Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54915
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾仁賜(Ren-Shih Chung)
dc.contributor.authorChin-Feng Changen
dc.contributor.author張金鳳zh_TW
dc.date.accessioned2021-06-16T03:41:28Z-
dc.date.available2016-03-13
dc.date.copyright2015-03-13
dc.date.issued2015
dc.date.submitted2015-02-12
dc.identifier.citation中華肥料協會。2005。作物施肥手冊。中華肥料協會。臺北,臺灣。
王鐘和、林毓雯、黃維廷、江志峰、丘麗蓉。2002。綠肥作物在有機栽培之應用技術。pp. 141-150。農業試驗所特刊。農業試驗所。臺中,臺灣。
行政院農業委員會。2014。中華民國102年糧食供需年報。行政院農業委員會。臺北,臺灣。
任健、朱建忠、宋其龙、梁明清、郭声楷、魏新琦、罗莹、夏万国 。2010。杂交糯高粱新品种引种试验。现代农业科技,19:50-51。
李文輝。1996。胡麻新品種台南1號之育成。台南區農業改良場研究彙報,33:1-14。
吳炎融、詹雅勛、張棋松、詹碧連、游添榮。2011。甜玉米臺南26號之育成及品種特性。臺南區農業改良場研究彙報,58:11-20。
吳昭慧。2005。綠豆。台灣農家要覽農作篇(一)第貳章糧食作物。pp.159-164。臺北,臺灣。
吳純宜、蔡永暭。2006。有機蔬菜連作與輪作組合之研究。行政院農業委員會高雄區農業改良場研究彙報,17: 43-50。
吳繼光、劉燕雪、簡宣裕、譚增偉。1995。不同輪作制度田微生物相之調查研究I囊叢枝內生菌根菌與溶磷菌之變動。中華農業研究,44: 114-125。
林映儒、鄭智馨、曾聰堯、王尚禮、郭鴻裕。2011。平地長期林地之土壤性質與有機碳量蓄積。台灣農業化學與食品科學,49: 260-274。
翁廷賜、賴森雄。1992。粉綠豆新品種台南五號之育成-台南區農業改良場研究彙報,28: 1-12。
張金城。2005。綠肥利用與農田地力增進。合理化施肥專刊。pp. 103-115。農業試驗所特刊。農業試驗所。臺中,臺灣。
陳彥宇、李文汕。2010。葉菜連作後對土壤物化特性之影響。興大園藝,35 (4):77-86。
陳琦玲、林木連、郭鴻裕、江志峰、劉滄棽、朱戩良。2000。土地利用改變對台灣農地土壤有機碳存量之影響評估。土壤與環境,3:362-378 。
郭鴻裕、朱戩良、江志峰、吳懷國。1995。台灣地區土壤有機質含量及有機資材資材之施用狀況。有機質肥料合理施用技術研討會專刊。pp.72-83。農業試驗所特刊。農業試驗所。臺中,臺灣。
連大進、游添榮、吳昭慧、吳振碩、王裕權。1998。黑豆新品種台南3號之育成。臺南區農業改良場研究彙報,35:14-24。
連大進、吳昭慧。2006。田菁。綠肥作物栽培利用手冊。pp.23-27。農委會農糧署。臺北市,臺灣。
連深。1995。有機質肥料之肥效試驗及結果判釋之若干觀點。有機質肥料合理施用技術研討會專刊。pp.110-125。農業試驗所特刊。農業試驗所。臺中,臺灣。
曾勝雄、高德錚。1995。薏苡台中1號之育成。臺中區農業改良場研究彙報,47:11-22。
詹碧連、王培珊、詹雅勛。2012。雲嘉南地區稻田耕作制度之研究。臺南區農業改良場研究彙報,59:15-25。
蔡宜峰。2010。有機白莧菜與有機玉米輪作下施用有機肥料之影響效應。臺中區農業改良場研究彙報,107:25-36。
譚增偉、陳桂暖。2006。長期施用化學肥料與台灣土壤肥力及其生產力之關係。第六屆海峽兩岸土地與肥料學術交流研討會論文集。pp. 238-246。中華土壤肥料學會。臺中,臺灣。
譚增偉、陳桂暖。2011。長期不同耕作制度及作物殘體管理對土壤有機質含量的影響。台灣農業研究,60: 115-124。
譚增偉、陳桂暖。2011。比較長期水旱田輪作或連作施用硫酸銨對於土壤酸鹼值之影響。台灣農業研究,61:355-360。
譚增偉、陳桂暖。2013。休耕田轉作玉米之土壤與營養管理。理化施肥輔導成果研討會論文專集。pp. 33-79。農業試驗所特刊。農業試驗所。臺中,臺灣。
譚增偉、劉禎祺、陳桂暖。2005。土壤肥力與合理化施肥。合理化施肥專刊。pp. 43-62。農業試驗所特刊。農業試驗所。臺中,臺灣。
Alef K. 1993. Estimation of microbial biomass in soil - a critical-view. Soil Science and Plant Nutrition, 156: 109-114.
Badalucco L., P. Nannipieri, S. Grego and C. Ciardi. 1990. Microbial biomass and anthrone-reactive carbon in soils with different organic-matter contents. Soil Biology and Biochemistry, 22: 899-904.
Ball D. F. 1964. Loss-on-ignition as estimate of Organic matter + Organic carbon in non-calcareous soils. Journal of Soil Science, 15: 84-89.
Bandick A. K. and R. P. Dick. 1999. Field management effects on soil enzyme activities. Soil Biology and Biochemistry, 31: 1471-1479.
Blagodatskaya E., N. Khomyakov, O. Myachina, I. Bogomolova, S. Blagodatsky and Y. Kuzyakov. 2014. Microbial interactions affect sources of priming induced by cellulose. Soil Biology & Biochemistry, 74: 39-49.
Bossio D. A., K. M. Scow, N. Gunapala and K. J. Graham. 1998. Determinants of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microbial Ecology, 36: 1-12.
Brady, N. C., R. R. Weil. 2008. The Collodial Fraction: Seat of Soil Chemical and Physical Activity. In The Nature and Properties of Soils. V. R. Anthony, ed. Pearson Prentice Hall, New Jersey, USA.
Bremner, J. M. 1965. Total nitrogen, inorganic forms of nitrogen, organic forms of nitrogen. In C. A. Black (ed.) Methods of soil analysis. Part 2. Mineralogical Methods-Agronomy Monograph. Madison, WI.
Bremner, J. M., and C. S. Mulvaney. 1982. Salicy acid-thiosulfate nodification on Kjeldahl method to include nitrite and nitrate. pp. 1149-1178. In Mehtods of Soil Analysis. Part 2. Black, C. A. (ed.) Madison, Wisconsin, USA.
Burns R. G. 1982. Enzyme-activity in soil - location and a possible role in microbial ecology. Soil Biology and Biochemistry, 14: 423-427.
Chaer G. M., D. D. Myrold and P. J. Bottomley. 2009. A soil quality index based on the equilibrium between soil organic matter and biochemical properties of undisturbed coniferous forest soils of the pacific northwest. Soil Biology and Biochemistry, 41: 822-830.
Chander K., J. Dyckmans, R. G. Joergensen, B. Meyer and M. Raubuch. 2001. Different sources of heavy metals and their long-term effects on soil microbial properties. Biology and Fertility of Soils, 34: 241-247.
Chang E. H., C. H. Wang, C. L. Chen and R. S. Chung. 2014. Effects of long-term treatments of different organic fertilizers complemented with chemical n fertilizer on the chemical and biological properties of soils. Soil Science and Plant Nutrition, 60: 499-511.
Chen M. N., X. Li, Q. L. Yang, X. Y. Chi, L. J. Pan, N. Chen, Z. Yang, T. Wang, M. A. Wang and S. L. Yu. 2014. Dynamic succession of soil bacterial community during continuous cropping of peanut (arachis hypogaea l.). PLoS One 9 (11).
Crecchio C., M. Curci, A. Pellegrino, P. Ricciuti, N. Tursi and P. Ruggiero. 2007. Soil microbial dynamics and genetic diversity in soil under monoculture wheat grown in different long-term management systems. Soil Biology and Biochemistry, 39: 1391-1400.
Dalal R. C. 1998. Soil microbial biomass - what do the numbers really mean? Australian Journal of Experimental Agriculture, 38: 649-665.
Das A., R. Lal, D. P. Patel, R. G. Idapuganti, J. Layek, S. V. Ngachan, P. K. Ghosh, J. Bordoloi and M. Kumar. 2014. Effects of tillage and biomass on soil quality and productivity of lowland rice cultivation by small scale farmers in north eastern India. Soil and Tillage Research, 143: 50-58.
Dick, R. P. 2011. The Collodial Fraction : Surfur Cycle Enzymes and Carbonhydrate Hydrolases. pp.133-137. Methods of soil enzymology. Madison: Soil Science Society of America. R. P. Dick (ed.). Pearson Prentice Hall, New Jersey, USA.
Dick R. P., P. E. Rasmussen and E. A. Kerle. 1988. Influence of long-term residue management on soil enzyme-activities in relation to soil chemical properties of a wheat-fallow system. Biology and Fertility of Soils, 6: 159-164.
Drissner D., H. Blum, D. Tscherko and E. Kandeler. 2007. Nine years of enriched CO2 changes the function and structural diversity of soil microorganisms in a grassland. European Journal of Soil Science, 58: 260-269.
Elfstrand S., B. Bath and A. Martensson. 2007a. Influence of various forms of green manure amendment on soil microbial community composition, enzyme activity and nutrient levels in leek. Applied Soil Ecology, 36: 70-82.
Elfstrand S., K. Hedlund and A. Martensson. 2007b. Soil enzyme activities, microbial community composition and function after 47 years of continuous green manuring. Applied Soil Ecology, 35: 610-621.
Gee, G. W. and J. W. Bauder.1986. Particle-size analysis. pp.383-411. In Methods of soil analysis. Part 1. Mineralogical Methods-Agronomy Monograph 9, 2nd (Edition) , A. Klute (ed.). Madison, WI .
Hagerty S. B., K. J. van Groenigen, S. D. Allison, B. A. Hungate, E. Schwartz, G. W. Koch, R. K. Kolka and P. Dijkstra. 2014. Accelerated microbial turnover but constant growth efficiency with warming in soil. Nature Climate Change, 4: 903-906.
Herencia J. F., J. C. Ruiz-Porras, S. Melero, P. A. Garcia-Galavis, E. Morillo and C. Maqueda. 2007. Comparison between organic and mineral fertilization for soil fertility levels, crop macronutrient concentrations, and yield. Agronomy Journal, 99: 973-983.
Heuer H., M. Krsek, P. Baker, K. Smalla and E. M. H. Wellington. 1997. Analysis of actinomycete communities by specific amplification of genes encoding 16s rrna and gel-electrophoretic separation in denaturing gradients. Applied and Environmental Microbiology, 63: 3233-3241.
Higashi T., M. Yunghui, M. Komatsuzaki, S. Miura, T. Hirata, H. Araki, N. Kaneko and H. Ohta. 2014. Tillage and cover crop species affect soil organic carbon in andosol, kanto, japan. Soil and Tillage Research, 138: 64-72.
Inubushi K. and S. Acquaye. 2004. Role of microbial biomass in biogeochemical processes in paddy soil environments. Soil Science and Plant Nutrition, 50: 793-805.
Jaggi I. K., R. K. Gupta and M. B. Russell. 1976. Seasonal-changes in soil-water content and water-potential profiles in fallow land and in fields under irrigated and rainfed wheat. Indian Journal of Agricultural Sciences, 46: 493-502.
Joergensen R. G. and P. C. Brookes. 1990. Ninhydrin-reactive nitrogen measurements of microbial biomass in 0.5 M K2SO4 soil extracts. Soil Biology and Biochemistry, 22: 1023-1027.
Kalembas S. J. and Jenkinso D. S. 1973. Comparative study of titrimetric and gravimetric methods for determination of organic carbon in soil. Journal of the Science of Food and Agriculture, 24: 1085-1090.
Kandeler, E. and H. Gerner. 1988 Short-term assay of soil urease using chlorimetric determination of ammonium. Biology and Fertility of Soils, 8: 199-202.
Keeney, D. R. and D. W. Nelson. 1982. Modified Criess-Ilosvay method., pp. 684-687. In “Methods of Soil Analysis Part 2 Chemical and Microbiological Properties” 2nd (Edition), A. L. Page (ed.). Academic Press, New York, USA.
Klose S. and M. A. Tabatabai. 2002. Response of phosphomonoesterases in soils to chloroform fumigation. Journal of Plant Nutrition and Soil Science, 165: 429-434.
Larkin R. P. 2008. Relative effects of biological amendments and crop rotations on soil microbial communities and soilborne diseases of potato. Soil Biology and Biochemistry, 40: 1341-1351.
Limon-Ortega A., B. Govaerts and K. D. Sayre. 2009. Crop rotation, wheat straw management, and chicken manure effects on soil quality. Agronomy Journal, 101: 600-606.
Lin Y. L., J. A. Fu and X. Song. 2010. Purification and characterization of an extracellular cholesterol oxidase from a bordetella species. Process Biochemistry, 45: 1563-1569.
Malhi S. S., M. Nyborg and J. T. Harapiak. 1998. Effects of long-term n fertilizer-induced acidification and liming on micronutrients in soil and in bromegrass hay. Soil and Tillage Research, 48: 91-101.
May L. A., B. Smiley and M. G. Schmidt. 2001. Comparative denaturing gradient gel electrophoresis analysis of fungal communities associated with whole plant corn silage. Canadian Journal of Microbiology, 47: 829-841.
Maynard, D. G., and Y. P. Kalra. 1993. 'Nitrate and exchangeable ammonium nitrogen.' pp.25-38. In:Soil sampling and methods of analysis. Lewis Publ., Boca Raton, FL.
Mehlich, A. 1985. Melish 3 soil test extractant: extractant: Amodification of Melish 2 extractant. Communications in Soil Science and Plant Analysis, 15: 1409-1416.
Michaelson G. J., C. L. Ping and G. A. Mitchell. 1987. Correlation of mehlich-3, bray-1, and ammonium acetate extractable P, K, Ca, and Mg for Alaska agricultural soils. Communications in Soil Science and Plant Analysis, 18: 1003-1015.
Moeskops B., Sukristiyonubowo, D. Buchan, S. Sleutel, L. Herawaty, E. Husen, R. Saraswati, D. Setyorini and S. De Neve. 2010. Soil microbial communities and activities under intensive organic and conventional vegetable farming in west java, Indonesia. Applied Soil Ecology, 45: 112-120.
Murphy, J., and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in nature waters. Analytica chimica acta, 27: 31-46.
Muyzer G., E. C. Dewaal and A. G. Uitterlinden. 1993. Profiling of complex microbial-populations by denaturing gradient gel-electrophoresis analysis of polymerase chain reaction-amplified genes-coding for 16S ribosomal-RNA. Applied and Environmental Microbiology, 59: 695-700.
Ngosong C., M. Jarosch, J. Raupp, E. Neumann and L. Ruess. 2010. The impact of farming practice on soil microorganisms and arbuscular mycorrhizal fungi: Crop type versus long-term mineral and organic fertilization. Applied Soil Ecology, 46: 134-142.
Nubel U., B. Engelen, A. Felske, J. Snaidr, A. Wieshuber, R. I. Amann, W. Ludwig and H. Backhaus. 1996. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. Journal of Bacteriology, 178: 5636-5643.
Ouda S. A., A. M. Taha and M. M. Ibrahim. 2015. Water management for maize grown in sandy soil under climate change conditions. Archives of Agronomy and Soil Science, 61: 299-311.
Paustian, K., Brenner, J., Easter, M., Killian, K., Ogle, S., Olson, C., Schuler, J., Vining, R., Williams, S. 2009. Counting carbon on the farm: Reaping the benefits of carbon offset programs. Journal of Soil and Water Conservation, 64: 36-40.
Purcena L. L. A., M. C. B. Di Medeiros, W. M. Leandro and K. F. Fernandes. 2014. Effects of organic and conventional management of sugar cane crop on soil physicochemical characteristics and phosphomonoesterase activity. Journal of Agricultural and Food Chemistry, 62: 1456-1463.
Raubuch M., K. Behr, K. Roose and R. G. Joergensen. 2010. Specific respiration rates, adenylates, and energy budgets of soil microorganisms after addition of transgenic bt-maize straw. Pedobiologia, 53: 191-196.
Rhoades, J. D. 1996. Salinity : Electrical Conductivity and Total Desolved Solids. pp. 419-420. In Methods of Soil Analysis. Part 3. Chemical Methods. D. L. Sparks (ed.) Soil Science Society of America, WI, USA.
Salazar S., L. E. Sanchez, J. Alvarez, A. Valverde, P. Galindo, J. M. Igual, A. Peix and I. Santa-Regina. 2011. Correlation among soil enzyme activities under different forest system management practices. Ecological Engineering, 37: 1123-1131.
Schlesinger W. H. and J. A. Andrews. 2000. Soil respiration and the global carbon cycle. Biogeochemistry, 48: 7-20.
Sharma A. R. and U. K. Behera. 2009. Nitrogen contribution through Sesbania green manure and dual-purpose legumes in maize-wheat cropping system: Agronomic and economic considerations. Plant and Soil, 325: 289-304.
Sheffield V. C., D. R. Cox, L. S. Lerman and R. M. Myers. 1989. Attachment of a 40-base-pair GC-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain-reaction results in improved detection of single-base changes. Proceedings of the National Academy of Sciences of the United States of America, 86: 232-236.
Shi Y., R. Lalande, C. Hamel, N. Ziadi, B. Gagnon and Z. Hu. 2013. Seasonal variation of microbial biomass, activity, and community structure in soil under different tillage and phosphorus management practices. Biology and Fertility of Soils, 49: 803-818.
Shi Y. C., R. Lalande, N. Ziadi, M. Sheng and Z. Y. Hu. 2012. An assessment of the soil microbial status after 17 years of tillage and mineral P fertilization management. Applied Soil Ecology, 62: 14-23.
Smith J.L., Collins H.P. 2007. Management of organisms and their processes in soils. pp 471-502. In Soil microbiology, ecology, and biochemistry, third (Edition), EA Paul (ed.). Academic Press, Salt Lake City.
Stark C., L. M. Condron, A. Stewart, H. J. Di and M. O'Callaghan. 2007. Effects of past and current crop management on soil microbial biomass and activity. Biology and Fertility of Soils, 43: 531-540.
Stevenson F. J. 1982. Organic forms of soil nitrogen. pp.67-122. In: Nitrogen in agriculture soils. American Society of Agronomy, Soil Science Society of America. F. J. Stevenson (ed.) Mudison, Wisconsin, USA.
Suzuki C., M. Takenaka, N. Oka, K. Nagaoka and T. Karasawa. 2012. A DGGE analysis shows that crop rotation systems influence the bacterial and fungal communities in soils. Soil Science and Plant Nutrition, 58: 288-296.
Tabatabai, M. A. and J. M. Bremner. 1969. Use of p-nitrophenyl phosphate for assay soil phophatase activity. Soil Biology and Biochemistry, 1: 301-307.
Tabatabai, M. A. and J. M. Bremner. 1970. Factors affecting soil arylsulfatase activity. Soil Science Society of America Proceedings, 34: 427-429.
Tabatabai, M. A. 1982. Soil enzymes. pp. 903-947. In Page, Methods of Soil Part 2 Chemical and Microbiological Properties. A. L. (ed.) Academic Press, New York, USA.
Tabatabai, M. A. 1994. Soil enzyme . pp. 775-833. In Weaver, R. W. (ed.) Methods of Soil Analysis, Madison, Wisconsin, USA
Tadano, T., and H. Sakai, 1991. Secretion of acid phosphatase by the roots of several crop species under phosphorus-deficient conditions. Soil Science and Plant Nutrition, 37:129–140.
Thalmann, A. 1968. Zur Methodil der Bestimmuning der DehydorgenaseaktuvitAt im Boden mettels triphenytetrazoliumchlorid (TTC). Landwirtsch. Forsch, 21: 249-258.
Thomas, T. D., R. D. Batt. 1969. Degradation of cell constituents by starved Streptococcus lactis in relation to survival. Journal of general microbiology, 58(3): 347-362.
Thomas, G.W. 1996. Soil pH and soil acidity. pp. 475-490. In Methods of Soil Analysis, Part 3, Chemical Methods. D.L. Sparks et al. (ed.) American Sociological Association and Soil Science Society of America. Madison. USA.
Vance E. D., P. C. Brookes and D. S. Jenkinson. 1987. An extraction method for measuring soil microbial biomass-C. Soil Biology and Biochemistry, 19: 703-707.
Velmourougane K., M. V. Venugopalan, T. Bhattacharyya, D. Sarkar, D. K. Pal, A. Sahu, S. K. Ray, K. M. Nair, J. Prasad and R. S. Singh. 2013. Soil dehydrogenase activity in agro-ecological sub regions of black soil regions in india. Geoderma, 197: 186-192.
Wang Y., C. Tu, C. Y. Li, L. Tredway, D. Lee, M. Snell, X. C. Zhang and S. J. Hu. 2014. Turfgrass management duration and intensities influence soil microbial dynamics and carbon sequestration. International Journal of Agriculture and Biology , 16: 139-145.
Woese, C. R. 1987. Bacterial evolution. Microbiological reviews, 51: 221-271.
Xu Z. W., G. R. Yu, X. Y. Zhang, J. P. Ge, N. P. He, Q. F. Wang and D. Wang. 2015. The variations in soil microbial communities, enzyme activities and their relationships with soil organic matter decomposition along the northern slope of changbai mountain. Applied Soil Ecology, 86: 19-29.
Yeates G. W., D. A. Wardle and R. N. Watson. 1999. Responses of soil nematode populations, community structure, diversity and temporal variability to agricultural intensification over a seven-year period. Soil Biology and Biochemistry, 31: 1721-1733.
Yuan B. C. and D. X. Yue. 2012. Soil microbial and enzymatic activities across a chronosequence of chinese pine plantation development on the loess plateau of china. Pedosphere, 22: 1-12.
Zelles, L., Bai, Q. Y., Ma, R. X., Rackwitz, R., Winter, K. and Beese, F. 1994. Microbial biomass, metabolic activity and nutritional status determined from fatty acid patterns and poly hydroxybutyrate in agriculturally managed soils. Soil Biology and Biochemistry,26: 439-446.
Zhao B. Z., J. Chen, J. B. Zhang and S. W. Qin. 2010. Soil microbial biomass and activity response to repeated drying-rewetting cycles along a soil fertility gradient modified by long-term fertilization management practices. Geoderma, 160: 218-224.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54915-
dc.description.abstract近年來我國稻米生產過剩,但雜糧卻必須仰賴進口,藉由水稻轉作雜糧旱作,可緩解減緩灌溉水不足的壓力,同時提高糧食自給率。本研究旨在探討嘉南地區活化稻田休耕地轉作生產雜糧作物,不同的旱作輪作系統對土壤化學與生物性質之影響,以瞭解是否有適當的旱作輪作模式。本研究共設定六種輪作系統,分別為:處理 1. 甜玉米─田菁─胡麻 (MSS);處理 2. 甜玉米─田菁─黑豆 (MSB);處理 3. 綠豆─田菁─甜玉米 (GSM);處理 4. 黑豆─田菁─甜玉米 (BSM);處理 5. 紅高粱─田菁─綠豆 (SSG);處理 6. 薏苡─田菁─胡麻 (ASS)。採完全隨機區集設計 (RCBD),每處理三重複。分別在輪作制度實作後第二年 (2013 年) 及第三年 (2014 年) 採集土壤樣品,進行化學及微生物性質分析。結果顯示處理間在土壤化學及微生物性質無顯著之差異,但三年試驗後,土壤pH、有機碳與總氮含量下降。試驗第三年去氫酶活性、呼吸作用及微生物生質碳與氮含量皆降低,顯示短期旱作輪作田間試驗使土壤整體微生物活性與生質量下降;然而,與土壤氮、磷、硫循環相關之酵素 (尿素酶、酸性及鹼性磷酸單酯酶、芳香基硫酸酯酶) 活性提高,由 PLFA 組成分析結果顯示土壤可能出現微生物逆境,短期旱作輪作田間試驗不利於土壤微生物族群生長,而 DGGE 分析結果中顯示不同旱作輪作處理對土壤細菌及真菌族群有不同之影響。由土壤 PLFA 組成及 DGGE 分析結果發現旱田與連續水田栽培之對照組中土壤細菌及真菌族群組成不同,顯示水分管理對微生物族群影響甚鉅。革蘭氏陽性與陰性菌族群、細菌與真菌族群之間可能存在競爭或互為消長之關係。總而言之,本試驗結果說明短期旱作輪作導致土壤 pH 值、有機碳及總氮含量下降且不利於土壤微生物族群生長。zh_TW
dc.description.abstractOwing to the deficiency of the irrigation water and the less anount of rice consumption, alterantive to decrease rice production is to developan an environment-friendly upland cropping systems. The objective of this study was to examine the effects of different upland rotation systems on the chemical and biological properities of soil. There were six types of one-year upland rotation systems, including: 1. Maize followed by sesbania and sesame (denoted as MSS); 2. Maize followed by sesbania and black soybean (MSB); 3. Mung bean followed by sesbania and maize (GSM); 4. Black soybean followed by sesbania and maize (BSM); 5. Sorghum followed by sesbania and Mung bean (SSG); 6. Adlay followed by sesbania and sesame (ASS). The soil samples were taken in the end of the second and the third year of cropping. The chemical and biological properities were analysized. The results showed the soil fertility decreased in all systems after three years of cropping. There was no difference in the soil microbial and chemical properties, including pH, organic carbon and total nitrogen contents of soil, between six systems. After three years of upland cropping, the soil microbial biomass carbon and nitrogen decreased. Enzyme activities of soils increased in response to soil nutrient deficiency, including acid/alkaline phosphomonoesterase, urease and arylsulphatase. However, the activity of dehydrogenase decreased. The bacteria and fungi populations were different between upland and paddy soil, which indicated that the soil microbial properties significantly affected by the soil water management. Furthermore, the microbial interaction led to the population growth and declined as the result of competition and synergism. In summary, the results indicate that short-term upland rotation resulted in the reduction of the soil nutrients and the growth of soil microbial community.en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:41:28Z (GMT). No. of bitstreams: 1
ntu-104-R00623019-1.pdf: 2422282 bytes, checksum: 38b7a39ca1d82dcbae084719c6f78a29 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
摘要 iii
Abstract iv
目錄 v
圖目錄 ix
表目錄 x
第一章 前言 2
第二章 文獻回顧 4
2.1 旱作輪作系統 4
2.1.1 雜糧作物 4
2.1.2 作物輪作 4
2.1.3 綠肥田菁 5
2.2 土壤酵素 6
2.2.1 去氫酶 7
2.2.2 β–配醣酶 7
2.2.3 尿素酶 8
2.2.4 酸性與鹼性磷酸單酯酶 8
2.2.5 芳香基硫酸酯酶 8
2.3 土壤微生物性質 9
2.3.1 土壤呼吸作用 9
2.3.2 土壤微生物生質碳與氮 10
2.3.3 微生物群落結構分析:磷脂質脂肪酸分析法 11
2.3.4 微生物群落分析:DNA分子序列分析法 12
第三章 材料與方法 15
3.1 試驗設計 15
3.2 輪作系統栽培之作物品種、栽培期程及栽培方法 15
3.2.1 玉米 15
3.2.2 薏苡 16
3.2.3 紅高粱 17
3.2.4 胡麻 17
3.2.5 綠豆 18
3.2.6 黑豆 19
3.2.7 田菁 20
3.2.8 作物栽培期程及栽培方法 20
3.3 氣候 21
3.4 作物輪作系統產量、產值與節水效益 23
3.4.1 產量、產值與收益 23
3.4.2 綠肥田菁鮮草產量 25
3.4.3 旱作輪作系統節水效益 26
3.5 土壤樣品 27
3.6 土壤基本性質分析 28
3.6.1 土壤質地:比重計法 28
3.6.2 土壤pH值:玻璃電極法 28
3.6.3 土壤飽和水導電度 29
3.6.4 土壤有機質與有機碳 29
3.6.5 土壤總氮 29
3.6.6 土壤硝酸態氮與銨態氮 29
3.6.7 土壤Mehlich III 可萃取性陽離子 30
3.6.8 土壤Mehlich III 可萃取性磷 31
3.7 土壤酵素分析 31
3.7.1 去氫酶 31
3.7.2 β–配醣酶 32
3.7.3 尿素酶 33
3.7.4 酸性和鹼性磷酸單酯酶 35
3.7.5 芳香基硫酸酯酶 36
3.8 土壤微生物性質分析 36
3.8.1 土壤呼吸作用 36
3.8.2 土壤微生物生質碳與氮 37
3.8.3 微生物群落結構分析:磷脂質脂肪酸分析法 40
3.8.4 微生物群落分析:DNA分子序列分析法 42
3.9 統計分析 47
第四章 結果與討論 48
4.1 土壤基本化學性質 48
4.1.1 旱作輪作系統對土壤 pH 值之影響 48
4.1.2 旱作輪作系統對土壤 EC 值之影響 48
4.1.3 旱作輪作系統對土壤有機碳之影響 49
4.1.4 旱作輪作系統對土壤總氮之影響 50
4.1.5 旱作輪作系統對土壤銨態氮及硝酸態氮之影響 51
4.1.6 旱作輪作系統對土壤碳氮比之影響 52
4.1.7 旱作輪作系統對土壤 Mehlich III可萃取磷之影響 52
4.2 土壤酵素活性 56
4.2.1 去氫酶 56
4.2.2 β–配醣酶 57
4.2.3 尿素酶 57
4.2.4 酸性與鹼性磷酸單酯酶 58
4.2.5 芳香基硫酸酯酶 59
4.3 土壤微生物性質 62
4.3.1 土壤呼吸作用 62
4.3.2 土壤微生物生質碳與氮 63
4.4 土壤微生物種類及群落結構 66
4.4.1 微生物群落結構:磷脂質脂肪酸分析法 66
4.4.2 微生物群落:DNA 分子序列分析法 73
第五章 結論 83
第六章 參考文獻 84
附錄 96
dc.language.isozh-TW
dc.subject土壤酵素zh_TW
dc.subject旱田zh_TW
dc.subject土壤微生物活性zh_TW
dc.subject輪作zh_TW
dc.subject土壤呼吸作用zh_TW
dc.subject微生物生質碳與氮zh_TW
dc.subject磷脂質脂肪酸分析zh_TW
dc.subject變性梯度膠體電泳zh_TW
dc.subjectmicrobial biomass carbon and nitrogenen
dc.subjectuplanden
dc.subjectsoil enzymeen
dc.subjectsoil microbial activityen
dc.subjectPLFAen
dc.subjectsoil respirationen
dc.subjectrotationen
dc.subjectDGGEen
dc.title不同旱作輪作系統對土壤化學性質、微生物活性及群落結構之影響zh_TW
dc.titleThe effects of different upland rotation systems on soil chemical properties, microbial activity, and community structureen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee黃良得(Lean-Teik Ng),張義宏(Ed-Haun Chang),陳仁炫,黃裕銘
dc.subject.keyword旱田,輪作,土壤微生物活性,土壤酵素,土壤呼吸作用,微生物生質碳與氮,磷脂質脂肪酸分析,變性梯度膠體電泳,zh_TW
dc.subject.keywordupland,rotation,soil microbial activity,soil enzyme,soil respiration,microbial biomass carbon and nitrogen,PLFA,DGGE,en
dc.relation.page97
dc.rights.note有償授權
dc.date.accepted2015-02-12
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
2.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved