Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54932
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅竹芳
dc.contributor.authorI-Tung Chenen
dc.contributor.author陳顗同zh_TW
dc.date.accessioned2021-06-16T03:41:55Z-
dc.date.available2025-02-12
dc.date.copyright2015-03-13
dc.date.issued2015
dc.date.submitted2015-02-12
dc.identifier.citation1. Akaike T. (2001) Role of free radicals in viral pathogenesis and mutation. Rev Med Virol. 11:87-101.
2. Akaike T, Noguchi Y, Ijiri S, Setoguchi K, Suga M, Zheng YM, Dietzschold B, Maeda H. (1996) Pathogenesis of influenza virus-induced pneumonia: involvement of both nitric oxide and oxygen radicals. Proc Natl Acad Sci U S A. 93:2448-2453.
3. Alic N, Higgins VJ, Dawes IW. (2001) Identification of a Saccharomyces cerevisiae gene that is required for G1 arrest in response to the lipid oxidation product linoleic acid hydroperoxide. Mol Biol Cell. 12:1801-1810.
4. Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang JK, Shen M, Bellinger G, Sasaki AT, Locasale JW, Auld DS, Thomas CJ, Vander Heiden MG, Cantley LC. (2011) Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science. 334:1278-1283.
5. Archer SL, Huang JMC, Hampl V, Nelson DP, Shultz PJ, Weir EK. (1994) Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K-channel by cGMP-dependent protein kinase. Proc Natl Acad Sci USA. 91:7583-7587.
6. Babior BM. (2000) Phagocytes and oxidative stress. Am J Med. 109:33-44.
7. Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, Rhee SG. (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. J Biol Chem. 272:217-221.
8. Bedard K, Krause KH. (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 87:245-313.
9. Berg JM, Tymoczko JL, Stryer L. (2007) Biochemistry. New York: Freeman.
10. Brown M, Wittwer C. (2000) Flow cytometry: principles and clinical applications in hematology. Clin Chem. 46:1221-1229.
11. Callsen D, Pfeilschifter J, Brune B. (1998) Rapid and delayed p42/p44 MAPK activation by nitric oxide: the role of cGMP and tyrosine phosphatase inhibition. J Immunol. 161:4852-4858.
12. Campa-Cordova AI, Hernandez-Saavedra NY, Ascencio F. (2002) Superoxide dismutase as modulator of immune function in American white shrimp (Litopenaeus vannamei). Comp Biochem Physiol C Toxicol Pharmacol. 133:557-565.
13. Cairns RA, Harris IS, Mak TW. (2011) Regulation of cancer cell metabolism. Nat Rev Cancer. 11:85-95.
14. Castex M, Lemaire P, Wabete N, Chim L. (2010) Effect of probiotic Pediococcus acidilactici on antioxidant defences and oxidative stress of Litopenaeus stylirostris under Vibrio nigripulchritudo challenge. Fish Shellfish Immunol. 28:622-631.
15. Chang PS, Chen HC, Wang YC. (1998) Detection of white spot syndrome associated baculovirus in experimentally infected wild shrimp, crabs and lobsters by in situ hybridization. Aquaculture. 164:233-242.
16. Chang YS, Liu WJ, Chen TC, Chan TY, Liu KF, Chuang JC, Kou GH, Lo CF, Wang HC. (2012) Feeding hermit crabs to shrimp broodstock increases their risk of WSSV infection. Dis Aquat Organ. 98:193-199.
17. Chen IT, Aoki T, Huang YT, Hirono I, Chen TC, Huang JY, Chang GD, Lo CF, Wang HC. (2011) White spot syndrome virus induces metabolic changes resembling the warburg effect in shrimp hemocytes in the early stage of infection. J Virol. 85:12919-12928.
18. Chen LL, Leu JH, Huang CJ, Chou CM, Chen SM, Wang CH, Lo CF, Kou GH. (2002) Identification of a nucleocapsid protein (VP35) gene of shrimp white spot syndrome virus and characterization of the motif important for targeting VP35 to the nuclei of transfected insect cells. Virology. 293:44-53.
19. Chiarugi A, Dolle C, Felici R, Ziegler M. (2012) The NAD metabolome-a key determinant of cancer cell biology. Nat Rev Cancer. 12:741-752.
20. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC. (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 452:230-233.
21. Ciriolo MR, Palamara AT, Incerpi S, Lafavia E, Bue MC, De Vito P, Garaci E, Rotilio G. (1997) Loss of GSH, oxidative stress, and decrease of intracellular pH as sequential steps in viral infection. J Biol Chem. 272:2700-2708.
22. Dionisio N, Garcia-Mediavilla MV, Sanchez-Campos S, Majano PL, Benedicto I, Rosado JA, Salido GM, Gonzalez-Gallego J. (2009) Hepatitis C virus NS5A and core proteins induce oxidative stress-mediated calcium signalling alterations in hepatocytes. J Hepatol. 50:872-882.
23. Chou HY, Huang CY, Wang CH, Chiang HC, Lo CF. (1995) Pathogenicity of a baculovirus infection causing white spot syndrome in cultured penaeid shrimp in Taiwan. Dis Aquat Organ. 23:165-173.
24. Dalton TP, Shertzer HG, Puga A. (1999) Regulation of gene expression by reactive oxygen. Annual Review of Pharmacology and Toxicology. 39:67-101.
25. DeForge LE, Preston AM, Takeuchi E, Kenney J, Boxer LA, Remick DG. (1993) Regulation of interleukin 8 gene expression by oxidant stress. J Biol Chem. 268: 25568-25576.
26. De Groot CJ, Ruuls SR, Theeuwes JW, Dijkstra CD, van der Valk P. (1997) Immunocytochemical characterization of the expression of inducible and constitutive isoforms of nitric oxide synthase in demyelinating multiple sclerosis lesions. J Neuropathol Exp Neurol. 56:10-20.
27. Delgado T, Carroll PA, Punjabi AS, Margineantu D, Hockenbery DM, Lagunoff M. (2010) Induction of the Warburg effect by Kaposi's sarcoma herpesvirus is required for the maintenance of latently infected endothelial cells. Proc Natl Acad Sci U S A. 107:10696-10701.
28. Diamond DL, Syder AJ, Jacobs JM, Sorensen CM, Walters KA, Proll SC, McDermott JE, Gritsenko MA, Zhang Q, Zhao R, Metz TO, Camp DG 2nd, Waters KM, Smith RD, Rice CM, Katze MG. (2010) Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics. PLoS Pathog. 6:e1000719.
29. Dreher D and Junod AF. (1995) Differential effects of superoxide, hydrogen peroxide, and hydroxyl radical on intracellular calcium in human endothelial cells. J Cell Physiol. 162:147-153.
30. Du J, Zhu H, Ren Q, Liu P, Chen J, Xiu Y, Yao W, Meng Q, Gu W, Wang W. (2012) Flow cytometry studies on the Macrobrachium rosenbergii hemocytes sub-populations and immune responses to novel pathogen spiroplasma MR-1008. Fish Shellfish Immunol. 33:795-800.
31. Dumont A, Hehner SP, Hofmann TG, Ueffing M, Droge W, Schmitz ML. (1999) Hydrogen peroxide-induced apoptosis is CD95-independent, requires the release of mitochondria-derived reactive oxygen species and the activation of NF-κB. Oncogene. 18:747-757.
32. Escobedo-Bonilla CM, Alday-Sanz V, Wille M, Sorgeloos P, Pensaert MB, Nauwynck HJ. (2008) A review on the morphology, molecular characterization, morphogenesis and pathogenesis of white spot syndrome virus. J Fish Dis. 31:1-18.
33. E X, Hwang S, Oh S, Lee JS, Jeong JH, Gwack Y, Kowalik TF, Sun R, Jung JU, Liang C. (2009) Viral Bcl-2-mediated evasion of autophagy aids chronic infection of gammaherpesvirus 68. PLoS Pathog. 5:e1000609.
34. Fiehn O. (2001) Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics. 2:155-168.
35. Filosa S, Fico A, Paglialunga F, Balestrieri M, Crooke A, Verde P, Abrescia P, Bautista JM, Martini G. (2003) Failure to increase glucose consumption through the pentose-phosphate pathway results in the death of glucose-6-phosphate dehydrogenase gene-deleted mouse embryonic stem cells subjected to oxidative stress. Biochem J. 370:935-943.
36. Flattery-O'Brien JA, Dawes IW. (1998) Hydrogen peroxide causes RAD9-dependent cell cycle arrest in G2 in Saccharomyces cerevisiae whereas menadione causes G1 arrest independent of RAD9 function. J Biol Chem. 273:8564-8571.
37. Flohe L, Brigelius R, Saliou C, Traber MG, Packer L. (1997) Redox regulation of NF-κB activation. Free Radical Biol Med. 22:1115-1126.
38. Gilbert D, Fuss H, Gu X, Orton R, Robinson S, Vyshemirsky V, Kurth MJ, Downes CS, Dubitzky W. (2006) Computational methodologies for modelling, analysis and simulation of signalling networks. Brief Bioinform. 7:339-353.
39. Gille G and Sigler K. (1995) Folia Microbiol. 40:131-152.
40. Gong G, Waris G, Tanveer R, Siddiqui A. (2001) Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-kappa B. Proc Natl Acad Sci U S A. 98:9599-9604.
41. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141-1148.
42. Gruning NM, Rinnerthaler M, Bluemlein K, Mulleder M, Wamelink MM, Lehrach H, Jakobs C, Breitenbach M, Ralser M. (2011) Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells. Cell Metab. 14:415-427.
43. Hansen JM. (2012) Thioredoxin redox status assessment during embryonic development: the redox Western. Methods Mol Biol. 889:305-313.
44. Hamanaka RB, Chandel NS. (2011) Cell biology. Warburg effect and redox balance. Science. 334:1219-1220.
45. Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ. (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell. 75:241-251.
46. Huang JY, Liu WJ, Wang HC, Lee DY, Leu JH, Wang HC, Tsai MH, Kang ST, Chen IT, Kou GH, Chang GD, Lo CF. (2012) Penaeus monodon thioredoxin restores the DNA binding activity of oxidized white spot syndrome virus IE1. Antioxid Redox Signal. 17:914-926.
47. Ishii N, Nakahigashi K, Baba T, Robert M, Soga T, Kanai A, Hirasawa T, Naba M, Hirai K, Hoque A, Ho PY, Kakazu Y, Sugawara K, Igarashi S, Harada S, Masuda T, Sugiyama N, Togashi T, Hasegawa M, Takai Y, Yugi K, Arakawa K, Iwata N, Toya Y, Nakayama Y, Nishioka T, Shimizu K, Mori H, Tomita M. (2007) Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science. 316:593-597.
48. Jamieson DJ. (1998) Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast. 14:1511-1527.
49. Jiravanichpaisal P, Soderhall K, Soderhall I. (2004) Effect of water temperature on the immune response and infectivity pattern of white spot syndrome virus (WSSV) in freshwater crayfish. Fish Shellfish Immunol. 17:265-275.
50. Jurica MS, Mesecar A, Heath PJ, Shi W, Nowak T, Stoddard BL. (1998) The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate. Structure. 6:195-210.
51. Kitano H. (2002) Computational systems biology. Nature. 420:206-210.
52. Kitano H. (2002) Systems biology: a brief overview. Science. 295:1662-1664.
53. Konishi H, Tanaka M, Takemura Y, Matsuzaki H, Ono Y, Kikkawa U, Nishizuka Y. (1997) Activation of protein kinase C by tyrosine phosphorylation in response to H2O2. Proc Natl Acad Sci USA 94:11233-11237.
54. Kovtun Y, Chiu WL, Tena G, Sheen J. (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940-2945.
55. Kuwano Y, Kawahara T, Yamamoto H, Teshima-Kondo S, Tominaga K, Masuda K, Kishi K, Morita K, Rokutan K. (2006) Interferon-γ activates transcription of NADPH oxidase 1 gene and up-regulates production of superoxide anion by human large intestinal epithelial cells. Am J Physiol Cell Physiol. 290:C433-443.
56. Leu JH, Yang F, Zhang X, Xu X, Kou GH, Lo CF. (2009) Whispovirus. Curr Top Microbiol Immunol. 328:197-227.
57. Liu KF, Yeh MS, Kou GH, Cheng W, Lo CF. (2010) Identification and cloning of a selenium-dependent glutathione peroxidase from tiger shrimp, Penaeus monodon, and its transcription following pathogen infection and related to the molt stages. Dev Comp Immunol. 34:935-944
58. Liu KF, Yeh MS, Kou GH, Cheng W, Lo CF. (2010) Identification and cloning of a selenium-dependent glutathione peroxidase from tiger shrimp, Penaeus monodon, and its transcription following pathogen infection and related to the molt stages. Dev Comp Immunol. 34:935-944
59. Liu Y, Wang WN, Wang AL, Wang JM, Sun RY. (2007) Effects of dietary vitamin E supplementation on antioxidant enzyme activities in Litopenaeus vannamei (Boone, 1931) exposed to acute salinity changes. Aquaculture. 265:351-358.
60. Lo CF, Kou GH. (1998) Virus-associated White Spot Syndrome of Shrimp in Taiwan. Fish Pathology. 33:365-371.
61. Loker ES, Adema CM, Zhang SM, Kepler TB. (2004) Invertebrate immune systems-not homogeneous, not simple, not well understood. Immunol Rev. 198:10-24.
62. Lopez-Guerrero JA, Alonso MA. (1997) Nitric oxide production induced by herpes simplex virus type 1 does not alter the course of the infection in human monocytic cells. J Gen Virol. 78:1977-1980.
63. Lopez-Collazo E, Mateo J, Miras-Portugal MT, Bosca L. (1997) Requirement of nitric oxide and calcium mobilization for the induction of apoptosis in adrenal vascular endothelial cells. FEBS Lett. 413:124-128.
64. Lo YY, Cruz TF. (1995) Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes. J Biol Chem. 270:11727-11730.
65. Mazurek S. (2011) Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol. 43:969-980.
66. Mazurek S, Zwerschke W, Jansen-Durr P, Eigenbrodt E. (2001) Effects of the human papilloma virus HPV-16 E7 oncoprotein on glycolysis and glutaminolysis: role of pyruvate kinase type M2 and the glycolytic-enzyme complex. Biochem J. 356:247-256.
67. Munger J, Bajad SU, Coller HA, Shenk T, Rabinowitz JD. (2006) Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathog. 2:e132.
68. Munger J, Bennett BD, Parikh A, Feng XJ, McArdle J, Rabitz HA, Shenk T, Rabinowitz JD. (2008) Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat Biotechnol. 26:1179-1186.
69. Munoz M, Cedeno R, Rodriguez J, Knaap WPWvander, Mialhe E, Bachere E. (2000) Measurement of reactive oxygen intermediate production in haemocytes of the penaeid shrimp, Penaeus vannamei. Aquaculture. 191:89-107.
70. Nathan CF, Root RK. (1977) Hydrogen peroxide release from mouse peritoneal macrophages: dependence on sequential activation and triggering. J Exp Med. 146:1648-1662.
71. Tilton C, Clippinger AJ, Maguire T, Alwine JC. (2011) Human cytomegalovirus induces multiple means to combat reactive oxygen species. J Virol. 85:12585-12593
72. Parrilla-Taylora DP, Zenteno-Savina T, Magallon-Barajasb FJ. (2013) Antioxidant enzyme activity in pacific whiteleg shrimp (Litopenaeus vannamei) in response to infection with white spot syndrome virus. Aquaculture. 380:41-46
73. Pace GW, Leaf CD. (1995) The role of oxidative stress in HIV disease. Free Radic Biol Med. 19:523-528.
74. Palamara AT, Perno CF, Ciriolo MR, Dini L, Balestra E, D'Agostini C, Di Francesco P, Favalli C, Rotilio G, Garaci E. (1995) Evidence for antiviral activity of glutathione: in vitro inhibition of herpes simplex virus type 1 replication. Antiviral Res. 27:237-253.
75. Pandolfi PP, Sonati F, Rivi R, Mason P, Grosveld F, Luzzatto L. (1995) Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress. EMBO J. 14:5209-5215.
76. Peterhans E. (1997) Reactive oxygen species and nitric oxide in viral diseases. Biol Trace Elem Res. 56:107-116.
77. Pfeiffer T, Schuster S, Bonhoeffer S. (2001) Cooperation and competition in the evolution of ATP-producing pathways. Science. 292: 504-507.
78. Piette J, Piret B, Bonizzi G, Schoonbroodt S, Merville MP, Legrand-Poels S, Bours B. (1997) Multiple redox regulation in NF-κB transcription factor activation. Biol Chem. 378:1237-1245.
79. Robey RB, Hay N. (2009) Is Akt the 'Warburg kinase'?-Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol. 19:25-31.
80. Pongsomboon S, Tang S, Boonda S, Aoki T, Hirono I, Tassanakajon A. (2011) A cDNA microarray approach for analyzing transcriptional changes in Penaeus monodon after infection by pathogens. Fish Shellfish Immunol. 30:439-446.
81. Roch P. (1999) Defense mechanisms and disease prevention in farmed marine invertebrates. Aquaculture. 172:125-145.
82. Rowe M, Peng-Pilon M, Huen DS, Hardy R, Croom-Carter D, Lundgren E, Rickinson AB. (1994) Upregulation of bcl-2 by the Epstein-Barr virus latent membrane protein LMP1: a B-cell-specific response that is delayed relative to NF-kappa B activation and to induction of cell surface markers. J Virol. 68:5602-5612.
83. Ruckenstuhl C, Buttner S, Carmona-Gutierrez D, Eisenberg T, Kroemer G, Sigrist SJ, Frohlich KU, Madeo F. (2009) The Warburg effect suppresses oxidative stress induced apoptosis in a yeast model for cancer. PLoS One. 4:e4592.
84. Sanchez-Paz A, Sonanez-Organis JG, Peregrino-Uriarte AB, Muhlia-Almazan A, Yepiz-Plascencia G. (2008) Response of the phosphofructokinase and pyruvate kinase genes expressed in the midgut gland of the Pacific white shrimp Litopenaeus vannamei during short-term starvation. J. Exp. Mar. Biol. Ecol. 362:79-89.
85. Sauer U, Heinemann M, Zamboni N. (2007) Genetics. Getting closer to the whole picture. Science. 316:550-551.
86. Schulenburg H, Boehnisch C, Michiels NK. (2004) How do invertebrates generate a highly specific innate immune response? Mol Immunol. 44:3338-3344.
87. Schwarz KB. (1996) Oxidative stress during viral infection: a review. Free Radic Biol Med. 21:641-649.
88. Semenza GL. (2000) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol. 88:1474-1480.
89. Shiloh MU, MacMicking JD, Nicholson S, Brause JE, Potter S, Marino M, Fang F, Dinauer M, Nathan C. (1999) Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity. 10:29-38.
90. Sies H. (1991) Oxidative stress: from basic research to clinical application. Am J Med. 91:31S-38S.
91. Sies H. (1997) Oxidative stress: oxidants and antioxidants. Experimental Physiology. 82, 291-295.
92. Soderhall K, Cerenius L. (1998) Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin Immunol. 10:23-28.
93. Song YL, Hsieh YT. (1994) Immunostimulation of tiger shrimp (Penaeus monodon) hemocytes for generation of microbicidal substances: analysis of reactive oxygen species. Dev Comp Immunol. 18:201-209.
94. Speir E. (2000) Cytomegalovirus gene regulation by reactive oxygen species. Agents in atherosclerosis. Ann N Y Acad Sci. 899:363-374.
95. Steinbeck MJ, Khan AU, Karnovsky MJ. (1993) Extracellular production of singlet oxygen by stimulated macrophages quantified using 9,10-diphenylanthracene and perylene in a polystyrene film. J Biol Chem. 268:15649-15654.
96. Su MA, Huang YT, Chen IT, Lee DY, Hsieh YC, Li CY, Ng TH, Liang SY, Lin SY, Huang SW, Chiang YA, Yu HT, Khoo KH, Chang GD, Lo CF, Wang HC. (2014) An invertebrate Warburg effect: a shrimp virus achieves successful replication by altering the host metabolome via the PI3K-Akt-mTOR pathway. PLoS Pathog. 10: e1004196.
97. Sun F, Dai C, Xie J, Hu X. (2012) Biochemical issues in estimation of cytosolic free NAD/ NADH ratio. PLoS One. 7: e34525.
98. Sun J, Wang A, Zhang T. (2010) Flow Cytometric Analysis of Defense Functions of Hemocytes from the Penaeid Shrimp, Penaeus vannamei. Journal of the World Aquaculture Society. 41:92-105.
99. Sun Q, Chen X, Ma J, Peng H, Wang F, Zha X, Wang Y, Jing Y, Yang H, Chen R, Chang L, Zhang Y, Goto J, Onda H, Chen T, Wang MR, Lu Y, You H, Kwiatkowski D, Zhang H. (2011) Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc Natl Acad Sci U S A. 108:4129-4134.
100. Sun R, Qiu L, Yue F, Wang L, Liu R, Zhou Z, Zhang H, Song L. (2013) Hemocytic immune responses triggered by CpG ODNs in shrimp Litopenaeus vannamei. Fish Shellfish Immunol. 34:38-45.
101. Thorpe GW, Fong CS, Alic N, Higgins VJ, Dawes IW. (2004) Proc Natl Acad Sci U S A. 101:6564-6569.
102. Tsai JM, Wang HC, Leu JH, Hsiao HH, Wang AHJ, Kou GH, Lo CF. (2004) Genomic and proteomic analysis of thirty-nine structural proteins of shrimp white spot syndrome virus. J Virol. 78:11360-11370.
103. Vander Heiden MG, Lunt SY, Dayton TL, Fiske BP, Israelsen WJ, Mattaini KR, Vokes NI, Stephanopoulos G, Cantley LC, Metallo CM, Locasale JW. (2011) Metabolic pathway alterations that support cell proliferation. Cold Spring Harb Symp Quant Biol. 76:325-334.
104. Vander Heiden MG, Cantley LC, Thompson CB. (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 324:1029-1033.
105. van Hulten MC, Witteveldt J, Peters S, Kloosterboer N, Tarchini R, Fiers M, Sandbrink H, Lankhorst RK, Vlak JM. (2001) The white spot syndrome virus DNA genome sequence. Virology. 286:7-22.
106. Wang CH, Lo CF, Leu JH, Chou CM, Yeh PY, Chou HY, Tung MC, Chang CF, Su MS, Kou GH. (1995) Purification and genomic analysis of baculovirus associated with white spot syndrome (WSBV) of Penaeus monodon. Dis Aquat Organ. 23:239-242.
107. Wang HC, Wang HC, Ko TP, Lee YM, Leu JH, Ho CH, Huang WP, Lo CF, Wang AH. (2008) White spot syndrome virus protein ICP11: A histone-binding DNA mimic that disrupts nucleosome assembly. Proc Natl Acad Sci U S A. 105:20758-20763.
108. Wang HC, Wang HC, Leu JH, Kou GH, Wang AH, Lo CF. (2007) Protein expression profiling of the shrimp cellular response to white spot syndrome virus infection. Dev Comp Immunol. 31:672-686.
109. Wang KC, Kondo H, Hirono I, Aoki T. (2010) The Marsupenaeus japonicus voltage-dependent anion channel (MjVDAC) protein is involved in white spot syndrome virus (WSSV) pathogenesis. Fish Shellfish Immunol. 29:94-103.
110. Wang WN, Zhou J, Wang P, Tian TT, Zheng Y, Liu Y, Mai WJ, Wang AL. (2009) Oxidative stress, DNA damage and antioxidant enzyme gene expression in the Pacific white shrimp, Litopenaeus vannamei when exposed to acute pH stress. Comp Biochem Physiol C Toxicol Pharmacol. 150:428-435.
111. Wanke V, Accorsi K, Porro D, Esposito F, Russo T, Vanoni M. (1999) In budding yeast, reactive oxygen species induce both RAS-dependent and RAS-independent cell cycle-specific arrest. Mol Microbiol. 32:753-764.
112. White AA, Crawford KM, Patt CS, Lad PJ. (1976) Activation of soluble guanylate cyclase from rat lung by incubation or by hydrogen peroxide. J Biol Chem. 251:7304-7312.
113. White E, Sabbatini P, Debbas M, Wold WS, Kusher DI, Gooding LR. (1992) The 19-kilodalton adenovirus E1B transforming protein inhibits programmed cell death and prevents cytolysis by tumor necrosis factor alpha. Mol Cell Biol. 12:2570-2580.
114. Williams MS, Kwon J. (2004) T cell receptor stimulation, reactive oxygen species, cell signaling. Free Radical Biol Med. 37:1144-1151.
115. Wolin MS, Burke-Wolin TM, Mohazzab-H KM. (1999) Roles of NAD(P)H oxidases and reactive oxygen species in vascular oxygen sensing mechanisms. Respir Physiol. 115:229-238.
116. Wu X, Zhou Y, Zhang K, Liu Q, Guo D. (2008) Isoform-specific interaction of pyruvate kinase with hepatitis C virus NS5B. FEBS Lett. 582:2155-2160.
117. Yang F, He J, Lin X, Li Q, Pan D, Zhang X, Xu X. (2001) Complete genome sequence of the shrimp white spot bacilliform virus. J Virol. 75:11811-11820.
118. Yang WC, Sedlak M, Regnier FE, Mosier N, Ho N, Adamec J. (2008) Simultaneous quantification of metabolites involved in central carbon and energy metabolism using reversed-phase liquid chromatography-mass spectrometry and in vitro 13C labeling. Anal Chem. 80:9508-9516.
119. Yeung KY and Ruzzo WL. (2001) Principal component analysis for clustering gene expression data. Bioinformatics. 17:763-774.
120. Ying W. (2008) NAD+/ NADH and NADP+/ NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal. 10:179-206.
121. Zenteno-Savin T, Saldierna R, Ahuejote-Sandoval M. (2006) Superoxide radical production in response to environmental hypoxia in cultured shrimp. Comp Biochem Physiol C Toxicol Pharmacol. 142:301-308.
122. Zhang W, Li F, Nie L. (2010) Integrating multiple 'omics' analysis for microbial biology: application and methodologies. Microbiology. 156:287-301.
123. Zhang Q, Piston DW, Goodman RH. (2002) Regulation of corepressor function by nuclear NADH. Science. 295:1895-1897.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54932-
dc.description.abstract本研究我們探討蝦白點症病毒如何改變宿主細胞的代謝反應,維持細胞內氧化還原狀態的平衡,以中和於感染初期免疫細胞於病毒感染初期所誘發的活性氧物質。在白點症病毒感染初期30分鐘至2小時內,蝦血球細胞內活性氧物質的含量大量累積,造成細胞內的氧化傷害。本實驗分析氧化壓力指標 NADPH/NADP+ 及 GSH/GSSG 之比值以檢視細胞內之氧化還原狀態,結果顯示蝦類細胞中氧化還原指標於感染初期2小時內血球細胞處於不平衡的氧化狀態。隨著感染時序往後,細胞內強還原劑如 NADPH 及 GSH 之相對濃度增加進而平衡細胞內的氧化壓力。我們亦發現蝦血清中乳酸濃度累積以及NADH/NAD+ 比值於病毒DNA複製時期持續上升,顯示白點症病毒感染造成瓦氏效應的發生,此舉有助於中和感染初期細胞內大量的活性氧物質。藉由施打PI3K-Akt-mTOR訊息路徑抑制劑證明,白點症病毒所引起的瓦氏效應與細胞內氧化還原狀態平衡的關聯性。代謝體學分析證明了白點症病毒啟動了有氧醣解的代謝改變,刺激反應進行,細胞大量且快速的消耗醣類來源,然而磷酸烯醇丙酮酸 (PEP) 於感染細胞中產量逐漸累積,且下游產物丙酮酸 (pyruvate) 產量減少,中間代謝酵素丙酮酸激酶 (pyruvate kinase) 的催化活性受到抑制,故導致磷酸烯醇丙酮酸的累積,及上游產物的推積,致使代謝路徑進而轉向五碳醣磷酸途徑,在瓦氏效應下,細胞於短時間內可獲得大量的能量 (NADH) 以及還原物質來源 (NADPH)。抗氧化物質NADPH之合成上升,以消弭免疫細胞產生之活性氧化物。因此病毒感染細胞內氧化還原狀態趨向平衡,有助於於白點症病毒基因之功能表現與複製行為。zh_TW
dc.description.abstractHere we investigate how white spot syndrome virus (WSSV) alters its host’s metabolism to restore host redox balance and counter the immediate increase in ROS production that occurs after WSSV infection. Intracellular ROS levels were significantly increased in hemocytes collected from WSSV-infected shrimp within the first 30 min ~ 2 h post infection. Measurement of the NADPH/NADP+ and GSH/GSSG ratios revealed that after a significant initial imbalance toward the oxidized forms at 2 hpi, redox equilibrium was subsequently restored. Together with high levels of lactic acid production and an elevated NADH/NAD+ ratio, these changes suggest that WSSV induces aerobic glycolysis to counteract the high levels of ROS production that were triggered in response to viral infection. Suppression of the virus-induced Warburg effect by chemical inhibitor of PI3K-Akt-mTOR singling pathway cause the sustained production in intracellular ROS. A metabolomics analysis confirmed that glycolysis activity in shrimp was up-regulated after WSSV infection. However, pyruvate kinase activity was inhibited by WSSV, and accumulation of upstream metabolites caused glucose metabolism to be redirected into the pentose phosphate pathway and the serine and glycine biosynthesis pathway. Here we show that the initially high levels of ROS trigger by WSSV is combated by PI3k-Akt-mTOR regulated Warburg effect. Changes induced by WSSV infection cause re-routing of the host’s glycolytic metabolism into subsidiary pathways and increases the availability of raw materials that are essential for WSSV gene expression and replication.en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:41:55Z (GMT). No. of bitstreams: 1
ntu-104-D99b41004-1.pdf: 6327267 bytes, checksum: 2a79d5126115647a5fadf828cb547011 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Figure abstract v
目錄 vi
圖目錄 vii
表目錄 viii
第一章、文獻回顧 1
第二章、前言 8
第三章、實驗材料與方法 12
第四章、結果 19
第五章、討論 27
第六章、圖表 34
參考文獻 50
附錄 64
dc.language.isozh-TW
dc.subject代謝體學zh_TW
dc.subject氧化還原平衡zh_TW
dc.subject白點症病毒zh_TW
dc.subject活性氧物質zh_TW
dc.subject瓦氏效應zh_TW
dc.subject系統生物學zh_TW
dc.subjectmetabolomics.en
dc.subjectROSen
dc.subjectWSSVen
dc.subjectPI3K-Akt-mTORen
dc.subjectRedox balanceen
dc.subjectWarburg effecten
dc.subjectSystems biologyen
dc.title白點症病毒藉由PI3K-Akt-mTOR訊息路徑調控的瓦氏效應以平衡宿主細胞之氧化壓力zh_TW
dc.titleWhite spot syndrome virus infection promotes the PI3K-Akt-mTOR pathway-regulated Warburg effect to reduce oxidative stress in Penaeus vannameien
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree博士
dc.contributor.coadvisor郭光雄
dc.contributor.oralexamcommittee張震東,林詩舜,王涵青
dc.subject.keyword活性氧物質,白點症病毒,氧化還原平衡,瓦氏效應,系統生物學,代謝體學,zh_TW
dc.subject.keywordROS,WSSV,PI3K-Akt-mTOR,Redox balance,Warburg effect,Systems biology,metabolomics.,en
dc.relation.page66
dc.rights.note有償授權
dc.date.accepted2015-02-12
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
6.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved