Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54960
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林靖愉
dc.contributor.authorLu-Hsueh Huangen
dc.contributor.author黃律學zh_TW
dc.date.accessioned2021-06-16T03:42:44Z-
dc.date.available2015-03-12
dc.date.copyright2015-03-12
dc.date.issued2015
dc.date.submitted2015-02-11
dc.identifier.citationAbe, H., Brill, R. W. & Hochachka, P. W. (1986) Metabolism of L-histidine, carnosine, and anserine in skipjack tuna. Physiol. Zool., 59 (4), 439-450.
Abe, H. & Ohmama, S. (1987) Effect of starvation and sea-water acclimation on the concentration of free l-histidine and related dipeptides in the muscle of eel, rainbow trout and Japanese dace. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 88 (2), 507-511.
Al Rajabi, A., Castro, G. S., da Silva, R. P., Nelson, R. C., Thiesen, A., Vannucchi, H., Vine, D. F., Proctor, S. D., Field, C. J., Curtis, J. M. & Jacobs, R. L. (2014) Choline supplementation protects against liver damage by normalizing cholesterol metabolism in Pemt/Ldlr knockout mice fed a high-fat diet. Journal of Nutrition, 144 (3), 252-257.
Bakke, A. M., Tashjian, D. H., Wang, C. F., Lee, S. H., Bai, S. C. & Hung, S. S. (2010) Competition between selenomethionine and methionine absorption in the intestinal tract of green sturgeon (Acipenser medirostris). Aquatic Toxicology, 96 (1), 62-69.
Bartel, J., Krumsiek, J. & Theis, F. J. (2013) Statistical methods for the analysis of high-throughput metabolomics data. Comput Struct Biotechnol J, 4, e201301009.
Bayir, A., Sirkecioglu, A. N., Bayir, M., Haliloglu, H. I., Kocaman, E. M. & Aras, N. M. (2011) Metabolic responses to prolonged starvation, food restriction, and refeeding in the brown trout, Salmo trutta: oxidative stress and antioxidant defenses. Comp Biochem Physiol B Biochem Mol Biol, 159 (4), 191-196.
Beamesderfer, R. C. P., Simpson, M. L. & Kopp, G. J. (2007) Use of life history information in a population model for Sacramento green sturgeon. Environmental Biology of Fishes, 79 (3-4), 315-337.
Beis, A., Zammit, V. A. & Newsholme, E. A. (1980) Activities of 3-hydroxybutyrate dehydrogenase, 3-oxoacid CoA-transferase and acetoacetyl-CoA thiolase in relation to ketone-body utilisation in muscles from vertebrates and invertebrates. Eur J Biochem, 104 (1), 209-215.
Bligh, E. G. & Dyer, W. J. (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol, 37 (8), 911-917.
Boldyrev, A. A., Aldini, G. & Derave, W. (2013) Physiology and pathophysiology of carnosine. Physiol Rev, 93 (4), 1803-1845.
Buang, Y., Wang, Y. M., Cha, J. Y., Nagao, K. & Yanagita, T. (2005) Dietary phosphatidylcholine alleviates fatty liver induced by orotic acid. Nutrition, 21 (7-8), 867-873.
Caruso, G., Maricchiolo, G., Micale, V., Genovese, L., Caruso, R. & Denaro, M. G. (2010) Physiological responses to starvation in the European eel (Anguilla anguilla): effects on haematological, biochemical, non-specific immune parameters and skin structures. Fish Physiology and Biochemistry, 36 (1), 71-83.
Chandumpai, A., Dall, W. & Smith, D. M. (1991) Lipid-class composition of organs and tissues of the tiger prawnPanaeus esculentus during the moulting cycle and during starvation. Mar Biol, 108 (2), 235-245.
Claudino, W. M., Quattrone, A., Biganzoli, L., Pestrin, M., Bertini, I. & Di Leo, A. (2007) Metabolomics: available results, current research projects in breast cancer, and future applications. J Clin Oncol, 25 (19), 2840-2846.
Cook, M. & Lorber, V. (1952) Conversion of 1-C14-Mannose and 1-C14-glucose to liver and muscle glycogen in the intact rat. Journal of Biological Chemistry, 199 (1), 1-8.
Culbertson, J. Y., Kreider, R. B., Greenwood, M. & Cooke, M. (2010) Effects of beta-alanine on muscle carnosine and exercise performance: a review of the current literature. Nutrients, 2 (1), 75-98.
Dall, W. & Smith, D. M. (1987) Changes in protein-bound and free amino acids in the muscle of the tiger prawn Penaeus esculentus during starvation. Mar Biol, 95 (4), 509-520.
Danulat, E. & Hochachka, P. W. (1989) Creatine turnover in the starry flounder,Platichthys stellatus. Fish Physiology and Biochemistry, 6 (1), 1-9.
Darbeau, R. W. (2006) Nuclear Magnetic Resonance (NMR) Spectroscopy: A Review and a Look at Its Use as a Probative Tool in Deamination Chemistry. Applied Spectroscopy Reviews, 41 (4), 401-425.
Driedzic, W. R. & Short, C. E. (2007) Relationship between food availability, glycerol and glycogen levels in low-temperature challenged rainbow smelt Osmerus mordax. J Exp Biol, 210 (Pt 16), 2866-2872.
Ekman, D. R., Teng, Q., Villeneuve, D. L., Kahl, M. D., Jensen, K. M., Durhan, E. J., Ankley, G. T. & Collette, T. W. (2008) Profiling lipid metabolites yields unique information on sex- and time-dependent responses of fathead minnows (Pimephales promelas) exposed to 17α-ethynylestradiol. Metabolomics, 5 (1), 22-32.
FurnE, M., GarcIA-Gallego, M., Hidalgo, M. C., Morales, A. E., Domezain, A., Domezain, J. & Sanz, A. (2009) Oxidative stress parameters during starvation and refeeding periods in Adriatic sturgeon (Acipenser naccarii) and rainbow trout (Oncorhynchus mykiss). Aquaculture Nutrition, 15 (6), 587-595.
Furne, M., Morales, A. E., Trenzado, C. E., Garcia-Gallego, M., Carmen Hidalgo, M., Domezain, A. & Sanz Rus, A. (2012) The metabolic effects of prolonged starvation and refeeding in sturgeon and rainbow trout. J Comp Physiol B, 182 (1), 63-76.
Gines, R., Palicio, M., Zamorano, M. J., Arguello, A., Lopez, J. L. & Afonso, J. M. (2002) Starvation before slaughtering as a tool to keep freshness attributes in gilthead sea bream (Sparus aurata). Aquaculture International, 10 (5), 379-389.
Gingerich, A. J., Philipp, D. P. & Suski, C. D. (2010) Effects of nutritional status on metabolic rate, exercise and recovery in a freshwater fish. J Comp Physiol B, 180 (3), 371-384.
Godavarthy, P. & kumari, Y. S. (2012) Differential utilization of proteins in Anabas testudineus(Bloch) exposed to brief and prolonged fasting. Recent Research in Science and Technology, 4 (5), 04-09.
Godavarthy, P., Sunila Kumari, Y. & Bikshapathy, E. (2012) Starvation induced cholesterogenesis in hepatic and extra hepatic tissues of climbing Perch, Anabas testudineus (Bloch). Saudi J Biol Sci, 19 (4), 489-494.
Goswami, C., Datta, S., Biswas, K. & Saha, N. (2004) Cell volume changes affect gluconeogenesis in the perfused liver of the catfish Clarias batrachus. J Biosci, 29 (3), 337-347.
Gowda, G. A., Zhang, S., Gu, H., Asiago, V., Shanaiah, N. & Raftery, D. (2008) Metabolomics-based methods for early disease diagnostics. Expert Review of Molecular Diagnostics, 8 (5), 617-633.
Guderley, H., Lapointe, D., Bedard, M. & Dutil, J. D. (2003) Metabolic priorities during starvation: enzyme sparing in liver and white muscle of Atlantic cod, Gadus morhua L. Comp Biochem Physiol A Mol Integr Physiol, 135 (2), 347-356.
Hayashi, K. & Takagi, T. (1977) Lipid metabolism in fish, 2: Changes of lipids and fatty acids in the liver of puffer, Fugu vermiculare porphyreum, during starvation. Bulletin of the Faculty of Fisheries - Hokkaido University, 28 (4), 193-201.
Hayashi, S. & Ooshiro, Z. (1979) Gluconeogenesis in isolated liver cells of the eel,Anguilla japonica. Journal of comparative physiology, 132 (4), 343-350.
Hemre, G.-I., Lie, O. & Lambertsen, G. (1991) Chromatographic determination of pyruvate, lactate, acetoacetate and β-hydroxybutyrate in fed and starved cod (Gadus morhua). Fisk. Dir. Skr., Ser. Ernaring, 4 (1), 73-83.
Hendriks, M. M. W. B., Eeuwijk, F. A. v., Jellema, R. H., Westerhuis, J. A., Reijmers, T. H., Hoefsloot, H. C. J. & Smilde, A. K. (2011) Data-processing strategies for metabolomics studies. TrAC Trends in Analytical Chemistry, 30 (10), 1685-1698.
Hensgens, H. E. S. J., Meijer, A. J., Williamson, J. R., Gimpel, J. A. & Tager, J. M. (1978) Proline metabolism in isolated rat liver cells. Biochemical Journal, 170 (3), 699-707.
Hetenyi, G., Jr., Anderson, P. J., Raman, M. & Ferrarotto, C. (1988) Gluconeogenesis from glycine and serine in fasted normal and diabetic rats. Biochem J, 253 (1), 27-32.
Hochachka, P. W. & Fields, J. H. A. (1982) Arginine, Glutamate, and Proline as Substrates for Oxidation and for Glycogenesis in Cephalopod Tissues. Pacific Science, 36 (3), 325-335.
Holmstrup, M., Bindesbol, A. M., Oostingh, G. J., Duschl, A., Scheil, V., Kohler, H. R., Loureiro, S., Soares, A. M., Ferreira, A. L., Kienle, C., Gerhardt, A., Laskowski, R., Kramarz, P. E., Bayley, M., Svendsen, C. & Spurgeon, D. J. (2010) Interactions between effects of environmental chemicals and natural stressors: a review. Science of the Total Environment, 408 (18), 3746-3762.
Horgan, R. P. & Kenny, L. C. (2011) ‘Omic’ technologies: genomics, transcriptomics, proteomics and metabolomics. The Obstetrician & Gynaecologist, 13 (3), 189–195.
Hung, S. S. O. & Lutes, P. B. (1987) Optimum feeding rate of hatchery-produced juvenile white sturgeon (Acipenser transmontanus): at 20°C. Aquaculture, 65 (3-4), 307-317.
Hur, J. W., Woo, S. R., Jo, J. H. & Park, I.-S. (2006) Effects of starvation on kidney melano-macrophage centre in olive flounder, Paralichthys olivaceus (Temminck and Schlegel). Aquaculture Research, 37 (8), 821-825.
Hutson, S. M., Zapalowski, C., Cree, T. & Harper, A. E. (1980) Regulation of leucine and alpha-ketoisocaproic acid metabolism in skeletal muscle. Effects of starvation and insulin. J Biol Chem, 255 (6), 2418-2426.
Ingwall, J. S. (2006) On the hypothesis that the failing heart is energy starved: lessons learned from the metabolism of ATP and creatine. Current Hypertension Reports, 8 (6), 457-464.
JI, H., OM, A. D., UMINO, T., NAKAGAWA, H., SASAKI, T., OKADA, K., ASANO, M. & NAKAGAWA, A. (2003) Effect of dietary ascorbate fortification on lipolysis activity of juvenile black sea bream Acanthopagrus schlegeli. Fisheries Science, 69 (1), 66-73.
Jiang, G. Z., Wang, M., Liu, W. B., Li, G. F. & Qian, Y. (2013) Dietary choline requirement for juvenile blunt snout bream,Megalobrama amblycephala. Aquaculture Nutrition, 19 (4), 499-505.
Kalikiri, P. C. & Sachan, R. G. (2005) Nitrous Oxide induced Elevation of Plasma Homocysteine and Methylmalonic Acid Levels and their Clinical Implications. Journal, Indian Academy of Clinical Medicine, 6 (1), 48-52.
Karakach, T. K., Huenupi, E. C., Soo, E. C., Walter, J. A. & Afonso, L. O. B. (2008) 1H-NMR and mass spectrometric characterization of the metabolic response of juvenile Atlantic salmon (Salmo salar) to long-term handling stress. Metabolomics, 5 (1), 123-137.
Ketola, H. G. (1976) Choline metabolism and nutritional requirement of lake trout (Salvelinus namaycush). J Anim Sci, 43 (2), 474-477.
Kieffer, J. D. & Tufts, B. L. (1998) Effects of food deprivation on white muscle energy reserves in rainbow trout (Oncorhynchus mykiss): the relationships with body size and temperature. Fish Physiology and Biochemistry, 19 (3), 239-245.
Klimley, A. P., Allen, P. J., Israel, J. A. & Kelly, J. T. (2006) The green sturgeon and its environment: introduction. Environmental Biology of Fishes, 79 (3-4), 187-190.
Knox, D., Walton, M. J. & Cowey, C. B. (1980) Distribution of enzymes of glycolysis and gluconeogenesis in fish tissues. Mar Biol, 56 (1), 7-10.
Kokushi, E., Uno, S., Harada, T. & Koyama, J. (2012) (1)H NMR-based metabolomics approach to assess toxicity of bunker a heavy oil to freshwater carp, Cyprinus carpio. Environmental Toxicology, 27 (7), 404-414.
Kramer, V. J., Newman, M. C. & Ultsch, G. R. (1992) Changes in concentrations of glycolysis and Krebs cycle metabolites in mosquitofish,Gambusia holbrooki, induced by mercuric chloride and starvation. Environmental Biology of Fishes, 34 (3), 315-320.
Kullgren, A., Samuelsson, L. M., Larsson, D. G., Bjornsson, B. T. & Bergman, E. J. (2010) A metabolomics approach to elucidate effects of food deprivation in juvenile rainbow trout (Oncorhynchus mykiss). Am J Physiol Regul Integr Comp Physiol, 299 (6), R1440-1448.
Lankford, S. E., Adams, T. E. & Cech, J. J., Jr. (2003) Time of day and water temperature modify the physiological stress response in green sturgeon, Acipenser medirostris. Comp Biochem Physiol A Mol Integr Physiol, 135 (2), 291-302.
Lee, J. W., De Riu, N., Lee, S., Bai, S. C., Moniello, G. & Hung, S. S. (2011) Effects of dietary methylmercury on growth performance and tissue burden in juvenile green (Acipenser medirostris) and white sturgeon (A. transmontanus). Aquatic Toxicology, 105 (3-4), 227-234.
Lee, J. W., Kim, J. W., De Riu, N., Moniello, G. & Hung, S. S. (2012) Histopathological alterations of juvenile green (Acipenser medirostris) and white sturgeon (Acipenser transmontanus) exposed to graded levels of dietary methylmercury. Aquatic Toxicology, 109, 90-99.
Leech, A. R., Goldstein, L., Cha, C.-J. & Goldstein, J. M. (1979) Alanine biosynthesis during starvation in skeletal muscle of the spiny dogfish, Squalus acanthias. Journal of Experimental Zoology, 207 (1), 73-80.
Li, P., Mai, K., Trushenski, J. & Wu, G. (2009) New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds. Amino Acids, 37 (1), 43-53.
Li, Q., Xie, G., Zhang, W., Zhong, W., Sun, X., Tan, X., Sun, X., Jia, W. & Zhou, Z. (2014) Dietary nicotinic acid supplementation ameliorates chronic alcohol-induced fatty liver in rats. Alcohol Clin Exp Res, 38 (7), 1982-1992.
Lin, C. Y., Viant, M. R. & Tjeerdema, R. S. (2006) Metabolomics Methodologies and applications in the environmental sciences. Journal of Pesticide Science, 31 (3), 245-251.
Lin, C. Y., Wu, H., Tjeerdema, R. S. & Viant, M. R. (2007) Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics. Metabolomics, 3 (1), 55-67.
Maity, S., Jannasch, A., Adamec, J., Nalepa, T., Hook, T. O. & Sepulveda, M. S. (2012) Starvation causes disturbance in amino acid and fatty acid metabolism in Diporeia. Comp Biochem Physiol B Biochem Mol Biol, 161 (4), 348-355.
Mannina, L., Sobolev, A. P., Capitani, D., Iaffaldano, N., Rosato, M. P., Ragni, P., Reale, A., Sorrentino, E., D'Amico, I. & Coppola, R. (2008) NMR metabolic profiling of organic and aqueous sea bass extracts: implications in the discrimination of wild and cultured sea bass. Talanta, 77 (1), 433-444.
McCue, M. D. (2010) Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol A Mol Integr Physiol, 156 (1), 1-18.
Miller, T. L. (1978) The pathway of formation of acetate and succinate from pyruvate by Bacteroides succinogenes. Arch Microbiol, 117 (2), 145-152.
Mommsen, T. P. (2004) Salmon spawning migration and muscle protein metabolism: the August Krogh principle at work. Comp Biochem Physiol B Biochem Mol Biol, 139 (3), 383-400.
Moon, T. W. & Johnston, I. A. (1980) Starvation and the Activities of Glycolytic and Gluconeogenic Enzymes in Skeletal Muscles and Liver of the Plaice, Pleuronectes platessa. Journal of comparative physiology, 136 (1), 31-38.
Morata, P., Vargas, A. M., Sanchez-Medina, F., Garcia, M., Cardenete, G. & Zamora, S. (1982) Evolution of gluconeogenic enzyme activities during starvation in liver and kidney of the rainbow trout (Salmo gairdneri). Comp Biochem Physiol B, 71 (1), 65-70.
Musso, G., Cassader, M. & Gambino, R. (2011) Cholesterol-lowering therapy for the treatment of nonalcoholic fatty liver disease: an update. Curr Opin Lipidol, 22 (6), 489-496.
Nadkarni, G. B., Friedmann, B. & Weinhouse, S. (1960) Gluconeogenesis from glycine and serine in the rat. J Biol Chem, 235, 420-425.
Namrata, S., Sanjay, N. & Pallavi, C. (2011) Effect of Starvation on the Biochemical Composition of Freshwater Fish Channa punctatus. Recent Research in Science and Technology, 3 (9), 17-19.
Nyamundanda, G., Brennan, L. & Gormley, I. C. (2010) Probabilistic principal component analysis for metabolomic data. BMC Bioinformatics, 11, 571.
Orellana, M., Fuentes, O. & Valdes, E. (1993) Starvation effect on rat kidney peroxisomal and microsomal fatty acid oxidation. A comparative study between liver and kidney. FEBS Lett, 322 (1), 61-64.
Osako, K., Kuwahara, K., Saito, H., Hossain, M. A. & Nozaki, Y. (2003) Effect of starvation on lipid metabolism and stability of DHA content of lipids in horse mackerel (Trachurus japonicus) tissues. Lipids, 38 (12), 1263-1267.
Palmnas, M. S. & Vogel, H. J. (2013) The future of NMR metabolomics in cancer therapy: towards personalizing treatment and developing targeted drugs? Metabolites, 3 (2), 373-396.
Patti, G. J., Yanes, O. & Siuzdak, G. (2012) Innovation: Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol, 13 (4), 263-269.
Peragon, J., Barroso, J. B., De la Higuera, M. & Lupianez, J. A. (2008) Serine dehydratase and tyrosine aminotransferase activities increased by long-term starvation and recovery by refeeding in rainbow trout (Oncorhynchus mykiss). J Exp Zool A Ecol Genet Physiol, 309 (1), 25-34.
Pikitch, E. K., Doukakis, P., Lauck, L., Chakrabarty, P. & Erickson, D. L. (2005) Status, trends and management of sturgeon and paddlefish fisheries. Fish and Fisheries, 6 (3), 233-265.
Pinto, J., Domingues, M. R., Galhano, E., Pita, C., Almeida Mdo, C., Carreira, I. M. & Gil, A. M. (2014) Human plasma stability during handling and storage: impact on NMR metabolomics. Analyst, 139 (5), 1168-1177.
POSTON, H. A. & WOLFE, M. J. (1985) Niacin requirement for optimum growth, feed conversion and protection of rainbow trout, Salmo gairdneri Richardson, from ultraviolet-B irradiation. Journal of Fish Diseases, 8 (5), 451-460.
Raina, S. & Sachar, A. (2014a) Effect of starvation on haemopoietic organs of fish Labeo boga. International Journal of Innovative Research in Science, Engineering and Technology, 3 (3), 10129-10135.
Raina, S. & Sachar, A. (2014b) Effect of starvation on immune organs of fish labeo boga. Global Journal of Biology, Agriculture & Health Sciences, 3 (1), 11-15.
Raymond, J. A. & Driedzic, W. R. (1997) Amino Acids Are a Source of Glycerol in Cold-Acclimatized Rainbow Smelt. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 118 (2), 387-393.
Rezzi, S., Giani, I., Heberger, K., Axelson, D. E., Moretti, V. M., Reniero, F. & Guillou, C. (2007) Classification of gilthead sea bream (Sparus aurata) from 1H NMR lipid profiling combined with principal component and linear discriminant analysis. J Agric Food Chem, 55 (24), 9963-9968.
Ringo, E., Andreassen, T. V. & Burkow, I. C. (1990) Effects of starvation on the lipid composition in muscle tissue and liver of hatchery-reared Arctic charr, Salvelinus alpinus (L), from Lake Takvatn. Fiskeridirektoratets skrifter, Serie ernaring, 3 (2), 13-20.
Robertson, D. G., Watkins, P. B. & Reily, M. D. (2011) Metabolomics in toxicology: preclinical and clinical applications. Toxicol Sci, 120 Suppl 1, S146-170.
Robinson, J. & Newsholme, E. A. (1969) The effects of dietary conditions and glycerol concentration on glycerol uptake by rat liver and kidney-cortex slices. Biochem J, 112 (4), 449-453.
Samuelsson, L. M., Forlin, L., Karlsson, G., Adolfsson-Erici, M. & Larsson, D. G. (2006) Using NMR metabolomics to identify responses of an environmental estrogen in blood plasma of fish. Aquatic Toxicology, 78 (4), 341-349.
Samuelsson, L. M. & Larsson, D. G. (2008) Contributions from metabolomics to fish research. Mol Biosyst, 4 (10), 974-979.
Sancez-Muros, M. J., Garcia-Rejon, L., Lupianez, J. A. & Higuera, M. D. L. (1995) Long-term nutritional effects on the primary liver and kidney metabolism in rainbow trout. Adaptive response to starvation and a high-protein, carbohydrate-free diet on glutamate dehydrogenase and alanine aminotransferase kinetics. Aquaculture Nutrition, 1 (4), 213-220.
Savina, M. V. & Wojtczak, A. B. (1977) Enzymes of gluconeogenesis and the synthesis of glycogen from glycerol in various organs of the lamprey (Lampetra fluviatilis). Comp Biochem Physiol B, 57 (3), 185-190.
Savorani, F., Rasmussen, M. A., Mikkelsen, M. S. & Engelsen, S. B. (2013) A primer to nutritional metabolomics by NMR spectroscopy and chemometrics. Food Research International, 54 (1), 1131-1145.
Schripsema, J. (2010) Application of NMR in plant metabolomics: techniques, problems and prospects. Phytochem Anal, 21 (1), 14-21.
Seibel, B. A. & Walsh, P. J. (2002) Trimethylamine oxide accumulation in marine animals: relationship to acylglycerol storage. J Exp Biol, 205 (Pt 3), 297-306.
Shiau, C. Y., Pong, Y. P., Chiou, T. K. & Tin, Y. Y. (2001) Effect of starvation on free histidine and amino acids in white muscle of milkfish Chanos chanos. Comp Biochem Physiol B Biochem Mol Biol, 128 (3), 501-506.
Shulaev, V. (2006) Metabolomics technology and bioinformatics. Brief Bioinform, 7 (2), 128-139.
Silva, S. S. D., Gunasekera, R. M. & Austin, C. M. (1997) Changes in the fatty acid profiles of hybrid tilapia, Oreochromis mossambicus×O. niloticus, subjected to short-term starvation, and a comparison with changes in seawater raised fish. Aquaculture International, 153 (3-4), 273-290.
Silvestre, F., Linares-Casenave, J., Doroshov, S. I. & Kultz, D. (2010) A proteomic analysis of green and white sturgeon larvae exposed to heat stress and selenium. Science of the Total Environment, 408 (16), 3176-3188.
Smutna, M., Vorlova, L. & Svobodova, Z. (2002) Pathobiochemistry of Ammonia in the Internal Environment of Fish (Review). Acta Veterinaria Brno, 71 (2), 169-181.
Soengas, J. L., Andres, M. D. & Aldegunde, M. (1992) Seasonal variations in White muscle and kidney carbohydrate metabolism in domesticated rainbow trout (Oncorhynchus mykiss Walbaum). Nova Acta Cientifica Compostelana, 3, 169-179.
Solanky, K. S., Burton, I. W., MacKinnon, S. L., Walter, J. A. & Dacanay, A. (2005) Metabolic changes in Atlantic salmon exposed to Aeromonas salmonicida detected by 1H-nuclear magnetic resonance spectroscopy of plasma. Dis Aquat Organ, 65 (2), 107-114.
Swiderska-Kolacz, G., Klusek, J., Kolataj, A. & Faray, J. (2006) Effect of starvation and immobilization on glutathione level and activity of glutathione enzymes in the liver and kidney of rabbits. Slovak Journal of Animal Science, 39 (1-2), 151-154.
Tiziani, S., Lopes, V. & Gunther, U. L. (2009) Early Stage Diagnosis of Oral Cancer Using 1H NMR–Based Metabolomics. Neoplasia, 11 (3), 269–276.
Treberg, J. R. & Driedzic, W. R. (2007) The accumulation and synthesis of betaine in winter skate (Leucoraja ocellata). Comp Biochem Physiol A Mol Integr Physiol, 147 (2), 475-483.
Treberg, J. R., Speers-Roesch, B., Piermarini, P. M., Ip, Y. K., Ballantyne, J. S. & Driedzic, W. R. (2006) The accumulation of methylamine counteracting solutes in elasmobranchs with differing levels of urea: a comparison of marine and freshwater species. J Exp Biol, 209 (Pt 5), 860-870.
Van Eenennaam, J. P., Linares-Casenave, J. & Doroshov, S. I. (2012) Tank spawning of first generation domestic green sturgeon. Journal of Applied Ichthyology, 28 (4), 505-511.
Viana, M. T., D'Abramo, L. R., Gonzalez, M. A., Garcia-Suarez, J. V., Shimada, A. & Vasquez-Pelaez, C. (2007) Energy and nutrient utilization of juvenile green abalone (Haliotis fulgens) during starvation. Aquaculture, 264 (1-4), 323-329.
Viant, M. R., Werner, I., Rosenblum, E. S., Gantner, A. S., Tjeerdema, R. S. & Johnson, M. L. (2003) Correlation between heat-shock protein induction and reduced metabolic condition in juvenile steelhead trout (Oncorhynchus mykiss) chronically exposed to elevated temperature. Fish Physiology and Biochemistry, 29 (2), 159-171.
Vidal, N. P., Manzanos, M. J., Goicoechea, E. & Guillen, M. D. (2012) Quality of farmed and wild sea bass lipids studied by (1)H NMR: usefulness of this technique for differentiation on a qualitative and a quantitative basis. Food Chem, 135 (3), 1583-1591.
Vijayan, M., Morgan, J., Sakamoto, T., Grau, E. & Iwama, G. (1996) Food-deprivation affects seawater acclimation in tilapia: hormonal and metabolic changes. J Exp Biol, 199 (Pt 11), 2467-2475.
Vinagre, A. S. & Da Silva, R. S. M. (2002) Effects of fasting and refeeding on metabolic processes in the crabChasmagnathus granulata(Dana, 1851). Canadian Journal of Zoology, 80 (8), 1413-1421.
Wallace, J. C. & Barritt, G. J. (2005) Gluconeogenesis. Encyclopedia of Life Sciences.
Walsh, P. J., Kajimura, M., Mommsen, T. P. & Wood, C. M. (2006) Metabolic organization and effects of feeding on enzyme activities of the dogfish shark (Squalus acanthias) rectal gland. J Exp Biol, 209 (Pt 15), 2929-2938.
Warren, D. E., Matsumoto, S., Roessig, J. M. & Cech, J. J. (2004) Cortisol response of green sturgeon to acid-infusion stress. Comp Biochem Physiol A Mol Integr Physiol, 137 (3), 611-618.
Watford, M. (2000) Glutamine and glutamate metabolism across the liver sinusoid. Journal of Nutrition, 130 (4S Suppl), 983S-987S.
Worley, B. & Powers, R. (2013) Multivariate Analysis in Metabolomics. Current Metabolomics, 1 (1), 92-107.
Wu, G. (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids, 37 (1), 1-17.
Wu, G., Bazer, F. W., Burghardt, R. C., Johnson, G. A., Kim, S. W., Knabe, D. A., Li, P., Li, X., McKnight, J. R., Satterfield, M. C. & Spencer, T. E. (2011) Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino Acids, 40 (4), 1053-1063.
Wu, G., Fang, Y. Z., Yang, S., Lupton, J. R. & Turner, N. D. (2004) Glutathione metabolism and its implications for health. Journal of Nutrition, 134 (3), 489-492.
Yeh, S.-P., Shiu, P.-J., Guei, W.-C., Lin, Y.-H. & Liu, C.-H. (2013) Improvement in lipid metabolism and stress tolerance of juvenile giant grouper,Epinephelus lanceolatus(Bloch), fed supplemental choline. Aquaculture Research, n/a-n/a.
Yeh, Y. Y. (1984) Ketone body synthesis from leucine by adipose tissue from different sites in the rat. Archives of Biochemistry and Biophysics, 233 (1), 10-18.
Yu, X. X., Drackley, J. K. & Odle, J. (1998) Food deprivation changes peroxisomal beta-oxidation activity but not catalase activity during postnatal development in pig tissues. Journal of Nutrition, 128 (7), 1114-1121.
Zammit, V. A. & Newsholme, E. A. (1979) Activities of enzymes of fat and ketone-body metabolism and effects of starvation on blood concentrations of glucose and fat fuels in teleost and elasmobranch fish. Biochem J, 184 (2), 313-322.
Zhao, T., Zhou, Y., Mao, G., Zou, Y., Zhao, J., Bai, S., Yang, L. & Wu, X. (2013) Extraction, purification and characterisation of chondroitin sulfate in Chinese sturgeon cartilage. J Sci Food Agric, 93 (7), 1633-1640.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54960-
dc.description.abstract食物限制是環境壓力的其中一種。這種環境壓力可能會嚴重影響生物體並導致族群的下降或滅絕。魚類的生命週期中可能常會接觸到食物限制的狀態,因為魚類較容易暴露於極端的環境或是特殊的情況,例如:氣候變遷、季節性的溫度差異、暴露於環境汙染物、棲息地破壞或是處於洄游產卵的狀態。
綠色鱘魚在2006年被美國瀕臨絕種動物保護法給編列為受到威脅的物種,過度的捕魚和棲息地破壞是導致其族群下降的因素,鱘魚對於環境壓力影響是易感受性的,從溫度、氣候因子、化學汙染或是營養狀態的細微改變都可能會導致鱘魚的生理狀態受到影響。
代謝體學是一種高通量檢測生物系統內的小分子代謝物的方法,用以了解表現型態的發展與機制,而核磁共振光譜儀是一個常被用來研究代謝體學的方法,它提供快速的取得圖譜、不會破壞樣本、高通量的資訊以及較少量的樣本前處理步驟等優點。核磁共振為基礎的代謝體學配合多變量分析(例如:主成分分析)可用於檢測暴露於環境壓力的生物體內之代謝物改變。
本研究的目的是利用核磁共振光譜儀為基礎的代謝體學探討綠色鱘魚暴露在環境壓力下的影響,綠色鱘魚的幼年期和青年期在不同的食物限制下(100%, 50%, 25%, 12.5%)分別暴露2週與4週。分別取得肌肉、肝臟與腎臟萃取親水性與疏水性代謝物並且運用核磁共振光譜儀和多變量分析的方法分析食物限制的影響。
我們從主成分分析的結果發現,不同年齡的綠鱘當受到食物限制時,各個組織皆會發生代謝物改變。我們的研究結果顯示,肌肉、肝臟與腎臟組織中的胺基酸或乳酸會因食物限制而產生顯著的變化,這些代謝物和糖質新生有關;在幼年綠鱘的腎臟組織和青年綠鱘的肌肉、肝臟以及腎臟組織,與糖解作用有關的葡萄糖濃度也顯著下降;此外,我們也發現在幼年綠鱘的肝臟組織與青年綠鱘的肌肉、肝臟和腎臟組織中皆發現了脂肪酸與甘油濃度顯著降低,可能是用來補充不足的能量;除了能量的擾動,我們也發現與滲透壓調節和抗氧化壓力相關代謝物的濃度變化。這些結果顯示在食物限制下,可能會影響滲透壓平衡與產生氧化壓力。核磁共振光譜儀為基礎的代謝體對了解暴露在環境壓力下的生物之代謝物變化有很大的助益。
zh_TW
dc.description.abstractFood restriction, one of the environmental stresses, could produce serious effects to organisms and may cause to population decline and extinction. In different life stages, wild fish often encounter to food restriction because they usually expose to extreme environment or special status, such as climatic change, low temperature, environmental pollution, habitat destruction or spawning migration.
Green sturgeon was listed as ‘‘threatened’’ in 2006 under the U.S. Endangered Species Act. Overfishing and habitat degradation lead to green sturgeon population decline. Since green sturgeon is susceptible to environmental stress, subtle changes from temperature, climatic factors, chemical exposure and nutritional situation will affect its physiological status.
Metabolomic approach is a high-throughput screening method to examine changes of metabolic profiles in biological systems to understand possible mechanisms for phenotype development. Nuclear magnetic resonance (NMR) spectroscopy, a common instrument applied in the field of metabolomics, supplies a fast, non-disruptive, high-throughput method that requires the least sample preparation. NMR coupled with multivariate statistical analysis such as principal components analysis (PCA) can be used to examine metabolic effects of environment stress in organisms.
The purpose of this study is to study effects of feed restriction in different tissues and life stages of green sturgeon by using NMR-based metabolomics. Green sturgeon fingerling and juvenile were fed four feed restriction (100%, 50%, 25% and 12.5%) for 2 and 4 weeks, respectively. Both hydrophilic and hydrophobic metabolites from the muscle, liver, and kidney were extracted and analyzed by NMR followed PCA.
The PCA results showed feed-restriction dependant trends from the analysis of all tissues types of different life stages, except the analysis of hydrophobic muscle metaolome from the fingerling. We found a lot of energy-related metabolites changed in different tissues of sturgeon after feed restriction. Our results showed that numerous amino acids or lactate were altered which are relate to imbalanced glycogenesis in muscle, liver and kidney of different stages of sturgeon. We also found decreased glucose probably due to glycolysis in all tissues of different stages of sturgeon except for the muscle and liver of fingerling. In addition, we also found fatty acids and glycerol degraded in the liver of fingerling and all tissues of juvenile for supplemental energy supply. Besides energy disturbance after feed restriction, we also discovered changes of osmolyte-related metabolites and antioxidants. These results suggested feed restriction may cause changes of osmotic balance and oxidative stress. We conducted that NMR-based metabolomics is useful in understanding the metabolic changes due to environmental stresses.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:42:44Z (GMT). No. of bitstreams: 1
ntu-104-R01844009-1.pdf: 6304264 bytes, checksum: 8548ed79492272730c963ff603217134 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents國立臺灣大學碩士學位論文口試委員會審定書 I
誌謝 III
摘要 V
ABSTRACT VII
第一章 前言 1
1.1 研究緣起與目的 1
第二章 文獻探討 3
2.1食物限制 3
2.2 綠色鱘魚的介紹 4
2.3 代謝體學研究 5
2.3.1 代謝體學介紹 5
2.3.2 代謝體學研究流程 6
2.4 核磁共振光譜儀 8
2.4.1 核磁共振光譜儀原理 8
2.4.2 核磁共振光譜儀在代謝體學上的應用與發展 9
第三章 實驗材料與方法 13
3.1實驗架構 13
3.2動物實驗處理 14
3.3代謝體學實驗方法 15
3.3.1 組織樣本處理 15
3.3.2 核磁共振光譜儀分析方法 15
3.3.3 核磁共振光譜處理與分析 18
第四章 結果 21
4.1 核磁共振光譜及多變量分析分析結果 21
4.2 食物限制對肌肉組織的代謝物影響 21
4.2.1 幼年綠鱘之肌肉組織 21
4.2.2 青年綠鱘之肌肉組織 22
4.3 食物限制對肝臟組織的代謝物影響 23
4.3.1 幼年綠鱘之肝臟組織 23
4.3.2青年綠鱘之肝臟組織 24
4.4 食物限制對腎臟組織的代謝物影響 25
4.4.1 幼年綠鱘之腎臟組織 25
4.4.2 青年綠鱘之腎臟組織 26
第五章 討論 28
5.1.1食物限制對幼年綠鱘肌肉組織的影響 28
5.1.1.1 食物限制在肌肉組織所引發之能量擾動 28
5.1.1.2 食物限制與非能量代謝之機制影響 31
5.1.2食物限制對青年綠鱘肌肉組織的影響 32
5.1.2.1食物限制在肌肉組織所引發之能量擾動 33
5.1.2.2 食物限制與非能量代謝之機制影響 36
5.2.1食物限制對幼年綠鱘肝臟組織的影響 36
5.2.1.1 食物限制在肝臟組織所引發之能量擾動 37
5.2.1.2 食物限制與非能量代謝之機制影響 39
5.2.2食物限制對青年綠鱘肝臟組織的影響 40
5.2.2.1 食物限制在肝臟組織所引發之能量擾動 41
5.3.1食物限制對幼年綠鱘腎臟組織的影響 42
5.3.1.1 食物限制在腎臟組織所引發之能量擾動 43
5.3.1.2 食物限制與非能量代謝之影響 45
5.3.2食物限制對青年綠鱘腎臟組織的影響 45
5.3.2.1 食物限制在腎臟組織所引發之能量擾動 46
5.3.2.2 食物限制與非能量代謝之影響 47
5.4 研究限制 47
5.5 結論 48
參考文獻 50
dc.language.isozh-TW
dc.subject代謝體學zh_TW
dc.subject抗氧化壓力zh_TW
dc.subject綠色鱘魚zh_TW
dc.subject糖質新生zh_TW
dc.subject滲透壓zh_TW
dc.subject糖解zh_TW
dc.subject食物限制zh_TW
dc.subject核磁共振光譜儀zh_TW
dc.subjectantioxidanten
dc.subjectnuclear magnetic resonance (NMR)en
dc.subjectmetabolomicsen
dc.subjectfood restrictionen
dc.subjectosmolyteen
dc.subjectglycolysisen
dc.subjectgluconeogenesisen
dc.subjectgreen sturgeonen
dc.title利用核磁共振為基礎的代謝體學探討綠色鱘魚在食物限制下的影響zh_TW
dc.titleEffects of feed restriction on green sturgeon by NMR-based metabolomicsen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee簡伶朱,唐川禾
dc.subject.keyword食物限制,綠色鱘魚,糖質新生,糖解,滲透壓,抗氧化壓力,代謝體學,核磁共振光譜儀,zh_TW
dc.subject.keywordfood restriction,green sturgeon,gluconeogenesis,glycolysis,osmolyte,antioxidant,metabolomics,nuclear magnetic resonance (NMR),en
dc.relation.page138
dc.rights.note有償授權
dc.date.accepted2015-02-11
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
6.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved