Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54923
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor杜永光(Yong-Kwang Tu),謝松蒼(Sung-Tsang Hsieh)
dc.contributor.authorKuo-Chuan Wangen
dc.contributor.author王國川zh_TW
dc.date.accessioned2021-06-16T03:41:40Z-
dc.date.available2016-03-12
dc.date.copyright2015-03-12
dc.date.issued2015
dc.date.submitted2015-02-12
dc.identifier.citationAkai, K., S. Uchigasaki, et al. (1987). 'Normal pressure hydrocephalus. Neuropathological study.' Acta Pathol Jpn 37(1): 97-110.
Al-Tamimi, Y. Z., D. Bhargava, et al. (2012). 'Lumbar drainage of cerebrospinal fluid after aneurysmal subarachnoid hemorrhage: a prospective, randomized, controlled trial (LUMAS).' Stroke 43(3): 677-682.
Al-Tamimi, Y. Z., N. M. Orsi, et al. (2010). 'A review of delayed ischemic neurologic deficit following aneurysmal subarachnoid hemorrhage: historical overview, current treatment, and pathophysiology.' World Neurosurg 73(6): 654-667.
Alksne, J. F. and P. J. Branson (1980). 'Pathogenesis of cerebral vasospasm.' Neurol Res 2(3-4): 273-282.
Alksne, J. F. and E. T. Lovings (1972). 'The role of the arachnoid villus in the removal of red blood cells from the subarachnoid space. An electron microscope study in the dog.' J Neurosurg 36(2): 192-200.
Allcock, J. M. and C. G. Drake (1965). 'Ruptured Intracranial Aneurysms--the Role of Arterial Spasm.' J Neurosurg 22: 21-29.
Aoyama, Y., Y. Kinoshita, et al. (2006). 'Neuronal damage in hydrocephalus and its restoration by shunt insertion in experimental hydrocephalus: a study involving the neurofilament-immunostaining method.' J Neurosurg 104(5 Suppl): 332-339.
Asano, T. (1999). 'Oxyhemoglobin as the principal cause of cerebral vasospasm: a holistic view of its actions.' Crit Rev Neurosurg 9(5): 303-318.
Balla, G., H. S. Jacob, et al. (1992). 'Ferritin: a cytoprotective antioxidant strategem of endothelium.' J Biol Chem 267(25): 18148-18153.
Bederson, J. B., E. S. Connolly, Jr., et al. (2009). 'Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association.' Stroke 40(3): 994-1025.
Berlin, N. I. and P. D. Berk (1981). 'Quantitative aspects of bilirubin metabolism for hematologists.' Blood 57(6): 983-999.
Berthet, C., H. Lei, et al. (2009). 'Neuroprotective role of lactate after cerebral ischemia.' J Cereb Blood Flow Metab 29(11): 1780-1789.
Black, P. M. (1986). 'Hydrocephalus and vasospasm after subarachnoid hemorrhage from ruptured intracranial aneurysms.' Neurosurgery 18(1): 12-16.
Brisman, J. L., J. K. Song, et al. (2006). 'Cerebral aneurysms.' N Engl J Med 355(9): 928-939.
Cameron, P. D., J. M. Boyce, et al. (1993). 'Cerebrospinal fluid lactate in meningitis and meningococcaemia.' J Infect 26(3): 245-252.
Carr, K. R., S. L. Zuckerman, et al. (2013). 'Inflammation, Cerebral Vasospasm, and Evolving Theories of Delayed Cerebral Ischemia.' Neurol Res Int 2013: 506584.
Carrera, E., J. M. Schmidt, et al. (2009). 'Transcranial Doppler for predicting delayed cerebral ischemia after subarachnoid hemorrhage.' Neurosurgery 65(2): 316-323; discussion 323-314.
Cengiz, S. L., A. Ak, et al. (2007). 'Lactate contents from cerebrospinal fluid in experimental subarachnoid hemorrhage, well correlate with vasospasm: ongoing and neurologic status.' J Neurosurg Anesthesiol 19(3): 166-170.
Chai, W. N., X. C. Sun, et al. (2011). 'Clinical study of changes of cerebral microcirculation in cerebral vasospasm after SAH.' Acta Neurochir Suppl 110(Pt 1): 225-228.
Chiquet-Ehrismann, R. and M. Chiquet (2003). 'Tenascins: regulation and putative functions during pathological stress.' J Pathol 200(4): 488-499.
Chitaley, K. and R. C. Webb (2002). 'Nitric oxide induces dilation of rat aorta via inhibition of rho-kinase signaling.' Hypertension 39(2 Pt 2): 438-442.
Chow, M., A. S. Dumont, et al. (2002). 'Endothelin receptor antagonists and cerebral vasospasm: an update.' Neurosurgery 51(6): 1333-1341; discussion 1342.
Clark, J. F., M. Reilly, et al. (2002). 'Oxidation of bilirubin produces compounds that cause prolonged vasospasm of rat cerebral vessels: a contributor to subarachnoid hemorrhage-induced vasospasm.' J Cereb Blood Flow Metab 22(4): 472-478.
Clark, J. F. and F. R. Sharp (2006). 'Bilirubin oxidation products (BOXes) and their role in cerebral vasospasm after subarachnoid hemorrhage.' J Cereb Blood Flow Metab 26(10): 1223-1233.
Clyde, B. L., D. K. Resnick, et al. (1996). 'The relationship of blood velocity as measured by transcranial doppler ultrasonography to cerebral blood flow as determined by stable xenon computed tomographic studies after aneurysmal subarachnoid hemorrhage.' Neurosurgery 38(5): 896-904; discussion 904-895.
Cousar, J. L., Y. Lai, et al. (2006). 'Heme oxygenase 1 in cerebrospinal fluid from infants and children after severe traumatic brain injury.' Dev Neurosci 28(4-5): 342-347.
Crowley, R. W., R. Medel, et al. (2008). 'New insights into the causes and therapy of cerebral vasospasm following subarachnoid hemorrhage.' Drug Discov Today 13(5-6): 254-260.
Davalos, A., J. Castillo, et al. (2000). 'Body iron stores and early neurologic deterioration in acute cerebral infarction.' Neurology 54(8): 1568-1574.
De Backer, D. and M. J. Dubois (2001). 'Assessment of the microcirculatory flow in patients in the intensive care unit.' Curr Opin Crit Care 7(3): 200-203.
Dehdashti, A. R., B. Rilliet, et al. (2004). 'Shunt-dependent hydrocephalus after rupture of intracranial aneurysms: a prospective study of the influence of treatment modality.' J Neurosurg 101(3): 402-407.
Del Bigio, M. R. (2000). 'Calcium-mediated proteolytic damage in white matter of hydrocephalic rats?' J Neuropathol Exp Neurol 59(11): 946-954.
Del Bigio, M. R. (2004). 'Cellular damage and prevention in childhood hydrocephalus.' Brain Pathol 14(3): 317-324.
Del Bigio, M. R. and J. E. Bruni (1987). 'Cerebral water content in silicone oil-induced hydrocephalic rabbits.' Pediatr Neurosci 13(2): 72-77.
Del Bigio, M. R. and T. L. Enno (2008). 'Effect of hydrocephalus on rat brain extracellular compartment.' Cerebrospinal Fluid Res 5: 12.
Dietrich, H. H. and R. G. Dacey, Jr. (2000). 'Molecular keys to the problems of cerebral vasospasm.' Neurosurgery 46(3): 517-530.
Dohi, M., T. Hasegawa, et al. (2000). 'Hepatocyte growth factor attenuates collagen accumulation in a murine model of pulmonary fibrosis.' Am J Respir Crit Care Med 162(6): 2302-2307.
Dorai, Z., L. S. Hynan, et al. (2003). 'Factors related to hydrocephalus after aneurysmal subarachnoid hemorrhage.' Neurosurgery 52(4): 763-769; discussion 769-771.
Dreier, J. P., N. Ebert, et al. (2000). 'Products of hemolysis in the subarachnoid space inducing spreading ischemia in the cortex and focal necrosis in rats: a model for delayed ischemic neurological deficits after subarachnoid hemorrhage?' J Neurosurg 93(4): 658-666.
Dreier, J. P., K. Korner, et al. (1998). 'Nitric oxide scavenging by hemoglobin or nitric oxide synthase inhibition by N-nitro-L-arginine induces cortical spreading ischemia when K+ is increased in the subarachnoid space.' J Cereb Blood Flow Metab 18(9): 978-990.
Dreier, J. P., J. Woitzik, et al. (2006). 'Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations.' Brain 129(Pt 12): 3224-3237.
Ecker, A. and P. A. Riemenschneider (1951). 'Arteriographic demonstration of spasm of the intracranial arteries, with special reference to saccular arterial aneurysms.' J Neurosurg 8(6): 660-667.
Egawa, T., K. Mishima, et al. (2002). 'Impairment of spatial memory in kaolin-induced hydrocephalic rats is associated with changes in the hippocampal cholinergic and noradrenergic contents.' Behav Brain Res 129(1-2): 31-39.
Everse, J. and N. Hsia (1997). 'The toxicities of native and modified hemoglobins.' Free Radic Biol Med 22(6): 1075-1099.
Feigin, V. L., G. J. Rinkel, et al. (2005). 'Risk factors for subarachnoid hemorrhage: an updated systematic review of epidemiological studies.' Stroke 36(12): 2773-2780.
Fergusen, S. and R. L. Macdonald (2007). 'Predictors of cerebral infarction in patients with aneurysmal subarachnoid hemorrhage.' Neurosurgery 60(4): 658-667; discussion 667.
Fisher, C. M., J. P. Kistler, et al. (1980). 'Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning.' Neurosurgery 6(1): 1-9.
Fisher, C. M., G. H. Roberson, et al. (1977). 'Cerebral vasospasm with ruptured saccular aneurysm--the clinical manifestations.' Neurosurgery 1(3): 245-248.
Flood, C., J. Akinwunmi, et al. (2001). 'Transforming growth factor-beta1 in the cerebrospinal fluid of patients with subarachnoid hemorrhage: titers derived from exogenous and endogenous sources.' J Cereb Blood Flow Metab 21(2): 157-162.
Fox, J. L. (1979). 'Intracranial vasospasm: a study with iron compounds.' Surg Neurol 11(5): 363-368.
Friedrich, B., F. Muller, et al. (2012). 'Experimental subarachnoid hemorrhage causes early and long-lasting microarterial constriction and microthrombosis: an in-vivo microscopy study.' J Cereb Blood Flow Metab 32(3): 447-455.
Frijns, C. J., K. M. Kasius, et al. (2006). 'Endothelial cell activation markers and delayed cerebral ischaemia in patients with subarachnoid haemorrhage.' J Neurol Neurosurg Psychiatry 77(7): 863-867.
Fujimori, A., M. Yanagisawa, et al. (1990). 'Endothelin in plasma and cerebrospinal fluid of patients with subarachnoid haemorrhage.' Lancet 336(8715): 633.
Gaetani, P., A. Pasqualin, et al. (1998). 'Oxidative stress in the human brain after subarachnoid hemorrhage.' J Neurosurg 89(5): 748-754.
Gallia, G. L. and R. J. Tamargo (2006). 'Leukocyte-endothelial cell interactions in chronic vasospasm after subarachnoid hemorrhage.' Neurol Res 28(7): 750-758.
Geraud, G., M. Tremoulet, et al. (1984). 'The prognostic value of noninvasive CBF measurement in subarachnoid hemorrhage.' Stroke 15(2): 301-305.
Gieteling, E. W. and G. J. Rinkel (2003). 'Characteristics of intracranial aneurysms and subarachnoid haemorrhage in patients with polycystic kidney disease.' J Neurol 250(4): 418-423.
Graham, D. I., P. Macpherson, et al. (1983). 'Correlation between angiographic vasospasm, hematoma, and ischemic brain damage following SAH.' J Neurosurg 59(2): 223-230.
Gruber, A., A. Reinprecht, et al. (1999). 'Chronic shunt-dependent hydrocephalus after early surgical and early endovascular treatment of ruptured intracranial aneurysms.' Neurosurgery 44(3): 503-509; discussion 509-512.
Hallenbeck, J. M. and A. J. Dutka (1990). 'Background review and current concepts of reperfusion injury.' Arch Neurol 47(11): 1245-1254.
Hansen-Schwartz, J., P. Vajkoczy, et al. (2007). 'Cerebral vasospasm: looking beyond vasoconstriction.' Trends Pharmacol Sci 28(6): 252-256.
Harders, A. G. and J. M. Gilsbach (1987). 'Time course of blood velocity changes related to vasospasm in the circle of Willis measured by transcranial Doppler ultrasound.' J Neurosurg 66(5): 718-728.
Hasan, D. and H. L. Tanghe (1992). 'Distribution of cisternal blood in patients with acute hydrocephalus after subarachnoid hemorrhage.' Ann Neurol 31(4): 374-378.
Hasan, D., M. Vermeulen, et al. (1989). 'Management problems in acute hydrocephalus after subarachnoid hemorrhage.' Stroke 20(6): 747-753.
Hashimoto, T., H. Meng, et al. (2006). 'Intracranial aneurysms: links among inflammation, hemodynamics and vascular remodeling.' Neurol Res 28(4): 372-380.
Hayashi, N., D. W. Leifer, et al. (2000). 'Chronologic changes of cerebral ventricular size in a transgenic model of hydrocephalus.' Pediatr Neurosurg 33(4): 182-187.
Hirashima, Y., S. Nakamura, et al. (1997). 'Cerebrospinal fluid tissue factor and thrombin-antithrombin III complex as indicators of tissue injury after subarachnoid hemorrhage.' Stroke 28(9): 1666-1670.
Horky, L. L., R. M. Pluta, et al. (1998). 'Role of ferrous iron chelator 2,2'-dipyridyl in preventing delayed vasospasm in a primate model of subarachnoid hemorrhage.' J Neurosurg 88(2): 298-303.
Hutchesson, A., M. A. Preece, et al. (1997). 'Measurement of lactate in cerebrospinal fluid in investigation of inherited metabolic disease.' Clin Chem 43(1): 158-161.
Ikeda, K., H. Asakura, et al. (1997). 'Coagulative and fibrinolytic activation in cerebrospinal fluid and plasma after subarachnoid hemorrhage.' Neurosurgery 41(2): 344-349; discussion 349-350.
Jakobsen, M., J. Overgaard, et al. (1990). 'Relation between angiographic cerebral vasospasm and regional CBF in patients with SAH.' Acta Neurol Scand 82(2): 109-115.
Jennett, B. and M. Bond (1975). 'Assessment of outcome after severe brain damage.' Lancet 1(7905): 480-484.
Jung, C. S., B. A. Iuliano, et al. (2004). 'Association between cerebrospinal fluid levels of asymmetric dimethyl-L-arginine, an endogenous inhibitor of endothelial nitric oxide synthase, and cerebral vasospasm in a primate model of subarachnoid hemorrhage.' J Neurosurg 101(5): 836-842.
Kaneda, K., M. Fujita, et al. (2010). 'Prognostic value of biochemical markers of brain damage and oxidative stress in post-surgical aneurysmal subarachnoid hemorrhage patients.' Brain Res Bull 81(1): 173-177.
Kassell, N. F., D. J. Boarini, et al. (1981). 'Overall management of ruptured aneurysm: comparison of early and late operation.' Neurosurgery 9(2): 120-128.
Kassell, N. F., J. C. Torner, et al. (1990). 'The International Cooperative Study on the Timing of Aneurysm Surgery. Part 1: Overall management results.' J Neurosurg 73(1): 18-36.
Kassell, N. F., J. C. Torner, et al. (1990). 'The International Cooperative Study on the Timing of Aneurysm Surgery. Part 2: Surgical results.' J Neurosurg 73(1): 37-47.
Kastner, S., M. F. Oertel, et al. (2005). 'Endothelin-1 in plasma, cisternal CSF and microdialysate following aneurysmal SAH.' Acta Neurochir (Wien) 147(12): 1271-1279; discussion 1279.
Kasuya, H., T. Shimizu, et al. (1998). 'Thrombin activity in CSF after SAH is correlated with the degree of SAH the persistence of subarachnoid clot and the development of vasospasm.' Acta Neurochir (Wien) 140(6): 579-584.
Kaynar, M. Y., T. Tanriverdi, et al. (2005). 'Cerebrospinal fluid superoxide dismutase and serum malondialdehyde levels in patients with aneurysmal subarachnoid hemorrhage: preliminary results.' Neurol Res 27(5): 562-567.
Keir, G., N. Tasdemir, et al. (1993). 'Cerebrospinal fluid ferritin in brain necrosis: evidence for local synthesis.' Clin Chim Acta 216(1-2): 153-166.
Kessler, I. M., Y. G. Pacheco, et al. (2005). 'Endothelin-1 levels in plasma and cerebrospinal fluid of patients with cerebral vasospasm after aneurysmal subarachnoid hemorrhage.' Surg Neurol 64 Suppl 1: S1:2-5; discussion S1:5.
Kikuchi, G. and T. Yoshida (1983). 'Function and induction of the microsomal heme oxygenase.' Mol Cell Biochem 53-54(1-2): 163-183.
Kivisaari, R. P., O. Salonen, et al. (2001). 'MR imaging after aneurysmal subarachnoid hemorrhage and surgery: a long-term follow-up study.' AJNR Am J Neuroradiol 22(6): 1143-1148.
Kizu, O., K. Yamada, et al. (2001). 'Proton chemical shift imaging in normal pressure hydrocephalus.' AJNR Am J Neuroradiol 22(9): 1659-1664.
Klein, M. B., N. Yalamanchi, et al. (2002). 'Flexor tendon healing in vitro: effects of TGF-beta on tendon cell collagen production.' J Hand Surg Am 27(4): 615-620.
Klimo, P., Jr., J. R. Kestle, et al. (2004). 'Marked reduction of cerebral vasospasm with lumbar drainage of cerebrospinal fluid after subarachnoid hemorrhage.' J Neurosurg 100(2): 215-224.
Klinge, P. M., A. Samii, et al. (2003). 'Cerebral hypoperfusion and delayed hippocampal response after induction of adult kaolin hydrocephalus.' Stroke 34(1): 193-199.
Komuro, T., M. K. Borsody, et al. (2001). 'The vasorelaxation of cerebral arteries by carbon monoxide.' Exp Biol Med (Maywood) 226(9): 860-865.
Kondziella, D., W. Ludemann, et al. (2002). 'Alterations in brain metabolism, CNS morphology and CSF dynamics in adult rats with kaolin-induced hydrocephalus.' Brain Res 927(1): 35-41.
Kondziella, D., H. Qu, et al. (2003). 'Astrocyte metabolism is disturbed in the early development of experimental hydrocephalus.' J Neurochem 85(1): 274-281.
Kondziella, D., U. Sonnewald, et al. (2008). 'Brain metabolism in adult chronic hydrocephalus.' J Neurochem 106(4): 1515-1524.
Kranc, K. R., G. J. Pyne, et al. (2000). 'Oxidative degradation of bilirubin produces vasoactive compounds.' Eur J Biochem 267(24): 7094-7101.
Lee, J. Y., R. F. Keep, et al. (2010). 'Hemoglobin and iron handling in brain after subarachnoid hemorrhage and the effect of deferoxamine on early brain injury.' J Cereb Blood Flow Metab 30(11): 1793-1803.
Linn, F. H., G. J. Rinkel, et al. (1996). 'Incidence of subarachnoid hemorrhage: role of region, year, and rate of computed tomography: a meta-analysis.' Stroke 27(4): 625-629.
Lysakowski, C., B. Walder, et al. (2001). 'Transcranial Doppler versus angiography in patients with vasospasm due to a ruptured cerebral aneurysm: A systematic review.' Stroke 32(10): 2292-2298.
Macdonald, R. L., N. F. Kassell, et al. (2008). 'Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (CONSCIOUS-1): randomized, double-blind, placebo-controlled phase 2 dose-finding trial.' Stroke 39(11): 3015-3021.
Macdonald, R. L. and B. K. Weir (1991). 'A review of hemoglobin and the pathogenesis of cerebral vasospasm.' Stroke 22(8): 971-982.
Mascia, L., L. Fedorko, et al. (2003). 'The accuracy of transcranial Doppler to detect vasospasm in patients with aneurysmal subarachnoid hemorrhage.' Intensive Care Med 29(7): 1088-1094.
Mason, G. F., K. F. Petersen, et al. (2006). 'Increased brain monocarboxylic acid transport and utilization in type 1 diabetes.' Diabetes 55(4): 929-934.
Massicotte, E. M. and M. R. Del Bigio (1999). 'Human arachnoid villi response to subarachnoid hemorrhage: possible relationship to chronic hydrocephalus.' J Neurosurg 91(1): 80-84.
Matsuda, Y., K. Matsumoto, et al. (1995). 'Hepatocyte growth factor suppresses the onset of liver cirrhosis and abrogates lethal hepatic dysfunction in rats.' J Biochem 118(3): 643-649.
Mori, K., K. Nakajima, et al. (1993). 'Long-term monitoring of CSF lactate levels and lactate/pyruvate ratios following subarachnoid haemorrhage.' Acta Neurochir (Wien) 125(1-4): 20-26.
Nagayama, T., M. Nagayama, et al. (2004). 'Post-ischemic delayed expression of hepatocyte growth factor and c-Met in mouse brain following focal cerebral ischemia.' Brain Res 999(2): 155-166.
Nagel, A., D. Graetz, et al. (2009). 'Relevance of intracranial hypertension for cerebral metabolism in aneurysmal subarachnoid hemorrhage. Clinical article.' J Neurosurg 111(1): 94-101.
Nam, K. H., I. S. Hamm, et al. (2010). 'Risk of Shunt Dependent Hydrocephalus after Treatment of Ruptured Intracranial Aneurysms : Surgical Clipping versus Endovascular Coiling According to Fisher Grading System.' J Korean Neurosurg Soc 48(4): 313-318.
Naraoka, M., N. Matsuda, et al. (2014). 'The role of arterioles and the microcirculation in the development of vasospasm after aneurysmal SAH.' Biomed Res Int 2014: 253746.
Ng, W. H., S. Moochhala, et al. (2001). 'Nitric oxide and subarachnoid hemorrhage: elevated level in cerebrospinal fluid and their implications.' Neurosurgery 49(3): 622-626; discussion 626-627.
Nieuwkamp, D. J., L. E. Setz, et al. (2009). 'Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis.' Lancet Neurol 8(7): 635-642.
Niskanen, M. M., J. A. Hernesniemi, et al. (1993). 'One-year outcome in early aneurysm surgery: prediction of outcome.' Acta Neurochir (Wien) 123(1-2): 25-32.
Nitta, J. and T. Tada (1998). 'Ultramicroscopic structures of the leptomeninx of mice with communicating hydrocephalus induced by human recombinant transforming growth factor-beta 1.' Neurol Med Chir (Tokyo) 38(12): 819-824; discussion 824-815.
Nonaka, H., M. Akima, et al. (2003). 'Microvasculature of the human cerebral meninges.' Neuropathology 23(2): 129-135.
O'Kelly, C. J., A. V. Kulkarni, et al. (2009). 'Shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage: incidence, predictors, and revision rates. Clinical article.' J Neurosurg 111(5): 1029-1035.
Ohkuma, H., K. Itoh, et al. (1997). 'Morphological changes of intraparenchymal arterioles after experimental subarachnoid hemorrhage in dogs.' Neurosurgery 41(1): 230-235; discussion 235-236.
Ohkuma, H., H. Manabe, et al. (2000). 'Impact of cerebral microcirculatory changes on cerebral blood flow during cerebral vasospasm after aneurysmal subarachnoid hemorrhage.' Stroke 31(7): 1621-1627.
Ohkuma, H., K. Ogane, et al. (1993). 'Impairment of anti-platelet-aggregating activity of endothelial cells after experimental subarachnoid hemorrhage.' Stroke 24(10): 1541-1545; discussion 1545-1546.
Ohkuma, H., S. Suzuki, et al. (1991). 'Role of platelet function in symptomatic cerebral vasospasm following aneurysmal subarachnoid hemorrhage.' Stroke 22(7): 854-859.
Ohkuma, H., H. Tsurutani, et al. (2001). 'Incidence and significance of early aneurysmal rebleeding before neurosurgical or neurological management.' Stroke 32(5): 1176-1180.
Okada, Y., T. Shima, et al. (1994). '[Evaluation of angiographic delayed vasospasm due to ruptured aneurysm in comparison with cerebral circulation time measured by IA-DSA].' No Shinkei Geka 22(5): 439-445.
Olson, D. M., M. Zomorodi, et al. (2013). 'Continuous cerebral spinal fluid drainage associated with complications in patients admitted with subarachnoid hemorrhage.' J Neurosurg 119(4): 974-980.
Ono, S., Z. D. Zhang, et al. (2000). 'Heme oxygenase-1 and ferritin are increased in cerebral arteries after subarachnoid hemorrhage in monkeys.' J Cereb Blood Flow Metab 20(7): 1066-1076.
Oreskovic, D. and M. Klarica (2011). 'Development of hydrocephalus and classical hypothesis of cerebrospinal fluid hydrodynamics: facts and illusions.' Prog Neurobiol 94(3): 238-258.
Otterbein, L. E. and A. M. Choi (2000). 'Heme oxygenase: colors of defense against cellular stress.' Am J Physiol Lung Cell Mol Physiol 279(6): L1029-1037.
Oygur, N., O. Sonmez, et al. (1998). 'Predictive value of plasma and cerebrospinal fluid tumour necrosis factor-alpha and interleukin-1 beta concentrations on outcome of full term infants with hypoxic-ischaemic encephalopathy.' Arch Dis Child Fetal Neonatal Ed 79(3): F190-193.
Peerless, S. J., A. J. Fox, et al. (1982). 'Angiographic study of vasospasm following subarachnoid hemorrhage in monkeys.' Stroke 13(4): 473-479.
Pellerin, L. and P. J. Magistretti (1994). 'Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization.' Proc Natl Acad Sci U S A 91(22): 10625-10629.
Petzold, A. (2007). 'CSF biomarkers for improved prognostic accuracy in acute CNS disease.' Neurol Res 29(7): 691-708.
Petzold, A., V. Worthington, et al. (2011). 'Cerebrospinal fluid ferritin level, a sensitive diagnostic test in late-presenting subarachnoid hemorrhage.' J Stroke Cerebrovasc Dis 20(6): 489-493.
Petzold, A., V. Worthington, et al. (2009). 'The longitudinal profile of bilirubin and ferritin in the cerebrospinal fluid following a subarachnoid hemorrhage: diagnostic implications.' Neurocrit Care 11(3): 398-402.
Phan, T. G., J. Huston, 3rd, et al. (2003). 'Value of diffusion-weighted imaging in patients with a nonlocalizing examination and vasospasm from subarachnoid hemorrhage.' Cerebrovasc Dis 15(3): 177-181.
Pisapia, J. M., X. Xu, et al. (2012). 'Microthrombosis after experimental subarachnoid hemorrhage: time course and effect of red blood cell-bound thrombin-activated pro-urokinase and clazosentan.' Exp Neurol 233(1): 357-363.
Pluta, R. M. (2005). 'Delayed cerebral vasospasm and nitric oxide: review, new hypothesis, and proposed treatment.' Pharmacol Ther 105(1): 23-56.
Pluta, R. M., J. K. Afshar, et al. (1998). 'Temporal changes in perivascular concentrations of oxyhemoglobin, deoxyhemoglobin, and methemoglobin after subarachnoid hemorrhage.' J Neurosurg 88(3): 557-561.
Pluta, R. M. and E. H. Oldfield (2007). 'Analysis of nitric oxide (NO) in cerebral vasospasm after aneursymal bleeding.' Rev Recent Clin Trials 2(1): 59-67.
Polin, R. S., V. A. Coenen, et al. (2000). 'Efficacy of transluminal angioplasty for the management of symptomatic cerebral vasospasm following aneurysmal subarachnoid hemorrhage.' J Neurosurg 92(2): 284-290.
Powsner, R. A., L. A. O'Tuama, et al. (1998). 'SPECT imaging in cerebral vasospasm following subarachnoid hemorrhage.' J Nucl Med 39(5): 765-769.
Pyne-Geithman, G. J., C. J. Morgan, et al. (2005). 'Bilirubin production and oxidation in CSF of patients with cerebral vasospasm after subarachnoid hemorrhage.' J Cereb Blood Flow Metab 25(8): 1070-1077.
Rabinstein, A. A., J. A. Friedman, et al. (2004). 'Predictors of cerebral infarction in aneurysmal subarachnoid hemorrhage.' Stroke 35(8): 1862-1866.
Rabinstein, A. A., S. Weigand, et al. (2005). 'Patterns of cerebral infarction in aneurysmal subarachnoid hemorrhage.' Stroke 36(5): 992-997.
Regenold, W. T., P. Phatak, et al. (2009). 'Elevated cerebrospinal fluid lactate concentrations in patients with bipolar disorder and schizophrenia: implications for the mitochondrial dysfunction hypothesis.' Biol Psychiatry 65(6): 489-494.
Reilly, C., C. Amidei, et al. (2004). 'Clot volume and clearance rate as independent predictors of vasospasm after aneurysmal subarachnoid hemorrhage.' J Neurosurg 101(2): 255-261.
Rinkel, G. J., M. Djibuti, et al. (1998). 'Prevalence and risk of rupture of intracranial aneurysms: a systematic review.' Stroke 29(1): 251-256.
Roos, Y. B., R. J. de Haan, et al. (2000). 'Complications and outcome in patients with aneurysmal subarachnoid haemorrhage: a prospective hospital based cohort study in the Netherlands.' J Neurol Neurosurg Psychiatry 68(3): 337-341.
Roost, K. T., N. R. Pimstone, et al. (1972). 'The formation of cerebrospinal fluid xanthochromia after subarachnoid hemorrhage. Enzymatic conversion of hemoglobin to bilirubin by the arachnoid and choroid plexus.' Neurology 22(9): 973-977.
Rose, M. J. (2011). 'Aneurysmal subarachnoid hemorrhage: an update on the medical complications and treatments strategies seen in these patients.' Curr Opin Anaesthesiol 24(5): 500-507.
Rosengart, A. J., K. E. Schultheiss, et al. (2007). 'Prognostic factors for outcome in patients with aneurysmal subarachnoid hemorrhage.' Stroke 38(8): 2315-2321.
Ryter, S. W. and R. M. Tyrrell (2000). 'The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties.' Free Radic Biol Med 28(2): 289-309.
Sabri, M., J. Ai, et al. (2012). 'Mechanisms of microthrombi formation after experimental subarachnoid hemorrhage.' Neuroscience 224: 26-37.
Saito, I., Y. Ueda, et al. (1977). 'Significance of vasospasm in the treatment of ruptured intracranial aneurysms.' J Neurosurg 47(3): 412-429.
Sajanti, J., E. Heikkinen, et al. (2000). 'Transient increase in procollagen propeptides in the CSF after subarachnoid hemorrhage.' Neurology 55(3): 359-363.
Sakr, Y., M. J. Dubois, et al. (2004). 'Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock.' Crit Care Med 32(9): 1825-1831.
Samuelsson, C., L. Hillered, et al. (2007). 'Cerebral glutamine and glutamate levels in relation to compromised energy metabolism: a microdialysis study in subarachnoid hemorrhage patients.' J Cereb Blood Flow Metab 27(7): 1309-1317.
Sarrafzadeh, A., D. Haux, et al. (2005). 'Bedside microdialysis reflects dysfunction of cerebral energy metabolism in patients with aneurysmal subarachnoid hemorrhage as confirmed by 15 O-H2 O-PET and 18 F-FDG-PET.' J Neuroradiol 32(5): 348-351.
Sasaki, T. and N. F. Kassell (1990). 'The role of endothelium in cerebral vasospasm.' Neurosurg Clin N Am 1(2): 451-463.
Sheehan, J. P., R. S. Polin, et al. (1999). 'Factors associated with hydrocephalus after aneurysmal subarachnoid hemorrhage.' Neurosurgery 45(5): 1120-1127; discussion 1127-1128.
Shen, J., K. F. Petersen, et al. (1999). 'Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR.' Proc Natl Acad Sci U S A 96(14): 8235-8240.
Shimoda, M., S. Yamada, et al. (1989). 'Time course of CSF lactate level in subarachnoid haemorrhage. Correlation with clinical grading and prognosis.' Acta Neurochir (Wien) 99(3-4): 127-134.
Sitina, M., Z. Turek, et al. (2011). 'In situ assessment of the brain microcirculation in mechanically-ventilated rabbits using sidestream dark-field (SDF) imaging.' Physiol Res 60(1): 75-81.
Solomon, R. A., J. L. Antunes, et al. (1985). 'Decrease in cerebral blood flow in rats after experimental subarachnoid hemorrhage: a new animal model.' Stroke 16(1): 58-64.
Solomon, R. A., M. E. Fink, et al. (1988). 'Early aneurysm surgery and prophylactic hypervolemic hypertensive therapy for the treatment of aneurysmal subarachnoid hemorrhage.' Neurosurgery 23(6): 699-704.
Sporn, M. B., A. B. Roberts, et al. (1986). 'Transforming growth factor-beta: biological function and chemical structure.' Science 233(4763): 532-534.
Steele, J. A., N. Stockbridge, et al. (1991). 'Free radicals mediate actions of oxyhemoglobin on cerebrovascular smooth muscle cells.' Circ Res 68(2): 416-423.
Stein, S. C., K. D. Browne, et al. (2006). 'Thromboembolism and delayed cerebral ischemia after subarachnoid hemorrhage: an autopsy study.' Neurosurgery 59(4): 781-787; discussion 787-788.
Stein, S. C., J. M. Levine, et al. (2006). 'Vasospasm as the sole cause of cerebral ischemia: how strong is the evidence?' Neurosurg Focus 21(3): E2.
Stoddart, J. H., Jr., D. Ladd, et al. (2000). 'Transgenic mice with a mutated collagen promoter display normal response during bleomycin-induced fibrosis and possess neurological abnormalities.' J Cell Biochem 77(1): 135-148.
Sun, B. L., C. B. Zheng, et al. (2009). 'Dynamic alterations of cerebral pial microcirculation during experimental subarachnoid hemorrhage.' Cell Mol Neurobiol 29(2): 235-241.
Suzuki, H., K. Kanamaru, et al. (1999). 'Heme oxygenase-1 gene induction as an intrinsic regulation against delayed cerebral vasospasm in rats.' J Clin Invest 104(1): 59-66.
Suzuki, H., K. Kanamaru, et al. (2001). 'The functional significance of heme oxygenase-1 gene induction in a rat vasospasm model.' Acta Neurochir Suppl 77: 89-91.
Suzuki, H., N. Kinoshita, et al. (2008). 'Cerebrospinal fluid tenascin-C increases preceding the development of chronic shunt-dependent hydrocephalus after subarachnoid hemorrhage.' Stroke 39(5): 1610-1612.
Suzuki, H., M. Muramatsu, et al. (2003). 'Intracranial heme metabolism and cerebral vasospasm after aneurysmal subarachnoid hemorrhage.' Stroke 34(12): 2796-2800.
Suzuki, H., M. Muramatsu, et al. (2006). 'Cerebrospinal fluid ferritin in chronic hydrocephalus after aneurysmal subarachnoid hemorrhage.' J Neurol 253(9): 1170-1176.
Suzuki, S., M. Kimura, et al. (1990). 'Cerebral microthrombosis in symptomatic cerebral vasospasm--a quantitative histological study in autopsy cases.' Neurol Med Chir (Tokyo) 30(5): 309-316.
Suzuki, S., M. Suzuki, et al. (1983). 'Role of multiple cerebral microthrombosis in symptomatic cerebral vasospasm: with a case report.' Neurosurgery 13(2): 199-203.
Sykova, E., J. Fiala, et al. (2001). 'Extracellular space volume changes and diffusion barriers in rats with kaolin-induced and inherited hydrocephalus.' Eur J Pediatr Surg 11 Suppl 1: S34-37.
Synek, V., J. R. Reuben, et al. (1976). 'Comparing Evans' index and computerized axial tomography in assessing relationship of ventricular size to brain size.' Neurology 26(3): 231-233.
Tada, T., H. Zhan, et al. (2006). 'Intraventricular administration of hepatocyte growth factor treats mouse communicating hydrocephalus induced by transforming growth factor beta1.' Neurobiol Dis 21(3): 576-586.
Tak
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54923-
dc.description.abstract研究背景與目的
自發性蜘蛛膜下腔出血的主要原因為動脈瘤破裂導致血液流入蜘蛛膜下腔。而腦部皮質血管就浸泡在腦脊髓液中,正常腦脊髓液循環會經過第四腦室的三個小孔流入蜘蛛膜下腔;一旦大量蜘蛛膜下腔出血,腦脊髓液的通道雖在結構上並未阻塞,但在在功能上會被區隔成兩區,新鮮的腦脊髓液由腦室中的脈絡叢製造,但蜘蛛膜下腔因含有大量血塊及其代謝產物,會變得相當濃稠,因此大量蜘蛛膜下腔出血後可能會使腦室與蜘蛛膜下腔產生隔間(compartmentalization)的現象。一旦如同我們的假說有隔間現象產生,蜘蛛膜下腔的血塊代謝與發炎反應必定遠大於腦室。根據我們的假說,在大量蜘蛛膜下腔出血後產生分隔現象,乳酸將會在蜘蛛膜下腔堆積,尤其是在水腦症產生的狀況下。因此第一個研究的目的即是觀測動脈瘤破裂併發modified Fisher Grade III 與 IV 蜘蛛膜下出血的病人,其腦室與腰椎腦脊髓液的生化差異,並分析乳酸與水腦症的相關性。
在蜘蛛膜下腔出血後,紅血球會被分解而放出hemoglobin,接下來進一步被代謝成heme與鐵。游離的鐵離子對於腦細胞有毒,需與蛋白質結合成ferritin。在這個過程中,一個可被誘發的酵素稱為heme oxygenase (HO) 1,是hemoglobin代謝過程速率決定步驟。 先前許多報告顯示heme代謝的許多產物與頭部外傷或蜘蛛膜下出血的預後相關, 因此第二個研究目的在探討紅血球代謝過程的各項產物與預後的關係。
研究方法:
我們第一步先分析蜘蛛膜下腔出血後,腦室與腰椎腦脊髓液中各項生化指標的差異;因此我們同時收集出血後第七天腦室與腰椎腦脊髓液,進一步利用多變項分析探討蜘蛛膜下腔出血後造成慢性水腦症的相關因子。
第二個研究則接續於第一個研究的結果,於第七天藉由腰椎穿刺取得腦脊髓液,測量了紅血球代謝過程的各種酵素與產物,包括HO1,oxyhemoglobin,ferritin與 bilirubin;並研究這些生化指標與病人出血後三個月的神經功能的關係。
研究結果
第一個研究顯示,腦室內與髓內腦脊髓液,其中蛋白質、鐵蛋白、紅球素與乳酸在脊髓內腦脊髓液接顯著高於腦室內(p<0.001 in each factor)。所有單變項顯著因子進行多變項分析,結果顯示有腦室內出血(IVH)(odds ratio [OR]: 18.0; 95% confidence interval [95%CI]: 1.0-325.5; p=0.05] 與脊髓內腦脊髓液乳酸濃度(OR: 4.8; 95%CI: 1.1-20.4; p=0.036)顯著與引流管依賴水腦症SDHC相關。再進一步,藉由GMA模式,脊椎內腦脊髓液乳酸lactate ≥5.5 mmol/L時會增加32倍產生引流管依賴水腦症SDHC 的機會(95%CI: 3.8-270.8; p=0.0015)。
第二個研究,有關腦脊髓液中的數據,單變量分析顯示,造成病人結果不好的因子包括HO1,氧合血紅蛋白,膽紅素,鐵蛋白,和乳酸,較高的白細胞計數與較低的淋巴細胞比例。在調整了年齡,WFNS臨床參數(≥或<3),急性腦積水和腦室內出血後,較高的HO1與不好的結果相關(odds ratio=0.920; 0.850–0.995, p=0.038)。此外,藉由GAM所取得的臨界點,H0 1>81.2對於病患有不利的結果(64.7%的敏感性,特異性為100%,100%,陽性預測值為80.0%,陰性預測值82.4%)。
結果與展望
蜘蛛膜下腔出血後,一旦產生水腦症,腰椎腦脊髓液與腦室腦脊髓液會有隔間(compartalization)的情況,且在此狀況下,乳酸會快速堆積,尤其在水腦症患者,此種情形必定會加劇,第二個研究進一步證實在出血後血塊會開始代謝,過程中HO1的濃度與預後有明顯關聯。
既然出血後腰椎腦脊髓液與腦室腦脊髓液會有隔間(compartalization)的情況,那麼如何能將這些物質加快代謝,就有可能改善病人癒後。參考文獻與我們的假設,腰椎引流雖然無法完全將蜘蛛膜下腔的血塊洗出,但相較於腦室外引流,腰椎引流應更有機會排出溶解的血塊,甚至可以減少造成血管痙攣的物質。另外針對延遲性缺血性神經病變的探討,我們發展一個新的觀測方法,可活體觀測蜘蛛膜下腔出血後老鼠的微血流,並同時監測腦局部血流與氧分壓,我們發現蜘蛛膜下腔出血後微血流有明顯痙攣,且伴隨局部血流與氧分壓降低;這樣的結果與最近的一些研究相當吻合,大血管的痙攣的治療並不符合預期,也許微血流與微血栓對於延遲性缺血性腦病變有更大的影響。
zh_TW
dc.description.abstractBackground and objective
Spontaneous subarachnoid hemorrhage (SAH) is most frequently caused by aneurysmal rupture. The cortical vessels were immersed in cerebrospinal fluid. In the normal cerebrospinal fluid circulation, CSF flow through three holes of the fourth ventricle into subarachnoid space; once a large number of subarachnoid hemorrhage, as shown, cerebral spinal fluid, although anatomically not blocked, but the functionally may be separated, fresh cerebrospinal fluid in the ventricles can’t flush into subarachnoid space. Thus, subarachnoid clots and its metabolites, will become high viscosity. Our hypothesis is that compartmentalization happened if hydrocephalus presented. Thus, blood clots and inflammation metabolites in subarachnoid space certainly are much higher than the ventricle. According to our hypothesis, after subarachnoid hemorrhage, lactic acid will accumulate in the subarachnoid space, especially under conditions resulting in hydrocephalus. Therefore, the aim of the first study was to analyze its biochemical differences between ventricle and lumbar cerebrospinal fluid, in patients with modified Fisher's Grade III and IV subarachnoid hemorrhage, and further analyze the relationship between lactate and shunt dependent hydrocephalus.
After subarachnoid hemorrhage, red blood cells will be broken down and released hemoglobin, followed by further metabolized to heme and iron. Free iron ions are toxic to brain cells, and protein should be combined into ferritin. In this process, which may be induced by an enzyme known as heme oxygenase (HO) 1, is the rate determining step of metabolism of hemoglobin. Many reports about head trauma or SAH previously showed that heme metabolism is related to outcome..
Materials and Methods
Our first step is to confirm that after subarachnoid hemorrhage, the difference between ventricle and lumbar cerebrospinal fluid. So, we collected both ventricle and lumbar CSF on the seventh day after SAH. We further analysis of lumbar cerebrospinal fluid lactate and correlate with the hydrocephalus relevance. The Second study enrolled ptients with Fisher’s grade III aneurysmal SAH receiving early obliteration. The levels of heme oxygenase 1 (HO1), oxyhemoglobin, ferritin, and bilirubin in intra-thecal CSF were measured on the seventh day post-hemorrhage. The associations of functional outcome with clinical and CSF parameters were analyzed.
Results
The first study showed Intra-thecal CSF had significantly higher levels of total protein, ferritin, hemoglobin, and lactate but lower glucose level than intra-ventricular CSF (all p<0.0001). By multivariate analysis of clinical and CSF parameters, elevated intra-thecal CSF lactate (p=0.036) and the presence of intra-ventricular hemorrhage (p=0.05) were independent factors associated with SDHC. Moreover, intra-thecal lactate >5.5 μM effectively predicted the occurrence of SDHC (odds ratio: 32, 95% confidence interval: 3.8-270.8; p=0.0015).
The second study showed age >60 years, admission World Federation of Neurosurgeons Score ≥3, and the presence of acute hydrocephalus were independent factors associated with an unfavorable outcome. After adjusting for clinical parameters, a higher level of HO1 appeared to be the most significant CSF parameter related to an unfavorable outcome among all tested CSF molecules (odds ratio=0.934, 95% CI: 0.883–0.989; p=0.018). Further analysis using a generalized additive model identified a cut-off value of HO1 > 81.2 uM to predict patients with an unfavorable outcome (82.4% accuracy).
Conclusion and Prospect
We suggested that there was compartalization between ventricle and subarachnoid space after massive SAH and intra-thecal lactate level is a useful predictive parameter for long-term SDHC in patients with aneurysmal SAH patients. Further, the second study found that the concentration of HO1 significantly associated with prognosis. Since SAH may cause compartalization of the ventricle and subarachnoid space, then how can we accelerate metabolism of the blood clot may possible improve patient prognosis. Therefore, we propose that continuous lumbar drainage may improve the outcome, clinical trials have been carried out. In order to verified the pathophysiology of DIND after SAH, we develop a new, in vivo observation of microcirculation after subarachnoid hemorrhage in rat. We can monitor cerebral blood flow and oxygen partial pressure at the same time. We found significant spasm of microcirculation, accompanied with decreased regional blood flow and oxygen partial pressure. This result is quite consistent with some recent studies, the treatment of spasm of the great vessels do not meet expectations, perhaps microcirculaiotn and microthrombus have a greater impact for the delayed ischemic brain lesions.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:41:40Z (GMT). No. of bitstreams: 1
ntu-104-D95421101-1.pdf: 3570595 bytes, checksum: 3598b518502babaaea9fc4fea6253224 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書……………………………………………………………… i
誌謝……………………………………………………………………………… ii
中文摘要………………………………………………………………………… iii
英文摘要………………………………………………………………………… iv
壹. 緒論(Introduction) 3
1-1動脈瘤簡介 3
1-2動脈瘤破裂蜘蛛膜下腔出血的流行病學 5
1-3蜘蛛膜下腔出血與水腦症 6
腦脊髓液的生理循環 6
水腦症的病態生理 7
急性水腦症 8
慢性水腦症(shunt-dependent hydrocephalus) 8
慢性水腦症生物標記(biomarker)的研究 9
1-4腦脊髓液中與水腦症相關的生物標記的研究: 12
1-5蜘蛛膜下腔出血與血管痙攣 13
血管痙攣的病態生理 13
血管痙攣的診斷與治療 14
1-6研究目的與假說 16
研究一. 動脈瘤破裂併蜘蛛膜下腔出血與水腦症 16
研究二. Heme Oxygenase (HO1)與動脈瘤破裂蜘蛛膜下腔出血預後的關係 18
貳. 研究方法與材料 23
研究一. 動脈瘤破裂併蜘蛛膜下腔出血與水腦症 23
研究二: Heme Oxygenase (HO1)與動脈瘤破裂蜘蛛膜下腔出血預後的關係 25
叁. 結果 27
研究一. 動脈瘤破裂併蜘蛛膜下腔出血與水腦症 27
研究二: Heme Oxygenase (Ho1)與動脈瘤破裂蜘蛛膜下腔出血預後的關係 28
肆. 討論 29
研究一: 動脈瘤破裂併蜘蛛膜下腔出血與水腦症 29
研究二: Heme Oxygenase (Ho1)與動脈瘤破裂蜘蛛膜下腔出血預後的關係 32
4-1造成血管痙攣的可能物質 35
4-2血管痙攣並非造成缺血性腦病變唯一因素的證據 40
4-3延遲性缺血性腦病變(DIND)的定義與診斷 41
4-4造成DIND其他可能的原因與假說: 微血循環與微血栓 42
伍. 展望 46
5-1腰椎引流對於血管痙攣的影響 46
5-2建立蜘蛛膜下腔出血的動物模式 49
5-3從臨床到實驗室(clinical to bench) 54
陸. 論文英文簡述Summary 56
柒. 參考文獻References: 67
捌. 附錄 82
dc.language.isozh-TW
dc.subject乳酸zh_TW
dc.subject原血紅素氧化酵素zh_TW
dc.subject蜘蛛膜下腔出血zh_TW
dc.subjectheme oxygenaseen
dc.subjectsubarachnoid hemorrhageen
dc.subjectlactateen
dc.title動脈瘤破裂蜘蛛膜下腔出血後腦脊髓液生化指標預測慢性水腦症與預後zh_TW
dc.titleBiomarkers of CSF Predicting Shunt-Dependent Hydrocephalus and Outcome after Aneurysmal SAHen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree博士
dc.contributor.oralexamcommittee楊偉勛,陳玉伶,洪純隆,傅毓秀
dc.subject.keyword蜘蛛膜下腔出血,乳酸,原血紅素氧化酵素,zh_TW
dc.subject.keywordsubarachnoid hemorrhage,lactate,heme oxygenase,en
dc.relation.page93
dc.rights.note有償授權
dc.date.accepted2015-02-12
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
3.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved