Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54917
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉嚞睿(Je-Ruei Liu)
dc.contributor.authorQian-Wen Shangen
dc.contributor.author尚芊彣zh_TW
dc.date.accessioned2021-06-16T03:41:31Z-
dc.date.available2020-08-25
dc.date.copyright2020-08-25
dc.date.issued2020
dc.date.submitted2020-08-03
dc.identifier.citationAvin-Wittenberg, T., Bajdzienko, K., Wittenberg, G., Alseekh, S., Tohge, T., Bock, R., Giavalisco, P., and Fernie, A.R. (2015). Global analysis of the role of autophagy in cellular metabolism and energy homeostasis in Arabidopsis seedlings under carbon starvation. Plant Cell 27, 306-322.
Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D.A., and Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712.
Bourque, J.E. (1995). Antisense strategies for genetic manipulations in plants. Plant Sci 105, 125-149.
Chapman, E.J., Prokhnevsky, A.I., Gopinath, K., Dolja, V.V., and Carrington, J.C. (2004). Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev 18, 1179-1186.
Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16, 735-743.
de Carvalho, F., Gheysen, G., Kushnir, S., Van Montagu, M., Inze, D., and Castresana, C. (1992). Suppression of beta-1,3-glucanase transgene expression in homozygous plants. EMBO J 11, 2595-2602.
Derrien, B., Baumberger, N., Schepetilnikov, M., Viotti, C., De Cillia, J., Ziegler-Graff, V., Isono, E., Schumacher, K., and Genschik, P. (2012). Degradation of the antiviral component ARGONAUTE1 by the autophagy pathway. Proc Natl Acad Sci U S A 109, 15942-15946.
Gasiunas, G., Barrangou, R., Horvath, P., and Siksnys, V. (2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109, E2579-2586.
Geng, J., and Klionsky, D.J. (2008). The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep 9, 859-864.
Guo, H.S., and Ding, S.W. (2002). A viral protein inhibits the long range signaling activity of the gene silencing signal. EMBO J 21, 398-407.
Hafren, A., Ustun, S., Hochmuth, A., Svenning, S., Johansen, T., and Hofius, D. (2018). Turnip mosaic virus counteracts selective autophagy of the viral silencing suppressor HCpro. Plant Physiol 176, 649-662.
Hofius, D., Munch, D., Bressendorff, S., Mundy, J., and Petersen, M. (2011). Role of autophagy in disease resistance and hypersensitive response-associated cell death. Cell Death Differ 18, 1257-1262.
Hull, R. (2009). Mechanical inoculation of plant viruses. Current Protocols in Microbiology 13, 16B.16.11-16B.16.14.
Ichimura, Y., Kirisako, T., Takao, T., Satomi, Y., Shimonishi, Y., Ishihara, N., Mizushima, N., Tanida, I., Kominami, E., Ohsumi, M., Noda, T., and Ohsumi, Y. (2000). A ubiquitin-like system mediates protein lipidation. Nature 408, 488-492.
Ishino, Y., Krupovic, M., and Forterre, P. (2018). History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J Bacteriol 200.
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821.
Kasschau, K.D., and Carrington, J.C. (1998). A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95, 461-470.
Kasschau, K.D., Xie, Z., Allen, E., Llave, C., Chapman, E.J., Krizan, K.A., and Carrington, J.C. (2003). P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev Cell 4, 205-217.
Klionsky, D.J., and Emr, S.D. (2000). Autophagy as a regulated pathway of cellular degradation. Science 290, 1717-1721.
Krol, J., Loedige, I., and Filipowicz, W. (2010). The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11, 597-610.
Kung, Y.J., Lin, P.C., Yeh, S.D., Hong, S.F., Chua, N.H., Liu, L.Y., Lin, C.P., Huang, Y.H., Wu, H.W., Chen, C.C., and Lin, S.S. (2014). Genetic analyses of the FRNK motif function of Turnip mosaic virus uncover multiple and potentially interactive pathways of cross-protection. Mol Plant Microbe Interact 27, 944-955.
Lander, E.S. (2016). The Heroes of CRISPR. Cell 164, 18-28.
Levine, B., and Klionsky, D.J. (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6, 463-477.
Levine, B., and Deretic, V. (2007). Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 7, 767-777.
Li, W., Cui, X., Meng, Z., Huang, X., Xie, Q., Wu, H., Jin, H., Zhang, D., and Liang, W. (2012). Transcriptional regulation of Arabidopsis MIR168a and argonaute1 homeostasis in abscisic acid and abiotic stress responses. Plant Physiol 158, 1279-1292.
Michaeli, S., Clavel, M., Lechner, E., Viotti, C., Wu, J., Dubois, M., Hacquard, T., Derrien, B., Izquierdo, E., Lecorbeiller, M., Bouteiller, N., De Cilia, J., Ziegler-Graff, V., Vaucheret, H., Galili, G., and Genschik, P. (2019). The viral F-box protein P0 induces an ER-derived autophagy degradation pathway for the clearance of membrane-bound AGO1. Proc Natl Acad Sci U S A 116, 22872-22883.
Nellen, W., and Lichtenstein, C. (1993). What makes an mRNA anti-sense-itive? Trends Biochem Sci 18, 419-423.
Papp, I., Mette, M.F., Aufsatz, W., Daxinger, L., Schauer, S.E., Ray, A., van der Winden, J., Matzke, M., and Matzke, A.J. (2003). Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. Plant Physiol 132, 1382-1390.
Phillips, A.R., Suttangkakul, A., and Vierstra, R.D. (2008). The ATG12-conjugating enzyme ATG10 Is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics 178, 1339-1353.
Que, Q., Wang, H.Y., English, J.J., and Jorgensen, R.A. (1997). The frequency and degree of cosuppression by sense chalcone synthase transgenes are dependent on transgene promoter strength and are reduced by premature nonsense codons in the transgene coding sequence. Plant Cell 9, 1357-1368.
Ratcliff, F., Harrison, B.D., and Baulcombe, D.C. (1997). A similarity between viral defense and gene silencing in plants. Science 276, 1558-1560.
Ren, G., Xie, M., Zhang, S., Vinovskis, C., Chen, X., and Yu, B. (2014). Methylation protects microRNAs from an AGO1-associated activity that uridylates 5' RNA fragments generated by AGO1 cleavage. Proc Natl Acad Sci U S A 111, 6365-6370.
Voinnet, O. (2009). Origin, biogenesis, and activity of plant microRNAs. Cell 136, 669-687.
Wang, Z.P., Xing, H.L., Dong, L., Zhang, H.Y., Han, C.Y., Wang, X.C., and Chen, Q.J. (2015). Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol 16, 144.
Wiedenheft, B., Sternberg, S.H., and Doudna, J.A. (2012). RNA-guided genetic silencing systems in bacteria and archaea. Nature 482, 331-338.
Xie, Z., Nair, U., and Klionsky, D.J. (2008). Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell 19, 3290-3298.
Antipov, D., Korobeynikov, A., McLean, J.S., and Pevzner, P.A. (2016). hybridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioinformatics 32, 1009-1015.
Babu, K., Amrani, N., Jiang, W., Yogesha, S.D., Nguyen, R., Qin, P.Z., and Rajan, R. (2019). Bridge Helix of Cas9 Modulates Target DNA Cleavage and Mismatch Tolerance. Biochemistry 58, 1905-1917.
Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin, A.V., Sirotkin, A.V., Vyahhi, N., Tesler, G., Alekseyev, M.A., and Pevzner, P.A. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19, 455-477.
Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D.A., and Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712.
Chylinski, K., Makarova, K.S., Charpentier, E., and Koonin, E.V. (2014). Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res 42, 6091-6105.
Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., and Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823.
Crawley, A.B., Henriksen, E.D., Stout, E., Brandt, K., and Barrangou, R. (2018). Characterizing the activity of abundant, diverse and active CRISPR-Cas systems in lactobacilli. Sci Rep 8, 11544.
Daniel, C., Poiret, S., Dennin, V., Boutillier, D., and Pot, B. (2013). Bioluminescence imaging study of spatial and temporal persistence of Lactobacillus plantarum and Lactococcus lactis in living mice. Appl Environ Microbiol 79, 1086-1094.
DiCarlo, J.E., Norville, J.E., Mali, P., Rios, X., Aach, J., and Church, G.M. (2013). Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41, 4336-4343.
Doring, A., Weese, D., Rausch, T., and Reinert, K. (2008). SeqAn an efficient, generic C++ library for sequence analysis. BMC Bioinformatics 9, 11.
Falsen, E., Pascual, C., Sjoden, B., Ohlen, M., and Collins, M.D. (1999). Phenotypic and phylogenetic characterization of a novel Lactobacillus species from human sources: description of Lactobacillus iners sp. nov. Int J Syst Bacteriol 49 Pt 1, 217-221.
Frese, S.A., Benson, A.K., Tannock, G.W., Loach, D.M., Kim, J., Zhang, M., Oh, P.L., Heng, N.C., Patil, P.B., Juge, N., Mackenzie, D.A., Pearson, B.M., Lapidus, A., Dalin, E., Tice, H., Goltsman, E., Land, M., Hauser, L., Ivanova, N., Kyrpides, N.C., and Walter, J. (2011). The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri. PLoS Genet 7, e1001314.
Gibson, G.R., Hutkins, R., Sanders, M.E., Prescott, S.L., Reimer, R.A., Salminen, S.J., Scott, K., Stanton, C., Swanson, K.S., Cani, P.D., Verbeke, K., and Reid, G. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14, 491-502.
Golubeva, A.V., Joyce, S.A., Moloney, G., Burokas, A., Sherwin, E., Arboleya, S., Flynn, I., Khochanskiy, D., Moya-Pérez, A., Peterson, V., Rea, K., Murphy, K., Makarova, O., Buravkov, S., Hyland, N.P., Stanton, C., Clarke, G., Gahan, C.G.M., Dinan, T.G., and Cryan, J.F. (2017). Microbiota-related changes in bile acid tryptophan metabolism are associated with gastrointestinal dysfunction in a mouse model of autism. EBioMedicine 24, 166-178.
Gouet, P., Robert, X., and Courcelle, E. (2003). ESPript/ENDscript: Extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res 31, 3320-3323.
Grissa, I., Vergnaud, G., and Pourcel, C. (2007). The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8, 172.
Hall, B.G. (2013). Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol 30, 1229-1235.
Higgins, D.G., Thompson, J.D., and Gibson, T.J. (1996). Using CLUSTAL for multiple sequence alignments. Methods Enzymol 266, 383-402.
Hsueh, H.Y., Yueh, P.Y., Yu, B., Zhao, X., and Liu, J.R. (2010). Expression of Lactobacillus reuteri Pg4 collagen-binding protein gene in Lactobacillus casei ATCC 393 increases its adhesion ability to Caco-2 cells. J Agric Food Chem 58, 12182-12191.
Ishino, Y., Krupovic, M., and Forterre, P. (2018). History of CRISPR-Cas from Encounter with a Mysterious Repeated Sequence to Genome Editing Technology. J Bacteriol 200.
Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28, 27-30.
König H, F.J. (2009). Biology of Microorganisms on Grapes, in Must and in Wine. (Gemany: Springer).
Li, J.F., Norville, J.E., Aach, J., McCormack, M., Zhang, D., Bush, J., Church, G.M., and Sheen, J. (2013). Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31, 688-691.
Liu, J.R., Yu, B., Liu, F.H., Cheng, K.J., and Zhao, X. (2005). Expression of rumen microbial fibrolytic enzyme genes in probiotic Lactobacillus reuteri. Appl Environ Microbiol 71, 6769-6775.
Makarova, K.S., Haft, D.H., Barrangou, R., Brouns, S.J., Charpentier, E., Horvath, P., Moineau, S., Mojica, F.J., Wolf, Y.I., Yakunin, A.F., van der Oost, J., and Koonin, E.V. (2011). Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9, 467-477.
McWilliam, H., Li, W., Uludag, M., Squizzato, S., Park, Y.M., Buso, N., Cowley, A.P., and Lopez, R. (2013). Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Res 41, W597-600.
Mitchell, A.L., Attwood, T.K., Babbitt, P.C., Blum, M., Bork, P., Bridge, A., Brown, S.D., Chang, H.Y., El-Gebali, S., Fraser, M.I., Gough, J., Haft, D.R., Huang, H., Letunic, I., Lopez, R., Luciani, A., Madeira, F., Marchler-Bauer, A., Mi, H., Natale, D.A., Necci, M., Nuka, G., Orengo, C., Pandurangan, A.P., Paysan-Lafosse, T., Pesseat, S., Potter, S.C., Qureshi, M.A., Rawlings, N.D., Redaschi, N., Richardson, L.J., Rivoire, C., Salazar, G.A., Sangrador-Vegas, A., Sigrist, C.J.A., Sillitoe, I., Sutton, G.G., Thanki, N., Thomas, P.D., Tosatto, S.C.E., Yong, S.Y., and Finn, R.D. (2019). InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47, D351-D360.
Nishimasu, H., Ran, F.A., Hsu, P.D., Konermann, S., Shehata, S.I., Dohmae, N., Ishitani, R., Zhang, F., and Nureki, O. (2014). Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935-949.
Nunez, J.K., Kranzusch, P.J., Noeske, J., Wright, A.V., Davies, C.W., and Doudna, J.A. (2014). Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat Struct Mol Biol 21, 528-534.
Oh, J.H., and van Pijkeren, J.P. (2014). CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res 42, e131.
Pyne, M.E., Bruder, M.R., Moo-Young, M., Chung, D.A., and Chou, C.P. (2016). Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium. Sci Rep 6, 25666.
Salque, M., Bogucki, P.I., Pyzel, J., Sobkowiak-Tabaka, I., Grygiel, R., Szmyt, M., and Evershed, R.P. (2013). Earliest evidence for cheese making in the sixth millennium BC in northern Europe. Nature 493, 522-525.
Shabbir, M.A.B., Shabbir, M.Z., Wu, Q., Mahmood, S., Sajid, A., Maan, M.K., Ahmed, S., Naveed, U., Hao, H., and Yuan, Z. (2019). CRISPR-cas system: biological function in microbes and its use to treat antimicrobial resistant pathogens. Ann Clin Microbiol Antimicrob 18, 21.
Sharon, G., Cruz, N.J., Kang, D.-W., Gandal, M.J., Wang, B., Kim, Y.-M., Zink, E.M., Casey, C.P., Taylor, B.C., Lane, C.J., Bramer, L.M., Isern, N.G., Hoyt, D.W., Noecker, C., Sweredoski, M.J., Moradian, A., Borenstein, E., Jansson, J.K., Knight, R., Metz, T.O., Lois, C., Geschwind, D.H., Krajmalnik-Brown, R., and Mazmanian, S.K. (2019). Human Gut Microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 177, 1600-1618.e1617.
Sun, Z., Harris, H.M., McCann, A., Guo, C., Argimon, S., Zhang, W., Yang, X., Jeffery, I.B., Cooney, J.C., Kagawa, T.F., Liu, W., Song, Y., Salvetti, E., Wrobel, A., Rasinkangas, P., Parkhill, J., Rea, M.C., O'Sullivan, O., Ritari, J., Douillard, F.P., Paul Ross, R., Yang, R., Briner, A.E., Felis, G.E., de Vos, W.M., Barrangou, R., Klaenhammer, T.R., Caufield, P.W., Cui, Y., Zhang, H., and O'Toole, P.W. (2015). Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nat Commun 6, 8322.
Supek, F., Bosnjak, M., Skunca, N., and Smuc, T. (2011). REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6, e21800.
Tatusov, R.L., Natale, D.A., Garkavtsev, I.V., Tatusova, T.A., Shankavaram, U.T., Rao, B.S., Kiryutin, B., Galperin, M.Y., Fedorova, N.D., and Koonin, E.V. (2001). The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29, 22-28.
Walker, B.J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C.A., Zeng, Q., Wortman, J., Young, S.K., and Earl, A.M. (2014). Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9, e112963.
Wick, R.R., Judd, L.M., Gorrie, C.L., and Holt, K.E. (2017). Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13, e1005595.
Wiedenheft, B., Sternberg, S.H., and Doudna, J.A. (2012). RNA-guided genetic silencing systems in bacteria and archaea. Nature 482, 331-338.
Yang, W.C., Hsu, T.C., Cheng, K.C., and Liu, J.R. (2017). Expression of the Clonostachys rosea lactonohydrolase gene by Lactobacillus reuteri to increase its zearalenone-removing ability. Microb Cell Fact 16, 69.
