請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54969完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇銘嘉 | |
| dc.contributor.author | Sung-Ting Chuang | en |
| dc.contributor.author | 莊頌婷 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:43:01Z | - |
| dc.date.available | 2020-03-12 | |
| dc.date.copyright | 2015-03-12 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-02-11 | |
| dc.identifier.citation | References
1. Cho, M. H., Renal fibrosis. Korean journal of pediatrics 2010, 53, 735-40. 2. el Nahas, A. M.; Muchaneta-Kubara, E. C.; Essawy, M.; Soylemezoglu, O., Renal fibrosis: insights into pathogenesis and treatment. The international journal of biochemistry & cell biology 1997, 29, 55-62. 3. Eitner, F.; Floege, J., Novel insights into renal fibrosis. Current opinion in nephrology and hypertension 2003, 12, 227-32. 4. Remuzzi, G.; Bertani, T., Pathophysiology of progressive nephropathies. The New England journal of medicine 1998, 339, 1448-56. 5. Zhou, D.; Tan, R. J.; Zhou, L.; Li, Y.; Liu, Y., Kidney tubular beta-catenin signaling controls interstitial fibroblast fate via epithelial-mesenchymal communication. Scientific reports 2013, 3, 1878. 6. Li, Y.; Sun, Y.; Liu, F.; Sun, L.; Li, J.; Duan, S.; Liu, H.; Peng, Y.; Xiao, L.; Liu, Y.; Xi, Y.; You, Y.; Li, H.; Wang, M.; Wang, S.; Hou, T., Norcantharidin inhibits renal interstitial fibrosis by blocking the tubular epithelial-mesenchymal transition. PloS one 2013, 8, e66356. 7. Yang, Y. S.; Wang, C. J.; Huang, C. N.; Chen, M. L.; Chen, M. J.; Peng, C. H., Polyphenols of Hibiscus sabdariffa improved diabetic nephropathy via attenuating renal epithelial mesenchymal transition. Journal of agricultural and food chemistry 2013, 61, 7545-51. 8. Zhou, T. B.; Qin, Y. H.; Lei, F. Y.; Huang, W. F.; Drummen, G. P., Prohibitin attenuates oxidative stress and extracellular matrix accumulation in renal interstitial fibrosis disease. PloS one 2013, 8, e77187. 9. Chen, S.; Jim, B.; Ziyadeh, F. N., Diabetic nephropathy and transforming growth factor-beta: transforming our view of glomerulosclerosis and fibrosis build-up. Seminars in nephrology 2003, 23, 532-43. 10. Verrecchia, F.; Mauviel, A., Transforming growth factor-beta signaling through the Smad pathway: role in extracellular matrix gene expression and regulation. The Journal of investigative dermatology 2002, 118, 211-5. 11. Klahr, S.; Morrissey, J., Obstructive nephropathy and renal fibrosis. American journal of physiology. Renal physiology 2002, 283, F861-75. 12. Chevalier, R. L.; Forbes, M. S.; Thornhill, B. A., Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney international 2009, 75, 1145-52. 13. Krag, S.; Danielsen, C. C.; Carmeliet, P.; Nyengaard, J.; Wogensen, L., Plasminogen activator inhibitor-1 gene deficiency attenuates TGF-beta1-induced kidney disease. Kidney international 2005, 68, 2651-66. 14. Jung, G. S.; Kim, M. K.; Jung, Y. A.; Kim, H. S.; Park, I. S.; Min, B. H.; Lee, K. U.; Kim, J. G.; Park, K. G.; Lee, I. K., Clusterin attenuates the development of renal fibrosis. Journal of the American Society of Nephrology : JASN 2012, 23, 73-85. 15. Binder, B. R.; Christ, G.; Gruber, F.; Grubic, N.; Hufnagl, P.; Krebs, M.; Mihaly, J.; Prager, G. W., Plasminogen activator inhibitor 1: physiological and pathophysiological roles. News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society 2002, 17, 56-61. 16. Matsuo, S.; Lopez-Guisa, J. M.; Cai, X.; Okamura, D. M.; Alpers, C. E.; Bumgarner, R. E.; Peters, M. A.; Zhang, G.; Eddy, A. A., Multifunctionality of PAI-1 in fibrogenesis: evidence from obstructive nephropathy in PAI-1-overexpressing mice. Kidney international 2005, 67, 2221-38. 17. Liu, Y., New insights into epithelial-mesenchymal transition in kidney fibrosis. Journal of the American Society of Nephrology : JASN 2010, 21, 212-22. 18. Erdogan, H.; Fadillioglu, E.; Yagmurca, M.; Ucar, M.; Irmak, M. K., Protein oxidation and lipid peroxidation after renal ischemia-reperfusion injury: protective effects of erdosteine and N-acetylcysteine. Urological research 2006, 34, 41-6. 19. Hung, T. J.; Chen, W. M.; Liu, S. F.; Liao, T. N.; Lee, T. C.; Chuang, L. Y.; Guh, J. Y.; Hung, C. Y.; Hung, Y. J.; Chen, P. Y.; Hsieh, P. F.; Yang, Y. L., 20-Hydroxyecdysone attenuates TGF-beta1-induced renal cellular fibrosis in proximal tubule cells. Journal of diabetes and its complications 2012, 26, 463-9. 20. Sironi, L.; Nobili, E.; Gianella, A.; Gelosa, P.; Tremoli, E., Anti-inflammatory properties of drugs acting on the renin-angiotensin system. Drugs of today (Barcelona, Spain : 1998) 2005, 41, 609-22. 21. Ruiz-Ortega, M.; Ruperez, M.; Esteban, V.; Rodriguez-Vita, J.; Sanchez-Lopez, E.; Carvajal, G.; Egido, J., Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 2006, 21, 16-20. 22. Turner, J. M.; Bauer, C.; Abramowitz, M. K.; Melamed, M. L.; Hostetter, T. H., Treatment of chronic kidney disease. Kidney international 2012, 81, 351-62. 23. Eddy, A. A., Molecular basis of renal fibrosis. Pediatric nephrology 2000, 15, 290-301. 24. Bottinger, E. P.; Bitzer, M., TGF-beta signaling in renal disease. Journal of the American Society of Nephrology : JASN 2002, 13, 2600-10. 25. Fukasawa, H.; Yamamoto, T.; Togawa, A.; Ohashi, N.; Fujigaki, Y.; Oda, T.; Uchida, C.; Kitagawa, K.; Hattori, T.; Suzuki, S.; Kitagawa, M.; Hishida, A., Down-regulation of Smad7 expression by ubiquitin-dependent degradation contributes to renal fibrosis in obstructive nephropathy in mice. Proceedings of the National Academy of Sciences of the United States of America 2004, 101, 8687-92. 26. Liu, Y., Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney international 2006, 69, 213-7. 27. Schuster, N.; Krieglstein, K., Mechanisms of TGF-beta-mediated apoptosis. Cell and tissue research 2002, 307, 1-14. 28. Schiffer, M.; Bitzer, M.; Roberts, I. S.; Kopp, J. B.; ten Dijke, P.; Mundel, P.; Bottinger, E. P., Apoptosis in podocytes induced by TGF-beta and Smad7. The Journal of clinical investigation 2001, 108, 807-16. 29. Oldfield, M. D.; Bach, L. A.; Forbes, J. M.; Nikolic-Paterson, D.; McRobert, A.; Thallas, V.; Atkins, R. C.; Osicka, T.; Jerums, G.; Cooper, M. E., Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). The Journal of clinical investigation 2001, 108, 1853-63. 30. Lee, S. B.; Kalluri, R., Mechanistic connection between inflammation and fibrosis. Kidney international. Supplement 2010, S22-6. 31. Nikolic-Paterson, D. J.; Atkins, R. C., The role of macrophages in glomerulonephritis. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 2001, 16 Suppl 5, 3-7. 32. Timoshanko, J. R.; Kitching, A. R.; Semple, T. J.; Holdsworth, S. R.; Tipping, P. G., Granulocyte macrophage colony-stimulating factor expression by both renal parenchymal and immune cells mediates murine crescentic glomerulonephritis. Journal of the American Society of Nephrology : JASN 2005, 16, 2646-56. 33. Shimizu, H.; Maruyama, S.; Yuzawa, Y.; Kato, T.; Miki, Y.; Suzuki, S.; Sato, W.; Morita, Y.; Maruyama, H.; Egashira, K.; Matsuo, S., Anti-monocyte chemoattractant protein-1 gene therapy attenuates renal injury induced by protein-overload proteinuria. Journal of the American Society of Nephrology : JASN 2003, 14, 1496-505. 34. Ferenbach, D.; Kluth, D. C.; Hughes, J., Inflammatory cells in renal injury and repair. Seminars in nephrology 2007, 27, 250-9. 35. Ricardo, S. D.; van Goor, H.; Eddy, A. A., Macrophage diversity in renal injury and repair. The Journal of clinical investigation 2008, 118, 3522-30. 36. Chung, S.; Yoon, H. E.; Kim, S. J.; Kim, S. J.; Koh, E. S.; Hong, Y. A.; Park, C. W.; Chang, Y. S.; Shin, S. J., Oleanolic acid attenuates renal fibrosis in mice with unilateral ureteral obstruction via facilitating nuclear translocation of Nrf2. Nutrition & metabolism 2014, 11, 2. 37. Cho, M. H.; Jung, K. J.; Jang, H. S.; Kim, J. I.; Park, K. M., Orchiectomy attenuates kidney fibrosis after ureteral obstruction by reduction of oxidative stress in mice. American journal of nephrology 2012, 35, 7-16. 38. Manucha, W., Biochemical-molecular markers in unilateral ureteral obstruction. Biocell : official journal of the Sociedades Latinoamericanas de Microscopia Electronica ... et. al 2007, 31, 1-12. 39. Ozbek, E.; Ilbey, Y. O.; Ozbek, M.; Simsek, A.; Cekmen, M.; Somay, A., Melatonin attenuates unilateral ureteral obstruction-induced renal injury by reducing oxidative stress, iNOS, MAPK, and NF-kB expression. Journal of endourology / Endourological Society 2009, 23, 1165-73. 40. Dendooven, A.; Ishola, D. A., Jr.; Nguyen, T. Q.; Van der Giezen, D. M.; Kok, R. J.; Goldschmeding, R.; Joles, J. A., Oxidative stress in obstructive nephropathy. International journal of experimental pathology 2011, 92, 202-10. 41. Truong, L. D.; Gaber, L.; Eknoyan, G., Obstructive uropathy. Contributions to nephrology 2011, 169, 311-26. 42. Rabbani, N.; Sebekova, K.; Sebekova, K., Jr.; Heidland, A.; Thornalley, P. J., Accumulation of free adduct glycation, oxidation, and nitration products follows acute loss of renal function. Kidney international 2007, 72, 1113-21. 43. Pat, B.; Yang, T.; Kong, C.; Watters, D.; Johnson, D. W.; Gobe, G., Activation of ERK in renal fibrosis after unilateral ureteral obstruction: modulation by antioxidants. Kidney international 2005, 67, 931-43. 44. Saborio, P.; Krieg, R. J., Jr.; Kuemmerle, N. B.; Norkus, E. P.; Schwartz, C. C.; Chan, J. C., Alpha-tocopherol modulates lipoprotein cytotoxicity in obstructive nephropathy. Pediatric nephrology 2000, 14, 740-6. 45. Lin, K. C.; Krieg, R. J., Jr.; Saborio, P.; Chan, J. C., Increased heat shock protein-70 in unilateral ureteral obstruction in rats. Molecular genetics and metabolism 1998, 65, 303-10. 46. Kamijo-Ikemori, A.; Sugaya, T.; Obama, A.; Hiroi, J.; Miura, H.; Watanabe, M.; Kumai, T.; Ohtani-Kaneko, R.; Hirata, K.; Kimura, K., Liver-type fatty acid-binding protein attenuates renal injury induced by unilateral ureteral obstruction. The American journal of pathology 2006, 169, 1107-17. 47. Manucha, W.; Carrizo, L.; Ruete, C.; Molina, H.; Valles, P., Angiotensin II type I antagonist on oxidative stress and heat shock protein 70 (HSP 70) expression in obstructive nephropathy. Cellular and molecular biology (Noisy-le-Grand, France) 2005, 51, 547-55. 48. Sugiyama, H.; Kobayashi, M.; Wang, D. H.; Sunami, R.; Maeshima, Y.; Yamasaki, Y.; Masuoka, N.; Kira, S.; Makino, H., Telmisartan inhibits both oxidative stress and renal fibrosis after unilateral ureteral obstruction in acatalasemic mice. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 2005, 20, 2670-80. 49. Chen, K. H.; Hung, C. C.; Hsu, H. H.; Jing, Y. H.; Yang, C. W.; Chen, J. K., Resveratrol ameliorates early diabetic nephropathy associated with suppression of augmented TGF-beta/smad and ERK1/2 signaling in streptozotocin-induced diabetic rats. Chemico-biological interactions 2011, 190, 45-53. 50. Rah, D. K.; Han, D. W.; Baek, H. S.; Hyon, S. H.; Park, B. Y.; Park, J. C., Protection of rabbit kidney from ischemia/reperfusion injury by green tea polyphenol pretreatment. Archives of pharmacal research 2007, 30, 1447-54. 51. Giovannini, L.; Migliori, M.; Longoni, B. M.; Das, D. K.; Bertelli, A. A.; Panichi, V.; Filippi, C.; Bertelli, A., Resveratrol, a polyphenol found in wine, reduces ischemia reperfusion injury in rat kidneys. Journal of cardiovascular pharmacology 2001, 37, 262-70. 52. Li, J.; Qu, X.; Ricardo, S. D.; Bertram, J. F.; Nikolic-Paterson, D. J., Resveratrol inhibits renal fibrosis in the obstructed kidney: potential role in deacetylation of Smad3. The American journal of pathology 2010, 177, 1065-71. 53. Lu, D. Y.; Huang, B. R.; Yeh, W. L.; Lin, H. Y.; Huang, S. S.; Liu, Y. S.; Kuo, Y. H., Anti-neuroinflammatory effect of a novel caffeamide derivative, KS370G, in microglial cells. Molecular neurobiology 2013, 48, 863-74. 54. Weng, Y. C.; Chuang, C. F.; Chuang, S. T.; Chiu, H. L.; Kuo, Y. H.; Su, M. J., KS370G, a synthetic caffeamide derivative, improves left ventricular hypertrophy and function in pressure-overload mice heart. European journal of pharmacology 2012, 684, 108-15. 55. Wang, X.; Bowman, P. D.; Kerwin, S. M.; Stavchansky, S., Stability of caffeic acid phenethyl ester and its fluorinated derivative in rat plasma. Biomedical chromatography : BMC 2007, 21, 343-50. 56. Chuang, S. T.; Kuo, Y. H.; Su, M. J., Antifibrotic effects of KS370G, a caffeamide derivative, in renal ischemia-reperfusion injured mice and renal tubular epithelial cells. Scientific reports 2014, 4, 5814. 57. Weng, Y. C.; Chuang, S. T.; Lin, Y. C.; Chuang, C. F.; Chi, T. C.; Chiu, H. L.; Kuo, Y. H.; Su, M. J., Caffeic Acid Phenylethyl Amide Protects against the Metabolic Consequences in Diabetes Mellitus Induced by Diet and Streptozocin. Evidence-based complementary and alternative medicine : eCAM 2012, 2012, 984780. 58. Lee, J.; Hwang, I.; Lee, J. H.; Lee, H. W.; Jeong, L. S.; Ha, H., The selective A3AR antagonist LJ-1888 ameliorates UUO-induced tubulointerstitial fibrosis. The American journal of pathology 2013, 183, 1488-97. 59. He, D.; Lee, L.; Yang, J.; Wang, X., Preventive effects and mechanisms of rhein on renal interstitial fibrosis in obstructive nephropathy. Biological & pharmaceutical bulletin 2011, 34, 1219-26. 60. Chiang, C. K.; Sheu, M. L.; Lin, Y. W.; Wu, C. T.; Yang, C. C.; Chen, M. W.; Hung, K. Y.; Wu, K. D.; Liu, S. H., Honokiol ameliorates renal fibrosis by inhibiting extracellular matrix and pro-inflammatory factors in vivo and in vitro. British journal of pharmacology 2011, 163, 586-97. 61. Derynck, R.; Zhang, Y.; Feng, X. H., Smads: transcriptional activators of TGF-beta responses. Cell 1998, 95, 737-40. 62. Hwang, M.; Kim, H. J.; Noh, H. J.; Chang, Y. C.; Chae, Y. M.; Kim, K. H.; Jeon, J. P.; Lee, T. S.; Oh, H. K.; Lee, Y. S.; Park, K. K., TGF-beta1 siRNA suppresses the tubulointerstitial fibrosis in the kidney of ureteral obstruction. Experimental and molecular pathology 2006, 81, 48-54. 63. Jung, K. J.; Kim, J.; Park, Y. K.; Yoon, Y. R.; Park, K. M., Wen-pi-tang-Hab-Wu-ling-san reduces ureteral obstructive renal fibrosis by the reduction of oxidative stress, inflammation, and TGF-beta/Smad2/3 signaling. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 2010, 48, 522-9. 64. Zeng, J.; Dou, Y.; Guo, J.; Wu, X.; Dai, Y., Paeoniflorin of Paeonia lactiflora prevents renal interstitial fibrosis induced by unilateral ureteral obstruction in mice. Phytomedicine : international journal of phytotherapy and phytopharmacology 2013, 20, 753-9. 65. Iwano, M.; Plieth, D.; Danoff, T. M.; Xue, C.; Okada, H.; Neilson, E. G., Evidence that fibroblasts derive from epithelium during tissue fibrosis. The Journal of clinical investigation 2002, 110, 341-50. 66. Neilson, E. G., Mechanisms of disease: Fibroblasts--a new look at an old problem. Nature clinical practice. Nephrology 2006, 2, 101-8. 67. Fogo, A. B., Mesangial matrix modulation and glomerulosclerosis. Experimental nephrology 1999, 7, 147-59. 68. Hills, C. E.; Squires, P. E., TGF-beta1-induced epithelial-to-mesenchymal transition and therapeutic intervention in diabetic nephropathy. American journal of nephrology 2010, 31, 68-74. 69. Cheng, J.; Grande, J. P., Transforming growth factor-beta signal transduction and progressive renal disease. Experimental biology and medicine (Maywood, N.J.) 2002, 227, 943-56. 70. Eddy, A. A., Serine proteases, inhibitors and receptors in renal fibrosis. Thrombosis and haemostasis 2009, 101, 656-64. 71. Oda, T.; Jung, Y. O.; Kim, H. S.; Cai, X.; Lopez-Guisa, J. M.; Ikeda, Y.; Eddy, A. A., PAI-1 deficiency attenuates the fibrogenic response to ureteral obstruction. Kidney international 2001, 60, 587-96. 72. Ha, H.; Oh, E. Y.; Lee, H. B., The role of plasminogen activator inhibitor 1 in renal and cardiovascular diseases. Nature reviews. Nephrology 2009, 5, 203-11. 73. Samarakoon, R.; Overstreet, J. M.; Higgins, S. P.; Higgins, P. J., TGF-beta1 --> SMAD/p53/USF2 --> PAI-1 transcriptional axis in ureteral obstruction-induced renal fibrosis. Cell and tissue research 2012, 347, 117-28. 74. Liu, Y., Cellular and molecular mechanisms of renal fibrosis. Nature reviews. Nephrology 2011, 7, 684-96. 75. Gerszten, R. E.; Luscinskas, F. W.; Ding, H. T.; Dichek, D. A.; Stoolman, L. M.; Gimbrone, M. A., Jr.; Rosenzweig, A., Adhesion of memory lymphocytes to vascular cell adhesion molecule-1-transduced human vascular endothelial cells under simulated physiological flow conditions in vitro. Circulation research 1996, 79, 1205-15. 76. Shappell, S. B.; Mendoza, L. H.; Gurpinar, T.; Smith, C. W.; Suki, W. N.; Truong, L. D., Expression of adhesion molecules in kidney with experimental chronic obstructive uropathy: the pathogenic role of ICAM-1 and VCAM-1. Nephron 2000, 85, 156-66. 77. Cheng, Q. L.; Chen, X. M.; Li, F.; Lin, H. L.; Ye, Y. Z.; Fu, B., Effects of ICAM-1 antisense oligonucleotide on the tubulointerstitium in mice with unilateral ureteral obstruction. Kidney international 2000, 57, 183-90. 78. Vieira, J. M., Jr.; Mantovani, E.; Rodrigues, L. T.; Delle, H.; Noronha, I. L.; Fujihara, C. K.; Zatz, R., Simvastatin attenuates renal inflammation, tubular transdifferentiation and interstitial fibrosis in rats with unilateral ureteral obstruction. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 2005, 20, 1582-91. 79. Chung, A. C.; Huang, X. R.; Zhou, L.; Heuchel, R.; Lai, K. N.; Lan, H. Y., Disruption of the Smad7 gene promotes renal fibrosis and inflammation in unilateral ureteral obstruction (UUO) in mice. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 2009, 24, 1443-54. 80. Yamamoto, T.; Eckes, B.; Krieg, T., Effect of interleukin-10 on the gene expression of type I collagen, fibronectin, and decorin in human skin fibroblasts: differential regulation by transforming growth factor-beta and monocyte chemoattractant protein-1. Biochemical and biophysical research communications 2001, 281, 200-5. 81. Machida, Y.; Kitamoto, K.; Izumi, Y.; Shiota, M.; Uchida, J.; Kira, Y.; Nakatani, T.; Miura, K., Renal fibrosis in murine obstructive nephropathy is attenuated by depletion of monocyte lineage, not dendritic cells. Journal of pharmacological sciences 2010, 114, 464-73. 82. Li, Y.; Trush, M. A., Diphenyleneiodonium, an NAD(P)H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production. Biochemical and biophysical research communications 1998, 253, 295-9. 83. Lavoz, C.; Rodrigues-Diez, R.; Benito-Martin, A.; Rayego-Mateos, S.; Rodrigues-Diez, R. R.; Alique, M.; Ortiz, A.; Mezzano, S.; Egido, J.; Ruiz-Ortega, M., Angiotensin II contributes to renal fibrosis independently of Notch pathway activation. PloS one 2012, 7, e40490. 84. Wolf, G., Renal injury due to renin-angiotensin-aldosterone system activation of the transforming growth factor-beta pathway. Kidney international 2006, 70, 1914-9. 85. Ishidoya, S.; Morrissey, J.; McCracken, R.; Reyes, A.; Klahr, S., Angiotensin II receptor antagonist ameliorates renal tubulointerstitial fibrosis caused by unilateral ureteral obstruction. Kidney international 1995, 47, 1285-94. 86. Miyazaki, T.; Ise, M.; Hirata, M.; Endo, K.; Ito, Y.; Seo, H.; Niwa, T., Indoxyl sulfate stimulates renal synthesis of transforming growth factor-beta 1 and progression of renal failure. Kidney international. Supplement 1997, 63, S211-4. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54969 | - |
| dc.description.abstract | 許多研究顯示腎小管間質纖維化是造成末期腎臟病的主因之一。但目前在臨床上仍然沒有一類藥物能夠有效地來治療腎小管間質纖維化。咖啡酸苯乙酯(caffeic acid phenylethyl ester)是蜂膠的主要成分,廣泛地分布在自然界中,並且已被證實具有抗糖尿病及抗纖維化等的保護作用。由於咖啡酸苯乙酯在生物體內很容易被酯酶(esterase)代謝而失去效用,因此它的生體可用率並不高。在本篇研究中,我們探討咖啡酸苯乙酯的結構類似物-咖啡酸苯乙醯胺(caffeic acid phenylethyl amide,KS370G)在動物腎臟纖維化模式(包括: 單側腎臟缺血再灌流以及單側輸尿管阻塞)以及利用轉化生長因子-β(TGF-β)誘導腎臟表皮細胞的模式下對於腎臟纖維化病變是否具有保護作用。
在動物的實驗模式下,我們在手術後的隔天開始給予一天一次口服10mg/kg 的KS370G,手術14天後對纖維化的腎臟進行研究。在單側腎動脈缺血再灌流的動物實驗中,我們發現到口服給予KS370G能夠降低腎臟膠原蛋白的沉積、減少fibronectin、α-SMA與vimentin的表現。KS370G也能夠去抑制缺血再灌流所增加的血漿中與腎臟組織中轉化生長因子-β的表現。而在單側輸尿管阻塞的動物實驗中,我們發現口服給予KS370G也可以降低腎臟膠原蛋白的沉積、降低輸尿管阻塞所增加的fibronectin、α-SMA與vimentin的表現。此外KS370G也會抑制發炎所引起的單核細胞趨化蛋白-1(monocyte chemoattractant protein-1; MCP-1)第一血管細胞黏附因子(vascular cell-adhesion molecule, VCAM-1),第一細胞間黏附分子(intercellular adhesion molecule 1, ICAM-1)以及單核細胞特徵蛋白CD-11b的表現。在抗氧化的部分,KS370G可以增加超氧歧化酶(superoxide dismutase; SOD)以及過氧化氫酶(catalase)的表現同時抑制脂質過氧化的發生。另外,KS370G也可以降低血漿中血管收縮素以及轉化生長因子-β的濃度,並抑制腎臟組織中轉化生長因子-β的表現與Smad3的磷酸化。 在細胞實驗中,我們利用轉化生長因子-β作為刺激,對人類與非人類兩種腎臟表皮細胞來進行研究。結果顯示,給予KS370G可以保護因轉化生長因子-β刺激所造成的E-cadherin下降和α-SMA的增加。KS370G同時可以抑制因轉化生長因子-β刺激所引起的fibronectin、collagen I與PAI-1等蛋白的表現。KS370G也抑制了轉化生長因子-β所引起的Smad2/3磷酸化。上述的研究結果顯示,KS370G不論在體內或是體外試驗中,對於腎臟纖維化的病變都具有保護的效果,而這些保護作用可能是與抑制了AngII,TGF-β,Smad2/3的訊息傳遞路徑有關。 | zh_TW |
| dc.description.abstract | Accumulating evidence suggests that renal tubulointerstitial fibrosis is a main cause of end-stage renal disease. Clinically, there are no beneficial treatments that can effectively reverse the progressive loss of renal functions. Caffeic acid phenethyl ester, a major component of propolis, is distributed wildly in nature and has anti-diabetic and anti-fibrotic effects. However, rapid decomposition by an esterase leads to its low bioavailability in vivo. In this study, we evaluated the effects of KS370G, a synthetic caffeamide derivative, on murine renal fibrosis induced by unilateral renal ischemia-reperfusion injury (IRI) and unilateral ureteral obstruction (UUO), and on TGF-β1 stimulated renal tubular epithelial cells (HK-2 and NRK52E) signaling.
In the animal models, renal fibrosis was evaluated at 14 days post-operation. Immediately following the operation, KS370G (10 mg/kg) was administered by oral gavage once a day. In the IRI model, our results show that KS370G markedly attenuated collagen deposition and inhibits an IRI-induced increase of fibronectin, vimentin, α-SMA and TGF-β1 expression in the mouse kidney and plasma TGF-β1. In the UUO model, our results show that KS370G significantly attenuated collagen deposition in the obstructed kidney and inhibited UUO-induced renal fibrosis markers expression, including fibronectin, type I collagen, vimentin, and α-smooth muscle actin (α-SMA). KS370G significantly lowered the expression of renal inflammatory chemokines/adhesion molecules and monocyte cells marker (MCP-1, VCAM-1, ICAM-1 and CD11b). KS370G also reduced renal malondialdehyde (MDA) levels and reversed the expression of renal antioxidant enzymes (SOD and catalase) after UUO. Furthermore, KS370G significantly inhibited UUO-induced elevated plasma Ang II and TGF-β1 levels, TGF-β1 protein expression and Smad3 phosphorylation. In vitro study, we used human (HK-2) and non-human (NRK52E) renal epithelial cell lines. Our results showed that KS370G reverses TGF-β1-induced downregulation of E-cadherin and upregulation of α-SMA and also decreases the expression of fibronectin, collagen I and PAI-1 and inhibits TGF-β1-induced phosphorylation of Smad2/3. These findings show the beneficial effects of KS370G on renal fibrosis in vivo and in vitro with the possible mechanism through the inhibition of Ang II, TGF-β and Smad3 signaling pathways. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:43:01Z (GMT). No. of bitstreams: 1 ntu-104-D98443003-1.pdf: 2738940 bytes, checksum: 244dbc473afb8b167a198af2e083936b (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 …………………………………………………………………………………………………………………… I
誌謝…………………………………………………………………………………………………………………………………………… II Abstract (Chinese) …………………………………………………………………………………………………… IV Abstract (English) …………………………………………………………………………………………………… VI Abbreviations ………………………………………………………………………………………………………………VIII Chapter 1 Introduction …………………………………………………………………………………………… 1 1-1 Renal fibrosis ……………………………………………………………………………………………………… 1 1-2 Inflammatory responses in the renal fibrosis ……………………… 4 1-3 Oxidative stress in the renal fibrosis ……………………………………… 6 1-4 KS370G (Caffeic acid phenylethyl amide) …………………………………… 7 1-5 Purpose of study ………………………………………………………………………………………………… 9 Chapter 2 Materials and Methods ………………………………………………………………… 10 2-1 Ethics statement ……………………………………………………………………………………………… 14 2-2 Animals ……………………………………………………………………………………………………………………… 14 2-3 Experimental design (IRI) ……………………………………………………………………… 14 2-4 Experimental design (UUO) ……………………………………………………………………… 15 2-5 Cell culture ………………………………………………………………………………………………………… 16 2-6 Chemical …………………………………………………………………………………………………………………… 17 2-7 Renal histological and immunohistochemistry analysis ……………………………………………………………………………………………………………………………………………………… 18 2-8 Plasma angiotensin II and TGF-β1 enzyme-linked immunosorbent assay (ELISA) …………………………………………………………………………… 18 2-9 Renal tissue level of malonaldehyde (MDA) …………………………… 18 2-10 Western blot analysis ……………………………………………………………………………… 19 2-11 Statistical analysis ………………………………………………………………………………… 20 Chapter 3 Antifibrotic effects of KS370G, a caffeamide derivative, in renal ischemia-reperfusion injured mice and renal tubular epithelial cells …………………………………………………………………… 22 3-1 KS370G ameliorates fibronectin expression, renal interstitial fibrosis and collagen deposition in IRI kidneys ……………………………………………………………………………………………………………………………………………………… 22 3-2 KS370G inhibits α-SMA and vimentin protein expression in IRI kidneys ……………………………………………………………………………………………………………………… 22 3-3 KS370G reduces kidney tissue TGF-β1 protein expression and plasma TGF-β1 levels in IRI kidneys …………………………………………… 23 3-4 KS370G inhibits TGF-β1-stimulated EMT in NRK52E and HK-2 cells ……………………………………………………………………………………………………………………………………………………… 23 3-5 KS370G ameliorates TGF-β1-stimulated fibronectin and type I collagen expression in NRK52E and HK-2 cells …………… 24 3-6 KS370G attenuates TGF-β1-stimulated PAI-1 expression in NRK52E and HK-2 cells …………………………………………………………………………………………… 25 3-7 KS370G blocks TGF-β1-stimulated phosphorylation of Smad2/3 in NRK52E cells ……………………………………………………………………………………… 25 Discussion ……………………………………………………………………………………………………………………………26 Chapter 4 KS370G, a caffeamide derivative, attenuates unilateral ureteral obstruction-induced renal fibrosis by the reduction of inflammation and oxidative stress in mice ……………………………………………………………………………………………………………………………………………………… 39 4-1 KS370G decreases UUO-induced renal interstitial fibrosis …………………………………………………………………………………………………………………………………………………………39 4-2 KS370G reduces UUO-induced collagen deposition and the expression of fibronectin and type I collagen ……………………………………………………………………………………………………………………………………………………… 39 4-3 KS370G inhibits UUO-induced myofibroblast activation ……………………………………………………………………………………………………………………………………………………… 40 4-4 KS370G attenuates UUO-induced inflammatory chemokine, adhesion molecules and monocyte cell marker expression ……………………………………………………………………………………………………………………………………………………… 40 4-5 KS370G increases MnSOD and catalase expression and inhibits tissue lipid peroxidation in UUO kidney …………………… 41 4-6 KS370G decreases UUO-induced AngII, TGF-β1 and Smad3 expression ………………………………………………………………………………………………………………………… 42 Discussion ………………………………………………………………………………………………………………………… 43 Chapter 5 Conclusions and Perspective ………………………………………………… 52 References ………………………………………………………………………………………………………………………… 54 Publication lists ……………………………………………………………………………………………………… 69 | |
| dc.language.iso | en | |
| dc.subject | 慢性腎臟疾病 | zh_TW |
| dc.subject | 多酚 | zh_TW |
| dc.subject | 上皮-間質轉化 | zh_TW |
| dc.subject | 缺血再灌流傷害 | zh_TW |
| dc.subject | 單側輸尿管阻塞 | zh_TW |
| dc.subject | 腎臟纖維化 | zh_TW |
| dc.subject | chronic kidney disease | en |
| dc.subject | polyphenol | en |
| dc.subject | renal fibrosis | en |
| dc.subject | unilateral ureteral obstruction | en |
| dc.subject | ischemia-reperfusion injury | en |
| dc.subject | epithelial-mesenchymal transition | en |
| dc.title | KS370G對於腎臟纖維化保護作用之研究 | zh_TW |
| dc.title | Effect of KS370G on Renal Fibrosis Models | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 顏茂雄,林水龍,陳文彬,楊鎧鍵 | |
| dc.subject.keyword | 多酚,腎臟纖維化,單側輸尿管阻塞,缺血再灌流傷害,上皮-間質轉化,慢性腎臟疾病, | zh_TW |
| dc.subject.keyword | polyphenol,renal fibrosis,unilateral ureteral obstruction,ischemia-reperfusion injury,epithelial-mesenchymal transition,chronic kidney disease, | en |
| dc.relation.page | 69 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-02-11 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
