDKs regulate mitotic spindle assembly by phosphorylating kinesins-5 in budding yeast. PLoS genetics 6 (5):e1000935. 122. Sawin KE, Mitchison TJ (1995) Mutations in the kinesin-like protein Eg5 disrupting localization to the mitotic spindle. Proceedings of the National Academy of Sciences of the United States of America 92 (10):4289-4293. 123. Koplin A, Preissler S, Ilina Y, Koch M, Scior A, Erhardt M, Deuerling E (2010) A dual function for chaperones SSB-RAC and the NAC nascent polypeptide-associated complex on ribosomes. The Journal of cell biology 189 (1):57-68. 124. Fiaux J, Horst J, Scior A, Preissler S, Koplin A, Bukau B, Deuerling E (2010) Structural analysis of the ribosome-associated complex (RAC) reveals an unusual Hsp70/Hsp40 interaction. The Journal of biological chemistry 285 (5):3227-3234. 125. Shiber A, Doring K, Friedrich U, Klann K, Merker D, Zedan M, Tippmann F, Kramer G, Bukau B (2018) Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome profiling. Nature 561 (7722):268-272. 126. King FW, Wawrzynow A, Höhfeld J, Zylicz M (2001) Co-chaperones Bag-1, Hop and Hsp40 regulate Hsc70 and Hsp90 interactions with wild-type or mutant p53. The EMBO journal 20 (22):6297-6305. 127. Meacham GC, Lu Z, King S, Sorscher E, Tousson A, Cyr DM (1999) The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis. The EMBO journal 18 (6):1492-1505. 128. Kettern N, Dreiseidler M, Tawo R, Höhfeld J (2010) Chaperone-assisted degradation: multiple paths to destruction. Biol Chem 391 (5):481-489. 129. Smith MC, Scaglione KM, Assimon VA, Patury S, Thompson AD, Dickey CA, Southworth DR, Paulson HL, Gestwicki JE, Zuiderweg ER (2013) The E3 ubiquitin ligase CHIP and the molecular chaperone Hsc70 form a dynamic, tethered complex. Biochemistry 52 (32):5354-5364. 130. Muller P, Ruckova E, Halada P, Coates PJ, Hrstka R, Lane DP, Vojtesek B (2013) C-terminal phosphorylation of Hsp70 and Hsp90 regulates alternate binding to co-chaperones CHIP and HOP to determine cellular protein folding/degradation balances. Oncogene 32 (25):3101-3110. 131. Sharma SK, De Los Rios P, Goloubinoff P (2011) Probing the different chaperone activities of the bacterial HSP70-HSP40 system using a thermolabile luciferase substrate. Proteins 79 (6):1991-1998. 132. Sharma SK, De los Rios P, Christen P, Lustig A, Goloubinoff P (2010) The kinetic parameters and energy cost of the Hsp70 chaperone as a polypeptide unfoldase. Nature chemical biology 6 (12):914-920. 133. Laufen T, Mayer MP, Beisel C, Klostermeier D, Mogk A, Reinstein J, Bukau B (1999) Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones. Proceedings of the National Academy of Sciences of the United States of America 96 (10):5452-5457. 134. De Los Rios P, Goloubinoff P (2016) Hsp70 chaperones use ATP to remodel native protein oligomers and stable aggregates by entropic pulling. Nature structural molecular biology 23 (9):766-769. 135. Mattoo RU, Sharma SK, Priya S, Finka A, Goloubinoff P (2013) Hsp110 is a bona fide chaperone using ATP to unfold stable misfolded polypeptides and reciprocally collaborate with Hsp70 to solubilize protein aggregates. The Journal of biological chemistry 288 (29):21399-21411. 136. Goloubinoff P, Mogk A, Zvi AP, Tomoyasu T, Bukau B (1999) Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proceedings of the National Academy of Sciences of the United States of America 96 (24):13732-13737. 137. Rajapandi T, Wu C, Eisenberg E, Greene L (1998) Characterization of D10S and K71E Mutants of Human Cytosolic Hsp70. Biochemistry 37 (20):7244-7250. 138. Johnson ER, McKay DB (1999) Mapping the role of active site residues for transducing an ATP-induced conformational change in the bovine 70-kDa heat shock cognate protein. Biochemistry 38 (33):10823-10830. 139. Fontaine SN, Rauch JN, Nordhues BA, Assimon VA, Stothert AR, Jinwal UK, Sabbagh JJ, Chang L, Stevens SM, Jr., Zuiderweg ER, Gestwicki JE, Dickey CA (2015) Isoform-selective Genetic Inhibition of Constitutive Cytosolic Hsp70 Activity Promotes Client Tau Degradation Using an Altered Co-chaperone Complement. The Journal of biological chemistry 290 (21):13115-13127. 140. Fernandez-Funez P, Sanchez-Garcia J, de Mena L, Zhang Y, Levites Y, Khare S, Golde TE, Rincon-Limas DE (2016) Holdase activity of secreted Hsp70 masks amyloid-beta42 neurotoxicity in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 113 (35):E5212-5221. 141. Sepulveda G, Antkowiak M, Brust-Mascher I, Mahe K, Ou T, Castro NM, Christensen LN, Cheung L, Jiang X, Yoon D, Huang B, Jao LE (2018) Co-translational protein targeting facilitates centrosomal recruitment of PCNT during centrosome maturation in vertebrates. eLife 7. 142. Feng Z, Caballe A, Wainman A, Johnson S, Haensele AFM, Cottee MA, Conduit PT, Lea SM, Raff JW (2017) Structural Basis for Mitotic Centrosome Assembly in Flies. Cell 169 (6):1078-1089.e1013. 143. Steegmaier M, Hoffmann M, Baum A, Lenart P, Petronczki M, Krssak M, Gurtler U, Garin-Chesa P, Lieb S, Quant J, Grauert M, Adolf GR, Kraut N, Peters JM, Rettig WJ (2007) BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Current biology : CB 17 (4):316-322. 144. Lian G, Li L, Shi Y, Jing C, Liu J, Guo X, Zhang Q, Dai T, Ye F, Wang Y, Chen M (2018) BI2536, a potent and selective inhibitor of polo-like kinase 1, in combination with cisplatin exerts synergistic effects on gastric cancer cells. International journal of oncology 52 (3):804-814. 145. Wagenblast J, Hirth D, Eckardt A, Leinung M, Diensthuber M, Stöver T, Hambek M (2013) Antitumoral effect of PLK-1-inhibitor BI2536 in combination with cisplatin and docetaxel in squamous cell carcinoma cell lines of the head and neck. Molecular and clinical oncology 1 (2):286-290. 146. Albakova Z, Armeev GA, Kanevskiy LM, Kovalenko EI, Sapozhnikov AM (2020) HSP70 Multi-Functionality in Cancer. Cells 9 (3). 147. Zheng Y, Guo J, Li X, Xie Y, Hou M, Fu X, Dai S, Diao R, Miao Y, Ren J (2014) An integrated overview of spatiotemporal organization and regulation in mitosis in terms of the proteins in the functional supercomplexes. Frontiers in microbiology 5:573. 148. Lundin VF, Leroux MR, Stirling PC (2010) Quality control of cytoskeletal proteins and human disease. Trends in biochemical sciences 35 (5):288-297. 149. Li B, Li Z, Lu C, Chang L, Zhao D, Shen G, Kusakabe T, Xia Q, Zhao P (2019) Heat Shock Cognate 70 Functions as A Chaperone for the Stability of Kinetochore Protein CENP-N in Holocentric Insect Silkworms. International journal of molecular sciences 20 (23). 150. Rosas-Salvans M, Scrofani J, Modol A, Vernos I (2019) DnaJB6 is a RanGTP-regulated protein required for microtubule organization during mitosis. Journal of cell science 132 (11). 151. Bansal PK, Abdulle R, Kitagawa K (2004) Sgt1 associates with Hsp90: an initial step of assembly of the core kinetochore complex. Molecular and cellular biology 24 (18):8069-8079. 152. Ganem NJ, Pellman D (2012) Linking abnormal mitosis to the acquisition of DNA damage. The Journal of cell biology 199 (6):871-881. 153. Murphy ME (2013) The HSP70 family and cancer. Carcinogenesis 34 (6):1181-1188. 154. Sherman MY, Gabai VL (2015) Hsp70 in cancer: back to the future. Oncogene 34 (32):4153-4161. 155. Hunt CR, Dix DJ, Sharma GG, Pandita RK, Gupta A, Funk M, Pandita TK (2004) Genomic instability and enhanced radiosensitivity in Hsp70.1- and Hsp70.3-deficient mice. Molecular and cellular biology 24 (2):899-911. 156. Lee SH, Kim M, Yoon BW, Kim YJ, Ma SJ, Roh JK, Lee JS, Seo JS (2001) Targeted hsp70.1 disruption increases infarction volume after focal cerebral ischemia in mice. Stroke 32 (12):2905-2912. 157. Van Molle W, Wielockx B, Mahieu T, Takada M, Taniguchi T, Sekikawa K, Libert C (2002) HSP70 protects against TNF-induced lethal inflammatory shock. Immunity 16 (5):685-695. 158. Shim EH, Kim JI, Bang ES, Heo JS, Lee JS, Kim EY, Lee JE, Park WY, Kim SH, Kim HS, Smithies O, Jang JJ, Jin DI, Seo JS (2002) Targeted disruption of hsp70.1 sensitizes to osmotic stress. EMBO reports 3 (9):857-861. 159. Radons J (2016) The human HSP70 family of chaperones: where do we stand? Cell Stress Chaperones 21 (3):379-404. 160. Schlecht R, Scholz SR, Dahmen H, Wegener A, Sirrenberg C, Musil D, Bomke J, Eggenweiler HM, Mayer MP, Bukau B (2013) Functional analysis of Hsp70 inhibitors. PloS one 8 (11):e78443. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54984 | - |
| dc.description.abstract | 有絲分裂紡錘體的組裝過程為有絲分裂時期確保染色體正確分離的關鍵,因而此過程對於子細胞的存活、基因組完整性的保留、個體生物的發育、以及腫瘤生成的預防是非常必要的。紡錘體組裝過程的精確調控需要仰賴許多胞器,例如中心體 (centrosome)、微管 (microtubule)、著絲粒 (kinetochore) 之間彼此協調的作用,然而調控此協調作用的機制仍未完全釐清。由於這些胞器內皆含有大量的蛋白質,因此有可能亦需要非常細緻的蛋白質品質調控機制來維持其在紡錘體組裝時的正常功能。可誘導性熱休克蛋白70 (inducible HSP70) 為一極其重要的伴護蛋白及蛋白質恆定調控者,並且在細胞內進行各方面的蛋白質品質調控。在我們先前的報導中,我們曾發現HSP70對於紡錘體組裝、有絲分裂進行以及子細胞的存活皆扮演重要角色。因此在後續的研究中,我們著重在進一步描述HSP70對於紡錘體組裝調控的作用機制。透過次繞射極限顯微影像 (subdiffraction resolution microscopy),我們證明HSP70對於中心體裡兩個重要的蛋白質pericentrin及CEP215彼此之間的互動是必要的,並因此確保分裂期中心體的精確三維組裝、完整成熟化以及正常的功能。透過單分子影像技術、藥物所促之蛋白質交聯及譜線輪廓分析,我們證明HSP70對於維持關鍵分裂期動力蛋白Eg5的正確低聚物型態及正確的紡錘體內分布是必要的,並因此使得仰賴於Eg5的微管動態調控及紡錘體完整性得以確保。另外,運用變異型HSP70所進行的基因敲落並回復的實驗,我們揭示了HSP70的「腺苷三磷酸非依賴性的被動式受質結合 (ATP-independent passive substrate binding)」能力能夠確保Eg5在紡錘體中的正確分布、支持pericentrin在分裂期中心體的堆積,並可能藉此來協助紡錘體組裝。最後,我們也發現HSP70的去活化能夠強化抗有絲分裂藥物所造成的分裂期缺陷及細胞毒性。根據我們的發現總結,HSP70運用腺苷三磷酸非依賴性的被動式受質結合能力來調控pericentrin、CEP215及Eg5的功能,而此調控應是透過協助各蛋白質之間的互動及組裝來確保其形成之蛋白質複合體的正常功能。此調控機制則進一步確保分裂期中心體的正常功能、微管動態的精確控制以及正確的紡錘體組裝。我們的研究揭示了有絲分裂期間的一種由HSP70所斡旋的蛋白質恆定的調控途徑,而此途徑可能支撐著細胞對於有絲分裂異常或抗有絲分裂藥物所帶來之逆境的抗性。 | zh_TW |
| dc.description.abstract | The process of mitotic spindle assembly is central to faithful chromosome segregation during mitotic cell division, and is thus essential to survival of daughter cells, preservation of genomic integrity, development of organisms and prevention of tumorigenesis. The precisely regulated assembly of this structure depends on coordinated actions between multiple organelles such as centrosome, microtubule or kinetochore by the mechanism which is not fully understood. Since these organelles all harbor enormous amount of proteins, it is conceivable that they require a delicate protein quality control for their proper functions during spindle assembly. The inducible HSP70 is a master proteostasis regulating molecular chaperone that mediates all aspects of protein quality control and has been reported to be critical for mitotic spindle assembly, mitosis progression and mitotic cell survival in our previous study. In our following studies, we focused on delineating the mechanism regarding how HSP70 regulates the mitotic spindle assembly. By subdiffraction resolution microscopy, we demonstrated that HSP70 is required for adequate interactions between the critical centrosomal proteins pericentrin and CEP215 to ensure proper 3D assembly, complete maturation, and accurate functions of the mitotic centrosome. By single molecule imaging, chemical-mediated protein crosslinking, and line profile analysis of the key mitotic kinesin Eg5, we showed that HSP70 is required for correct oligomeric assembly and distribution of Eg5 within the spindle, thus ensuring Eg5-dependent control of microtubule dynamics and spindle integrity. In addition, by knockdown-rescue experiments using HSP70 mutants, we revealed that the ATP-independent passive substrate binding activity of HSP70 ensures accurate Eg5 distribution within the spindle, supports pericentrin accumulation at the mitotic centrosome, and may thus assist spindle assembly. Finally, we found that HSP70 inactivation enhanced the mitotic defects and the cytotoxicity induced by the antimitotic drugs. Collectively, our findings led us to conclude that HSP70 may rely on its passive binding activity to regulate the functions of pericentrin, CEP215 and Eg5, possibly by assisting their interaction and assembly into functional protein complexes; these regulations thus ensure properly functioning mitotic centrosome, precisely regulated microtubule dynamics, and thus faithful mitotic spindle assembly. Our studies revealed one of the potential HSP70-mediated proteostasis regulation pathways during mitosis, which may underlie cellular resistance to mitotic error- or antimitotic drug-induced stressful conditions. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:43:27Z (GMT). No. of bitstreams: 1 U0001-3107202016560000.pdf: 5151804 bytes, checksum: 4a6d4ff334656017db5e3d11f971dbe8 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書...i 誌謝...ii 中文摘要...iii ABSTRACTS... iv LIST OF ABBREVIATIONS...ix 1. INTRODUCTION...1 1.1 The mitotic spindle...1 1.2 The centrosome...3 1.3 The mitotic kinesin Eg5...6 1.4 The heat shock protein and the 70-kDa heat shock protein (HSP70)...8 2. THE RATIONALE AND THE SPECIFIC AIMS...13 3. MATERIALS AND METHODS...15 3.1 Cell culture and drug treatments...15 3.2 Depletion of endogenous HSP70 and overexpression of fusion protein constructs...16 3.3 Immunofluorescence staining and proximity ligation assay (PLA)...17 3.4 Confocal microscopic image acquisition and analysis for immunostained cells...18 3.5 Time-lapse imaging and analysis of mitotic progression and MT nucleation...20 3.6 3D structured illumination microscopy (3D-SIM) image acquisition and analysis...21 3.7 Ground state depletion followed by individual molecule return (GSDIM) superresolution image acquisition and analysis...22 3.8 Analysis of Eg5-mediated bipolar spindle reassembly and Eg5 localization at k-MT...23 3.9 Bis(maleimido)hexane (BMH)-mediated crosslinking of protein complex...24 3.10 Western blotting and immunoprecipitation assay...25 4. RESULTS AND DISCUSION...27 4.1 HSP70 is required for proper assembly of PCM at the mitotic centrosome...27 4.2 HSP70 is required for accurate localization and mitotic functions of Eg5...42 4.3 HSP70 relies on the passive substrate-binding activity to control mitotic spindle assembly...60 4.4 Clinical applications of HSP70 regulation on mitotic spindle assembly...72 5. CONCLUSIONS AND PERSPECTIVES...75 6. REFERENCES...79 SCHEMATIC ILLUSTRATIONS... Scheme 1. The mitotic spindle...2 Scheme 2. The centrosome...3 Scheme 3. The process of centrosome maturation...5 Scheme 4. Structure of kinesin-5 and its regulation on MT dynamics...7 FIGURES...91 Fig. 1 HSP70 localizes to the spindle pole and regulates spindle assembly and mitosis progression...93 Fig. 2 HSP70 inactivation disrupted functions of the mitotic centrosome...95 Fig. 3 HSP70 inactivation disrupted the accumulation of PCM at the mitotic centrosome...96 Fig. 4 HSP70 colocalized with gamma-tubulin, PCNT and CEP215 and is required for their accurate 3D assembly at the mitotic centrosome...98 Fig. 5 HSP70 is required for correct interaction, accumulation and expansion of PCNT and CEP215 at the mitotic centrosome...100 Fig. 6 HSP70 is required for correct Eg5 localization and Eg5-dependent spindle integrity...101 Fig. 7 HSP70 is required for Eg5 inward spread during metaphase...102 Fig. 8 HSP70 interacts with Eg5 in the spindle and is required for its proper oligomeric assembly...103 Fig. 9 HSP70 regulates Eg5 interactions with TPX2, acetylated tubulin and alpha-tubulin...105 Fig. 10 HSP70 may assist Eg5 oligomeric assembly and release Eg5 from TPX2 to promote its inward spread at metaphase...107 Fig. 11 HSP70 relies on the ATP-independent passive binding to control the functions of Eg5 and centrosome...108 Fig. 12 HSP70 ameliorated the mitotic effects and cytotoxicity of the antimitotic drugs...110 | |
| dc.language.iso | en | |
| dc.subject | HSP70蛋白質 | zh_TW |
| dc.subject | 分裂期中心體 | zh_TW |
| dc.subject | 紡錘體極點 | zh_TW |
| dc.subject | 中心體周圍物質 | zh_TW |
| dc.subject | 微管 | zh_TW |
| dc.subject | 有絲分裂紡錘體 | zh_TW |
| dc.subject | 動力蛋白Eg5 | zh_TW |
| dc.subject | Eg5 | en |
| dc.subject | Mitotic spindle | en |
| dc.subject | HSP70 | en |
| dc.subject | Mitotic centrosome | en |
| dc.subject | spindle pole | en |
| dc.subject | pericentriolar material | en |
| dc.subject | microtubule | en |
| dc.title | 熱休克蛋白70對於有絲分裂紡錘體組裝過程的調控 | zh_TW |
| dc.title | The Regulation of Mitotic Spindle Assembly by HSP70 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李宜靜(Yi-Ching Lee),傅琪鈺(Chi-Yu Fu),高承福(Cheng-Fu Kao),李心予(Hsinyu Lee) | |
| dc.subject.keyword | 有絲分裂紡錘體,HSP70蛋白質,分裂期中心體,紡錘體極點,中心體周圍物質,微管,動力蛋白Eg5, | zh_TW |
| dc.subject.keyword | Mitotic spindle,HSP70,Mitotic centrosome,spindle pole,pericentriolar material,microtubule,Eg5, | en |
| dc.relation.page | 111 | |
| dc.identifier.doi | 10.6342/NTU202002175 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-05 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生命科學系 | zh_TW |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3107202016560000.pdf 未授權公開取用 | 5.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