Zhang, J., Zong, W., Hong, W., Zhang, Z.T., and Wang, Y. (2018). Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production. Metab Eng 47, 49-59.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54917-
dc.description.abstract本研究第一部分應用CRISPR/Cas9方法創造基因剔除之阿拉伯芥 (Arabidopsis thaliana),探討基因功能上差異。轉錄後基因靜默作用 (post-transcriptional gene silencing, PTGS) 是植物應用序列特異性以降解或抑制轉譯來達到調控RNA的系統,當系統中RISC複合體 (RNA-induced silencing complex) 所載運小片段RNA (small RNA) 與目標RNA互補配對,Argonaute1 (AGO1) 蛋白即負責降解目標RNA。自噬作用 (autophagy) 負責生物體內細胞物質回收,降解不再需要的物質、轉化為新的所需形式。進行自噬作用包含許多相關蛋白,其中ATG8a及ATG10為兩個作用在不同路徑之蛋白。另一方面,HC-Pro為一Potyvirus病毒基因靜默抑制子,會破壞微型核酸 (miRNA) 生合成路徑以干擾轉錄後基因靜默作用。然而確切激發及相互作用途徑則尚未研究透徹。本篇研究顯示在HC-Pro所誘導之基因靜默抑制現象中,AGO1受到降解的現象與ATG8a至乎相關。同時,我們發現ATG8a是維持轉基因穩定表現的重要基因之一。實驗結果顯示CRISPR/Cas9編輯之atg8a突變株在P1/HCR轉基因植物具有與Col-0相當的AGO1蛋白含量。而ATG8a缺失造成HC-Pro在若干個別植株中有不穩定的表現。本研究結果展示AGO1如何在P1/HCR植株中被抑制及ATG8a在支持PTGS所扮演的角色。
延續第一部分的研究應用CRISPR/Cas9系統的經驗,我們同時觀察到近年來使用CRISPR/Cas9系統進行基因編輯的物種日益增多,其大多來自化膿鏈球菌 (Streptococcus pyogenes)。因此,本研究第二部分針對一株具有益生潛力的洛德乳桿菌 (Lactobacillus reuteri Pg4) 進行全基因體序列分析,找出其Cas9、Cas1及Cas2基因,此發現有助於將Pg4菌株開發為適用於乳酸桿菌屬之基因編輯工具。
zh_TW
dc.description.abstractIn the first part of the study, we applied CRISPR/Cas9 system to knock-out genes in Arabidopsis and studied the significance of the gene functions. Post-transcriptional gene silencing (PTGS) is a system which regulates RNA levels by targeted degradation or translation inhibition. Argonaute1 (AGO1) in the RNA-induced silencing complex (RISC) is responsible for the cleavage of the targets when small RNAs (sRNAs) in this complex pair with the target RNAs complementarily. Autophagy, in addition, is a dynamic recycling system for cellular components, degrading unwanted substance for remodeling into a new form as needed. The system consists of several autophagy-related (ATG) proteins, in which ATG8a and ATG10 work independently in the pathway. On the other hand, HC-Pro, the viral silencing suppressor (VSR) from potyvirus, was known to interfere PTGS by collapsing miRNA biosynthesis. However, the specific triggering and interacting pathway are yet to be thoroughly confirmed. Here we showed that ATG8a plays a key role in AGO1 degradation in HC-Pro-mediated silencing suppression and that ATG8a stabilizes transgene expression. We found that CRISPR/Cas9-edited atg8a mutant in P1/HCR plant had comparable AGO1 expression with that of Col-0. The absence of ATG8a in P1/HCR plant caused inconsistent expression of HC-Pro among some individual lines. Our results exemplify how AGO1 is suppressed in P1/HCR context and what role ATG8a plays in supporting PTGS.
With the experience of applying CRISPR/Cas9 system in the first part, we observed that CRISPR/Cas9 system is widely adopted as genome-editing tools and the majority comes from that of Streptococcus pyogenes. In the second part of this study, we examined the whole genome sequence of a potential probiotic, Lactobacillus reuteri Pg4 and identified Cas9 along with Cas1 and Cas2. This finding may help the Pg4 strain be engineered into a genome-editing tool tailored for the genus Lactobacillus.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:41:31Z (GMT). No. of bitstreams: 1
U0001-0108202010445100.pdf: 15126172 bytes, checksum: 153f948d722758f1ef21e253856b9336 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 I
中文摘要 II
Abstract III
Contents IV
List of Tables VI
List of Figures VII
Chapter 1. Investigation of the role of ATG genes in PTGS suppression through CRISPR/Cas9 knock out approach 1
Introduction 2
PTGS defense and P1/HC-Pro silencing suppression 2
Autophagy and its related genes ATG8a and ATG10 4
CRISPR/Cas9 application in genome editing 5
Materials and Methods 8
Plant materials and growth conditions 8
ATG8a and ATG10 genes editing with CRISPR/Cas9 8
Genotyping 9
Protein degradation inhibiting assay 9
Cucumber mosaic virus (CMV) Q strain inoculation 9
RNA extraction and real-time RT-PCR 10
Protein preparation and western blotting 10
ABA sensitivity assay 11
Germination assay in starvation 11
Results 12
ATG8a and ATG10 knock out in P1/HCR and Col-0 background by CRISPR/Cas9 gene editing technology 12
The phenotype of atg mutants in Col-0 and P1/HCR backgrounds 14
P1/HCR plant and atg8age mutant are ABA sensitive 15
Mimic autophagy initiation in the absence of light and carbon source 17
Epigenetically-regulated phenotypic variation in T3 generation of P1/HCR/atg8age plants 18
HC-Pro reducing in atg8age background 19
HC-Pro stable expression in P1/HCK plant 20
Discussion 22
Multiple gRNAs providing high efficiency of gene editing 22
ATG8a involves in autophagic AGO1 degradation and stabilizing the transgene expression 22
Working hypotheses 25
Conclusions 26
References 27
Chapter 2. Identification of Cas genes in Lactobacillus reuteri Pg4 41
Introduction 42
Cas genes in Lactobacillus spp. 42
Lactobacillus reuteri Pg4 and lactic acid bacteria 43
Genome editing in bacteria with CRISPR/Cas system 44
Materials and Methods 46
Bacterial strain and growth conditions 46
Whole genome sequencing (WGS) and genome analysis 46
Cas9-related analysis 47
Results 49
Whole genome sequence of L. reuteri Pg4 49
Cas genes in Pg4 50
Discussion 53
A unique Cas9 gene in Pg4 53
Conclusion 55
Reference 56
dc.language.isoen
dc.subjectCRISPR/Cas9zh_TW
dc.subject轉錄後基因靜默作用zh_TW
dc.subject基因靜默抑制子zh_TW
dc.subjectP1/HC-Prozh_TW
dc.subject自噬作用zh_TW
dc.subject乳酸桿菌zh_TW
dc.subjectPost-transcriptional gene silencingen
dc.subjectCRISPR/Cas9en
dc.subjectLactobacillien
dc.subjectAutophagyen
dc.subjectP1/HC-Proen
dc.subjectGene silencing suppressoren
dc.title鑑別Lactobacillus reuteri Pg4中Cas9基因及利用CRISPR/Cas9基因剔除方法研究ATG基因在抑制轉錄後基因靜默作用中所扮演的角色zh_TW
dc.titleIdentification of Cas9 gene in Lactobacillus reuteri Pg4 and investigation of the role of ATG genes in PTGS suppression through CRISPR/Cas9 knock out approachen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.coadvisor林詩舜(Shih-Shun Lin)
dc.contributor.oralexamcommittee吳素幸(Shu-Hsing Wu),林崇熙(Choun-Sea Lin),林劭品(Shau-Ping Lin)
dc.subject.keyword轉錄後基因靜默作用,基因靜默抑制子,P1/HC-Pro,自噬作用,乳酸桿菌,CRISPR/Cas9,zh_TW
dc.subject.keywordPost-transcriptional gene silencing,Gene silencing suppressor,,P1/HC-Pro,Autophagy,Lactobacilli,CRISPR/Cas9,en
dc.relation.page68
dc.identifier.doi10.6342/NTU202002193
dc.rights.note有償授權
dc.date.accepted2020-08-04
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物科技研究所zh_TW
顯示於系所單位:生物科技研究所

文件中的檔案:
檔案 大小格式 
U0001-0108202010445100.pdf
  未授權公開取用
14.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved