請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54903完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡明道(Ming-Daw Tsai) | |
| dc.contributor.author | Wen-An Pan | en |
| dc.contributor.author | 潘玟銨 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:41:08Z | - |
| dc.date.available | 2015-06-14 | |
| dc.date.copyright | 2015-03-16 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-02-12 | |
| dc.identifier.citation | 1. Vermeulen, K., Van Bockstaele, D. R., and Berneman, Z. N. (2003) The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer, Cell proliferation 36, 131-149.
2. Hochegger, H., Takeda, S., and Hunt, T. (2008) Cyclin-dependent kinases and cell-cycle transitions: does one fit all?, Nature reviews. Molecular cell biology 9, 910-916. 3. Lee, W. H., Bookstein, R., Hong, F., Young, L. J., Shew, J. Y., and Lee, E. Y. (1987) Human retinoblastoma susceptibility gene: cloning, identification, and sequence, Science 235, 1394-1399. 4. Huang, H. J., Yee, J. K., Shew, J. Y., Chen, P. L., Bookstein, R., Friedmann, T., Lee, E. Y., and Lee, W. H. (1988) Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer cells, Science 242, 1563-1566. 5. Harbour, J. W., and Dean, D. C. (2000) Rb function in cell-cycle regulation and apoptosis, Nature cell biology 2, E65-67. 6. Sherr, C. J., and McCormick, F. (2002) The RB and p53 pathways in cancer, Cancer cell 2, 103-112. 7. Peart, M. J., and Prives, C. (2006) Mutant p53 gain of function: the NF-Y connection, Cancer cell 10, 173-174. 8. Zhang, Y., and Lu, H. (2009) Signaling to p53: ribosomal proteins find their way, Cancer cell 16, 369-377. 9. Oliner, J. D., Pietenpol, J. A., Thiagalingam, S., Gyuris, J., Kinzler, K. W., and Vogelstein, B. (1993) Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53, Nature 362, 857-860. 10. Haupt, Y., Maya, R., Kazaz, A., and Oren, M. (1997) Mdm2 promotes the rapid degradation of p53, Nature 387, 296-299. 11. Wu, X., Bayle, J. H., Olson, D., and Levine, A. J. (1993) The p53-mdm-2 autoregulatory feedback loop, Genes & development 7, 1126-1132. 12. Tokino, T., and Nakamura, Y. (2000) The role of p53-target genes in human cancer, Critical reviews in oncology/hematology 33, 1-6. 13. Khoo, K. H., Verma, C. S., and Lane, D. P. (2014) Drugging the p53 pathway: understanding the route to clinical efficacy, Nature reviews. Drug discovery 13, 217-236. 14. Itahana, K., Bhat, K. P., Jin, A., Itahana, Y., Hawke, D., Kobayashi, R., and Zhang, Y. (2003) Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation, Molecular cell 12, 1151-1164. 15. Kamijo, T., Zindy, F., Roussel, M. F., Quelle, D. E., Downing, J. R., Ashmun, R. A., Grosveld, G., and Sherr, C. J. (1997) Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF, Cell 91, 649-659. 16. Pomerantz, J., Schreiber-Agus, N., Liegeois, N. J., Silverman, A., Alland, L., Chin, L., Potes, J., Chen, K., Orlow, I., Lee, H. W., Cordon-Cardo, C., and DePinho, R. A. (1998) The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53, Cell 92, 713-723. 17. Bunz, F., Dutriaux, A., Lengauer, C., Waldman, T., Zhou, S., Brown, J. P., Sedivy, J. M., Kinzler, K. W., and Vogelstein, B. (1998) Requirement for p53 and p21 to sustain G2 arrest after DNA damage, Science 282, 1497-1501. 18. el-Deiry, W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., Trent, J. M., Lin, D., Mercer, W. E., Kinzler, K. W., and Vogelstein, B. (1993) WAF1, a potential mediator of p53 tumor suppression, Cell 75, 817-825. 19. Abbas, T., and Dutta, A. (2009) p21 in cancer: intricate networks and multiple activities, Nature reviews. Cancer 9, 400-414. 20. Sheahan, S., Bellamy, C. O., Treanor, L., Harrison, D. J., and Prost, S. (2004) Additive effect of p53, p21 and Rb deletion in triple knockout primary hepatocytes, Oncogene 23, 1489-1497. 21. Paunesku, T., Mittal, S., Protic, M., Oryhon, J., Korolev, S. V., Joachimiak, A., and Woloschak, G. E. (2001) Proliferating cell nuclear antigen (PCNA): ringmaster of the genome, International journal of radiation biology 77, 1007-1021. 22. Lukas, J., Herzinger, T., Hansen, K., Moroni, M. C., Resnitzky, D., Helin, K., Reed, S. I., and Bartek, J. (1997) Cyclin E-induced S phase without activation of the pRb/E2F pathway, Genes & development 11, 1479-1492. 23. Dimri, G. P., Nakanishi, M., Desprez, P. Y., Smith, J. R., and Campisi, J. (1996) Inhibition of E2F activity by the cyclin-dependent protein kinase inhibitor p21 in cells expressing or lacking a functional retinoblastoma protein, Molecular and cellular biology 16, 2987-2997. 24. Boisvert, F. M., van Koningsbruggen, S., Navascues, J., and Lamond, A. I. (2007) The multifunctional nucleolus, Nature reviews. Molecular cell biology 8, 574-585. 25. Petfalski, E., Dandekar, T., Henry, Y., and Tollervey, D. (1998) Processing of the precursors to small nucleolar RNAs and rRNAs requires common components, Molecular and cellular biology 18, 1181-1189. 26. Hadjiolova, K. V., Nicoloso, M., Mazan, S., Hadjiolov, A. A., and Bachellerie, J. P. (1993) Alternative pre-rRNA processing pathways in human cells and their alteration by cycloheximide inhibition of protein synthesis, European journal of biochemistry / FEBS 212, 211-215. 27. Castle, C. D., Cassimere, E. K., Lee, J., and Denicourt, C. (2010) Las1L is a nucleolar protein required for cell proliferation and ribosome biogenesis, Molecular and cellular biology 30, 4404-4414. 28. Ruggero, D., and Pandolfi, P. P. (2003) Does the ribosome translate cancer?, Nature reviews. Cancer 3, 179-192. 29. Sirri, V., Hernandez-Verdun, D., and Roussel, P. (2002) Cyclin-dependent kinases govern formation and maintenance of the nucleolus, The Journal of cell biology 156, 969-981. 30. Pyronnet, S., and Sonenberg, N. (2001) Cell-cycle-dependent translational control, Current opinion in genetics & development 11, 13-18. 31. Henras, A. K., Plisson-Chastang, C., O'Donohue, M. F., Chakraborty, A., and Gleizes, P. E. (2014) An overview of pre-ribosomal RNA processing in eukaryotes, Wiley interdisciplinary reviews. RNA. 32. Miller, O. L., Jr., and Beatty, B. R. (1969) Visualization of nucleolar genes, Science 164, 955-957. 33. Johnston, G. C., Pringle, J. R., and Hartwell, L. H. (1977) Coordination of growth with cell division in the yeast Saccharomyces cerevisiae, Experimental cell research 105, 79-98. 34. Hartwell, L. H. (1971) Genetic control of the cell division cycle in yeast. II. Genes controlling DNA replication and its initiation, Journal of molecular biology 59, 183-194. 35. White, R. J. (2005) RNA polymerases I and III, growth control and cancer, Nature reviews. Molecular cell biology 6, 69-78. 36. Lempiainen, H., and Shore, D. (2009) Growth control and ribosome biogenesis, Current opinion in cell biology 21, 855-863. 37. Bernstein, K. A., Bleichert, F., Bean, J. M., Cross, F. R., and Baserga, S. J. (2007) Ribosome biogenesis is sensed at the Start cell cycle checkpoint, Molecular biology of the cell 18, 953-964. 38. Pestov, D. G., Strezoska, Z., and Lau, L. F. (2001) Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: effects of nucleolar protein Bop1 on G(1)/S transition, Molecular and cellular biology 21, 4246-4255. 39. Grewal, S. S., Evans, J. R., and Edgar, B. A. (2007) Drosophila TIF-IA is required for ribosome synthesis and cell growth and is regulated by the TOR pathway, The Journal of cell biology 179, 1105-1113. 40. Johnston, G. C., Ehrhardt, C. W., Lorincz, A., and Carter, B. L. (1979) Regulation of cell size in the yeast Saccharomyces cerevisiae, Journal of bacteriology 137, 1-5. 41. Henras, A. K., Soudet, J., Gerus, M., Lebaron, S., Caizergues-Ferrer, M., Mougin, A., and Henry, Y. (2008) The post-transcriptional steps of eukaryotic ribosome biogenesis, Cellular and Molecular Life Sciences 65, 2334-2359. 42. Donati, G., Montanaro, L., and Derenzini, M. (2012) Ribosome biogenesis and control of cell proliferation: p53 is not alone, Cancer research 72, 1602-1607. 43. Li, J., Yu, L., Zhang, H., Wu, J., Yuan, J., Li, X., and Li, M. (2009) Down-regulation of pescadillo inhibits proliferation and tumorigenicity of breast cancer cells, Cancer science 100, 2255-2260. 44. Golomb, L., Volarevic, S., and Oren, M. (2014) p53 and ribosome biogenesis stress: The essentials, FEBS letters 588, 2571-2579. 45. Bursac, S., Brdovcak, M. C., Donati, G., and Volarevic, S. (2014) Activation of the tumor suppressor p53 upon impairment of ribosome biogenesis, Biochimica et biophysica acta 1842, 817-830. 46. Iapalucci-Espinoza, S., and Franze-Fernandez, M. T. (1979) Effect of protein synthesis inhibitors and low concentrations of actinomycin D on ribosomal RNA synthesis, FEBS letters 107, 281-284. 47. Danilova, N., Sakamoto, K. M., and Lin, S. (2008) Ribosomal protein S19 deficiency in zebrafish leads to developmental abnormalities and defective erythropoiesis through activation of p53 protein family, Blood 112, 5228-5237. 48. Donati, G., Peddigari, S., Mercer, C. A., and Thomas, G. (2013) 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint, Cell reports 4, 87-98. 49. Sloan, K. E., Bohnsack, M. T., and Watkins, N. J. (2013) The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress, Cell reports 5, 237-247. 50. Fumagalli, S., Ivanenkov, V. V., Teng, T., and Thomas, G. (2012) Suprainduction of p53 by disruption of 40S and 60S ribosome biogenesis leads to the activation of a novel G2/M checkpoint, Genes & development 26, 1028-1040. 51. Macias, E., Jin, A., Deisenroth, C., Bhat, K., Mao, H., Lindstrom, M. S., and Zhang, Y. (2010) An ARF-independent c-MYC-activated tumor suppression pathway mediated by ribosomal protein-Mdm2 Interaction, Cancer cell 18, 231-243. 52. Iadevaia, V., Caldarola, S., Biondini, L., Gismondi, A., Karlsson, S., Dianzani, I., and Loreni, F. (2010) PIM1 kinase is destabilized by ribosomal stress causing inhibition of cell cycle progression, Oncogene 29, 5490-5499. 53. Donati, G., Brighenti, E., Vici, M., Mazzini, G., Trere, D., Montanaro, L., and Derenzini, M. (2011) Selective inhibition of rRNA transcription downregulates E2F-1: a new p53-independent mechanism linking cell growth to cell proliferation, Journal of cell science 124, 3017-3028. 54. Dai, M. S., Arnold, H., Sun, X. X., Sears, R., and Lu, H. (2007) Inhibition of c-Myc activity by ribosomal protein L11, The EMBO journal 26, 3332-3345. 55. Peltonen, K., Colis, L., Liu, H., Trivedi, R., Moubarek, M. S., Moore, H. M., Bai, B., Rudek, M. A., Bieberich, C. J., and Laiho, M. (2014) A targeting modality for destruction of RNA polymerase I that possesses anticancer activity, Cancer cell 25, 77-90. 56. Montanaro, L., Trere, D., and Derenzini, M. (2008) Nucleolus, ribosomes, and cancer, The American journal of pathology 173, 301-310. 57. Chan, J. C., Hannan, K. M., Riddell, K., Ng, P. Y., Peck, A., Lee, R. S., Hung, S., Astle, M. V., Bywater, M., Wall, M., Poortinga, G., Jastrzebski, K., Sheppard, K. E., Hemmings, B. A., Hall, M. N., Johnstone, R. W., McArthur, G. A., Hannan, R. D., and Pearson, R. B. (2011) AKT promotes rRNA synthesis and cooperates with c-MYC to stimulate ribosome biogenesis in cancer, Science signaling 4, ra56. 58. van Riggelen, J., Yetil, A., and Felsher, D. W. (2010) MYC as a regulator of ribosome biogenesis and protein synthesis, Nature reviews. Cancer 10, 301-309. 59. Savkur, R. S., and Olson, M. O. (1998) Preferential cleavage in pre-ribosomal RNA byprotein B23 endoribonuclease, Nucleic acids research 26, 4508-4515. 60. Grisendi, S., Mecucci, C., Falini, B., and Pandolfi, P. P. (2006) Nucleophosmin and cancer, Nature reviews. Cancer 6, 493-505. 61. Barna, M., Pusic, A., Zollo, O., Costa, M., Kondrashov, N., Rego, E., Rao, P. H., and Ruggero, D. (2008) Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency, Nature 456, 971-975. 62. Derenzini, M., Montanaro, L., and Trere, D. (2009) What the nucleolus says to a tumour pathologist, Histopathology 54, 753-762. 63. Derenzini, M., Trere, D., Pession, A., Govoni, M., Sirri, V., and Chieco, P. (2000) Nucleolar size indicates the rapidity of cell proliferation in cancer tissues, The Journal of pathology 191, 181-186. 64. Goodpasture, C., and Bloom, S. E. (1975) Visualization of nucleolar organizer regions im mammalian chromosomes using silver staining, Chromosoma 53, 37-50. 65. Derenzini, M. (2000) The AgNORs, Micron 31, 117-120. 66. Narla, A., and Ebert, B. L. (2010) Ribosomopathies: human disorders of ribosome dysfunction, Blood 115, 3196-3205. 67. Amsterdam, A., Sadler, K. C., Lai, K., Farrington, S., Bronson, R. T., Lees, J. A., and Hopkins, N. (2004) Many ribosomal protein genes are cancer genes in zebrafish, PLoS biology 2, E139. 68. Gerdes, J., Schwab, U., Lemke, H., and Stein, H. (1983) Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation, International journal of cancer. Journal international du cancer 31, 13-20. 69. Schluter, C., Duchrow, M., Wohlenberg, C., Becker, M. H., Key, G., Flad, H. D., and Gerdes, J. (1993) The cell proliferation-associated antigen of antibody Ki-67: a very large, ubiquitous nuclear protein with numerous repeated elements, representing a new kind of cell cycle-maintaining proteins, The Journal of cell biology 123, 513-522. 70. Gerdes, J., Lemke, H., Baisch, H., Wacker, H. H., Schwab, U., and Stein, H. (1984) Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67, Journal of immunology 133, 1710-1715. 71. Endl, E., and Gerdes, J. (2000) Posttranslational modifications of the KI-67 protein coincide with two major checkpoints during mitosis, Journal of cellular physiology 182, 371-380. 72. Urruticoechea, A., Smith, I. E., and Dowsett, M. (2005) Proliferation marker Ki-67 in early breast cancer, Journal of clinical oncology : official journal of the American Society of Clinical Oncology 23, 7212-7220. 73. Scholzen, T., and Gerdes, J. (2000) The Ki-67 protein: from the known and the unknown, Journal of cellular physiology 182, 311-322. 74. Lee, H., Yuan, C. H., Hammet, A., Mahajan, A., Chen, E. S. W., Wu, M. R., Su, M. I., Heierhorst, J., and Tsai, M. D. (2008) Diphosphothreonine-specific interaction between an SQ/TQ cluster and an FHA domain in the Rad53-Dun1 kinase cascade, Molecular cell 30, 767-778. 75. Li, H., Byeon, I. J., Ju, Y., and Tsai, M. D. (2004) Structure of human Ki67 FHA domain and its binding to a phosphoprotein fragment from hNIFK reveal unique recognition sites and new views to the structural basis of FHA domain functions, Journal of molecular biology 335, 371-381. 76. Byeon, I. J., Li, H., Song, H., Gronenborn, A. M., and Tsai, M. D. (2005) Sequential phosphorylation and multisite interactions characterize specific target recognition by the FHA domain of Ki67, Nature structural & molecular biology 12, 987-993. 77. Kametaka, A., Takagi, M., Hayakawa, T., Haraguchi, T., Hiraoka, Y., and Yoneda, Y. (2002) Interaction of the chromatin compaction-inducing domain (LR domain) of Ki-67 antigen with HP1 proteins, Genes to cells : devoted to molecular & cellular mechanisms 7, 1231-1242. 78. Bullwinkel, J., Baron-Luhr, B., Ludemann, A., Wohlenberg, C., Gerdes, J., and Scholzen, T. (2006) Ki-67 protein is associated with ribosomal RNA transcription in quiescent and proliferating cells, Journal of cellular physiology 206, 624-635. 79. Rahmanzadeh, R., Huttmann, G., Gerdes, J., and Scholzen, T. (2007) Chromophore-assisted light inactivation of pKi-67 leads to inhibition of ribosomal RNA synthesis, Cell proliferation 40, 422-430. 80. Traut, W., Endl, E., Garagna, S., Scholzen, T., Schwinger, E., Gerdes, J., and Winking, H. (2002) Chromatin preferences of the perichromosomal layer constituent pKi-67, Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology 10, 685-694. 81. Takagi, M., Nishiyama, Y., Taguchi, A., and Imamoto, N. (2014) Ki67 Antigen Contributes to the Timely Accumulation of Protein Phosphatase 1gamma on Anaphase Chromosomes, The Journal of biological chemistry. 82. Booth, D. G., Takagi, M., Sanchez-Pulido, L., Petfalski, E., Vargiu, G., Samejima, K., Imamoto, N., Ponting, C. P., Tollervey, D., Earnshaw, W. C., and Vagnarelli, P. (2014) Ki-67 is a PP1-interacting protein that organises the mitotic chromosome periphery, eLife 3, e01641. 83. Scholzen, T., Endl, E., Wohlenberg, C., van der Sar, S., Cowell, I. G., Gerdes, J., and Singh, P. B. (2002) The Ki-67 protein interacts with members of the heterochromatin protein 1 (HP1) family: a potential role in the regulation of higher-order chromatin structure, The Journal of pathology 196, 135-144. 84. Mahajan, A., Yuan, C., Lee, H., Chen, E. S., Wu, P. Y., and Tsai, M. D. (2008) Structure and function of the phosphothreonine-specific FHA domain, Science signaling 1, re12. 85. Takagi, M., Sueishi, M., Saiwaki, T., Kametaka, A., and Yoneda, Y. (2001) A novel nucleolar protein, NIFK, interacts with the forkhead associated domain of Ki-67 antigen in mitosis, The Journal of biological chemistry 276, 25386-25391. 86. Sueishi, M., Takagi, M., and Yoneda, Y. (2000) The forkhead-associated domain of Ki-67 antigen interacts with the novel kinesin-like protein Hklp2, The Journal of biological chemistry 275, 28888-28892. 87. Vanneste, D., Takagi, M., Imamoto, N., and Vernos, I. (2009) The role of Hklp2 in the stabilization and maintenance of spindle bipolarity, Current biology : CB 19, 1712-1717. 88. Oeffinger, M., and Tollervey, D. (2003) Yeast Nop15p is an RNA-binding protein required for pre-rRNA processing and cytokinesis, The EMBO journal 22, 6573-6583. 89. Maris, C., Dominguez, C., and Allain, F. H. (2005) The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression, The FEBS journal 272, 2118-2131. 90. Granneman, S., Petfalski, E., and Tollervey, D. (2011) A cluster of ribosome synthesis factors regulate pre-rRNA folding and 5.8S rRNA maturation by the Rat1 exonuclease, The EMBO journal 30, 4006-4019. 91. Sahasranaman, A., Dembowski, J., Strahler, J., Andrews, P., Maddock, J., and Woolford, J. L., Jr. (2011) Assembly of Saccharomyces cerevisiae 60S ribosomal subunits: role of factors required for 27S pre-rRNA processing, The EMBO journal 30, 4020-4032. 92. Schlosser, I., Holzel, M., Murnseer, M., Burtscher, H., Weidle, U. H., and Eick, D. (2003) A role for c-Myc in the regulation of ribosomal RNA processing, Nucleic acids research 31, 6148-6156. 93. Musgrove, E. A., Sergio, C. M., Loi, S., Inman, C. K., Anderson, L. R., Alles, M. C., Pinese, M., Caldon, C. E., Schutte, J., Gardiner-Garden, M., Ormandy, C. J., McArthur, G., Butt, A. J., and Sutherland, R. L. (2008) Identification of functional networks of estrogen- and c-Myc-responsive genes and their relationship to response to tamoxifen therapy in breast cancer, PloS one 3, e2987. 94. Abujarour, R., Efe, J., and Ding, S. (2010) Genome-wide gain-of-function screen identifies novel regulators of pluripotency, Stem cells 28, 1487-1497. 95. Havugimana, P. C., Hart, G. T., Nepusz, T., Yang, H., Turinsky, A. L., Li, Z., Wang, P. I., Boutz, D. R., Fong, V., Phanse, S., Babu, M., Craig, S. A., Hu, P., Wan, C., Vlasblom, J., Dar, V. U., Bezginov, A., Clark, G. W., Wu, G. C., Wodak, S. J., Tillier, E. R., Paccanaro, A., Marcotte, E. M., and Emili, A. (2012) A census of human soluble protein complexes, Cell 150, 1068-1081. 96. Tafforeau, L., Zorbas, C., Langhendries, J. L., Mullineux, S. T., Stamatopoulou, V., Mullier, R., Wacheul, L., and Lafontaine, D. L. (2013) The complexity of human ribosome biogenesis revealed by systematic nucleolar screening of Pre-rRNA processing factors, Molecular cell 51, 539-551. 97. Fumagalli, S., and Thomas, G. (2011) The role of p53 in ribosomopathies, Seminars in hematology 48, 97-105. 98. Dai, M. S., and Lu, H. (2004) Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5, The Journal of biological chemistry 279, 44475-44482. 99. Pestov, D. G., Lapik, Y. R., and Lau, L. F. (2008) Assays for ribosomal RNA processing and ribosome assembly, Current protocols in cell biology / editorial board, Juan S. Bonifacino ... [et al.] Chapter 22, Unit 22 11. 100. Grimm, T., Holzel, M., Rohrmoser, M., Harasim, T., Malamoussi, A., Gruber-Eber, A., Kremmer, E., and Eick, D. (2006) Dominant-negative Pes1 mutants inhibit ribosomal RNA processing and cell proliferation via incorporation into the PeBoW-complex, Nucleic acids research 34, 3030-3043. 101. Brooks, C. L., and Gu, W. (2010) New insights into p53 activation, Cell research 20, 614-621. 102. Rubbi, C. P., and Milner, J. (2003) Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses, The EMBO journal 22, 6068-6077. 103. Kill, I. R. (1996) Localisation of the Ki-67 antigen within the nucleolus. Evidence for a fibrillarin-deficient region of the dense fibrillar component, Journal of cell science 109 ( Pt 6), 1253-1263. 104. Zhai, W., and Comai, L. (2000) Repression of RNA polymerase I transcription by the tumor suppressor p53, Molecular and cellular biology 20, 5930-5938. 105. Wang, X., and Tanaka Hall, T. M. (2001) Structural basis for recognition of AU-rich element RNA by the HuD protein, Nature structural biology 8, 141-145. 106. Brown, T., Mackey, K., and Du, T. (2004) Analysis of RNA by northern and slot blot hybridization, Current protocols in molecular biology / edited by Frederick M. Ausubel ... [et al.] Chapter 4, Unit 4 9. 107. Mullineux, S. T., and Lafontaine, D. L. (2012) Mapping the cleavage sites on mammalian pre-rRNAs: where do we stand?, Biochimie 94, 1521-1532. 108. Frey, U. H., Bachmann, H. S., Peters, J., and Siffert, W. (2008) PCR-amplification of GC-rich regions: 'slowdown PCR', Nature protocols 3, 1312-1317. 109. Huang, C. C., Weng, J. H., Wei, T. Y., Wu, P. Y., Hsu, P. H., Chen, Y. H., Wang, S. C., Qin, D., Hung, C. C., Chen, S. T., Wang, A. H., Shyy, J. Y., and Tsai, M. D. (2012) Intermolecular binding between TIFA-FHA and TIFA-pT mediates tumor necrosis factor alpha stimulation and NF-kappaB activation, Molecular and cellular biology 32, 2664-2673. 110. Sloan, K. E., Mattijssen, S., Lebaron, S., Tollervey, D., Pruijn, G. J., and Watkins, N. J. (2013) Both endonucleolytic and exonucleolytic cleavage mediate ITS1 removal during human ribosomal RNA processing, The Journal of cell biology 200, 577-588. 111. Wang, M., and Pestov, D. G. (2011) 5'-end surveillance by Xrn2 acts as a shared mechanism for mammalian pre-rRNA maturation and decay, Nucleic acids research 39, 1811-1822. 112. Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Hausser, J., Berninger, P., Rothballer, A., Ascano, M., Jr., Jungkamp, A. C., Munschauer, M., Ulrich, A., Wardle, G. S., Dewell, S., Zavolan, M., and Tuschl, T. (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP, Cell 141, 129-141. 113. Bellaousov, S., Reuter, J. S., Seetin, M. G., and Mathews, D. H. (2013) RNAstructure: Web servers for RNA secondary structure prediction and analysis, Nucleic acids research 41, W471-474. 114. Henras, A. K., Soudet, J., Gerus, M., Lebaron, S., Caizergues-Ferrer, M., Mougin, A., and Henry, Y. (2008) The post-transcriptional steps of eukaryotic ribosome biogenesis, Cellular and molecular life sciences : CMLS 65, 2334-2359. 115. Carron, C., O'Donohue, M. F., Choesmel, V., Faubladier, M., and Gleizes, P. E. (2011) Analysis of two human pre-ribosomal factors, bystin and hTsr1, highlights differences in evolution of ribosome biogenesis between yeast and mammals, Nucleic acids research 39, 280-291. 116. Strezoska, Z., Pestov, D. G., and Lau, L. F. (2000) Bop1 is a mouse WD40 repeat nucleolar protein involved in 28S and 5. 8S RRNA processing and 60S ribosome biogenesis, Molecular and cellular biology 20, 5516-5528. 117. Granneman, S., Kudla, G., Petfalski, E., and Tollervey, D. (2009) Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs, Proceedings of the National Academy of Sciences of the United States of America 106, 9613-9618. 118. Joseph, N., Krauskopf, E., Vera, M. I., and Michot, B. (1999) Ribosomal internal transcribed spacer 2 (ITS2) exhibits a common core of secondary structure in vertebrates and yeast, Nucleic acids research 27, 4533-4540. 119. Michot, B., Joseph, N., Mazan, S., and Bachellerie, J. P. (1999) Evolutionarily conserved structural features in the ITS2 of mammalian pre-rRNAs and potential interactions with the snoRNA U8 detected by comparative analysis of new mouse sequences, Nucleic acids research 27, 2271-2282. 120. Golomb, L., Volarevic, S., and Oren, M. (2014) p53 and ribosome biogenesis stress: The essentials, FEBS letters. 121. Deng, C., Zhang, P., Harper, J. W., Elledge, S. J., and Leder, P. (1995) Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control, Cell 82, 675-684. 122. Waldman, T., Kinzler, K. W., and Vogelstein, B. (1995) p21 is necessary for the p53-mediated G1 arrest in human cancer cells, Cancer research 55, 5187-5190. 123. Fumagalli, S., Di Cara, A., Neb-Gulati, A., Natt, F., Schwemberger, S., Hall, J., Babcock, G. F., Bernardi, R., Pandolfi, P. P., and Thomas, G. (2009) Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction, Nature cell biology 11, 501-508. 124. Burger, K., Muhl, B., Harasim, T., Rohrmoser, M., Malamoussi, A., Orban, M., Kellner, M., Gruber-Eber, A., Kremmer, E., Holzel, M., and Eick, D. (2010) Chemotherapeutic drugs inhibit ribosome biogenesis at various levels, The Journal of biological chemistry 285, 12416-12425. 125. Takagi, M., Nishiyama, Y., Taguchi, A., and Imamoto, N. (2014) Ki67 antigen contributes to the timely accumulation of protein phosphatase 1gamma on anaphase chromosomes, The Journal of biological chemistry 289, 22877-22887. 126. Rujkijyanont, P., Adams, S. L., Beyene, J., and Dror, Y. (2009) Bone marrow cells from patients with Shwachman-Diamond syndrome abnormally express genes involved in ribosome biogenesis and RNA processing, British journal of haematology 145, 806-815. 127. Morello, L. G., Hesling, C., Coltri, P. P., Castilho, B. A., Rimokh, R., and Zanchin, N. I. (2011) The NIP7 protein is required for accurate pre-rRNA processing in human cells, Nucleic acids research 39, 648-665. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54903 | - |
| dc.description.abstract | 對細胞增生來說,連結的細胞生長與分裂十分重要。逐漸有研究指出,核醣體生成途徑的完整性為調控細胞生長與分裂所需,然而其調節異常時會發生人類疾病,其中包括癌症與核醣體缺乏疾病。核醣體之生成控制蛋白質合成。NIFK為一個核醣體生成的關鍵調控因子 c-Myc 正向轉錄之蛋白。已知 NIFK 除了與Ki-67 及 NPM1 蛋白有交互作用之外,其生物功能尚未完整的建立。我們在此報導NIFK為細胞週期運行時所需,與其藉RNA辨識區域 (RRM) 參與生成核醣體。我們的結果指出,當以基因沉默方式降低 NIFK表現時,可能因引發RPL5/RPL11調控之核仁壓力,而活化可逆的p53路徑將細胞週期停留在 G1,進而抑制細胞增生。在機制上,這是由於內轉錄空白子1 (ITS1) 之切割─前驅核醣體分離為小與大次級單位之關鍵步驟─效率不佳,因而破壞28S與5.8S rRNA之成熟所導致。將突變之NIFK補回NIFK基因沉默之細胞的結果顯示,RRM的RNA結合能力為前驅rRNA (pre-rRNA) 後製與細胞間期運行所需。更明確地,我們證實RRM可能以依存 RNA 序列與二級結構的方式,選擇結合於ITS2 rRNA 5’端的位置。我們的結果顯示NIFK是如何藉由RRM依存的pre-rRNA成熟途徑而調控細胞週期之運行,除了可以增加我們對於NIFK在細胞增生功能上的了解,還可觸及對癌症與核醣體缺失疾病的認識。 | zh_TW |
| dc.description.abstract | Coupled cell growth and division is critical for cell proliferation. Emerging studies suggest that the integrity of ribosome biogenesis is essential for the coordination of cell growth and division, while its dysregulation is associated with human diseases including cancer and ribosomopathies. Ribosome biogenesis governs protein synthesis. NIFK is transactivated by c-Myc, the key regulator of ribosome biogenesis. The biological function of human NIFK is not well established, except that it has been shown to interact with Ki-67 and NPM1. Here we report that NIFK is required for cell cycle progression and participates in the ribosome biogenesis via its RNA recognition motif (RRM). We show that silencing of NIFK inhibits cell proliferation through a reversible p53-dependent G1 arrest, possibly by induction of the RPL5/RPL11-mediated nucleolar stress. Mechanistically it is the consequence of impaired maturation of 28S and 5.8S rRNA resulting from inefficient cleavage of internal transcribed spacer (ITS) 1, a critical step in the separation of pre-ribosome to small and large subunits. Complementation of NIFK silencing by mutants shows that RNA-binding ability of RRM is essential for the pre-rRNA processing and G1 progression. More specifically, we validate that the RRM of NIFK preferentially binds to the position in the 5’-end of ITS2 rRNA, likely in both sequence specific and secondary structure dependent manners. Our results show how NIFK is involved in cell cycle progression through RRM-dependent pre-rRNA maturation, which could enhance our understanding of the function of NIFK in cell proliferation, and potentially also cancer and ribosomopathies. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:41:08Z (GMT). No. of bitstreams: 1 ntu-104-D97b46013-1.pdf: 5474272 bytes, checksum: 8722fb1c589b4bc6f2f1fd7b76de132c (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | Table of Contents
論文口試委員審定書 i 致謝 ii 中文摘要 iii Abstract iv Table of Contents v List of Figures viii List of Tables xii Chapter 1. General introduction 1 1-1. Cell cycle progression 1 1-1-1. Cell cycle progression and regulation 1 1-1-2 p53-MDM2 circuit in cell cycle regulation 3 1-2. Ribosome biogenesis in cell cycle progression 5 1-2-1. Ribosome biogenesis is initiated in nucleolus 5 1-2-2. Human pre-rRNA maturation pathway 7 1-2-3. Coordination of cell growth and division requires intact ribosome biogenesis 9 1-2-4. Ribosomal proteins-mediated growth surveillance: p53 dependent and independent G1 arrest 10 1-2-5. Dysregulated ribosome biogenesis is associated with cancer and ribosomopathies 12 1-3. Functions of Ki-67 and NIFK 14 1-3-1. Biological function of Ki-67 14 1-3-2. Ki-67 and FHA domain 15 1-3-3. Functions of NIFK 16 Chapter 2. The RNA recognition motif of NIFK is required for rRNA maturation during cell cycle progression 19 2-1. Analysis of NIFK in cell cycle progression, p53 signaling, and ribosome biogenesis 19 2-1-1. Introduction 19 2-1-2. Materials and Methods 21 2-1-2-1. Cell culture and siRNA transfection. 21 2-1-2-2. Retrovirus based stable cells establishment and phenotypic rescue experiments. 21 2-1-2-3. Cell proliferation assay. 22 2-1-2-4. Analyses of cell cycle and apoptosis. 22 2-1-2-5. Western blot. 22 2-1-2-6. Immunofluorescent staining. 24 2-1-2-7. Quantitative PCR (RT-qPCR). 24 2-1-2-8. RNA metabolic labeling. 24 2-1-2-9 Phenotypic rescue of NIFK silencing. 25 2-1-3. Results 25 2-1-3-1. Silencing of NIFK inhibited cell proliferation through a reversible p53-dependent G1 arrest 25 2-1-3-2. NIFK is required for G1 progression by participating in rRNA processing 26 2-1-3-3. NIFK mediated pre-rRNA processing and G1 progression requires RRM but not Ki67FHAID 28 2-2. Investigation of the mechanism underlying NIFK-mediated ribosome biogenesis 30 2-2-1. Materials and Methods 30 2-2-1-1. Northern blot. 30 2-2-1-2. RNA transcription. 31 2-2-1-3. RNA pull-down assay. 31 2-2-1-4. Immunoprecipitation experiments. 32 2-2-1-5. Recombinant protein expression and purification. 33 2-2-1-6. RNA electrophoresis mobility shift assay (REMSA). 33 2-2-1-7. RNA footprinting and secondary structure detection. 34 2-2-2. Results 34 2-2-2-1. NIFK regulates 28S rRNA maturation through processing at ITS1 site 2 34 2-2-2-2. The RRM of NIFK binds to the 5’-end of ITS2 rRNA 36 2-3. Discussion 39 References 68 List of Figures Figure 1-1. Illustration of human cell cycle and major CDK-cyclin complex in each phase 1 Figure 1-2. Control of pRb phosphorylation by cyclin-CDK complex 3 Figure 1-3. MDM2-p53 autoregulatory feedback loop 4 Figure 1-4. Activation of p53 pathway by ARF-suppressed HDM2-mediated ubiquitylation of p53 5 Figure 1-5. Illustration of mammalian ribosome biogenesis 6 Figure 1-6. Human pre-rRNA processing pathway 8 Figure 1-7. Schematic of 5S RNP-MDM2-p53 regulation by nucleolar stress 11 Figure 2-1. Analyses of NIFK siRNA knockdown efficiency. 44 Figure 2-2. Expression of NIFK most efficiently compromises the decreased proliferation induced by NIFK-siRNA #1. 44 Figure 2-3. Ectopic expression of NIFK compromises activated p53 pathway caused by silencing of NIFK. 45 Figure 2-4. Cellular proliferation of U2OS cells transfected with siNIFK. 45 Figure 2-5. Apoptotic analysis of U2OS cells transfected with indicated siRNA. 46 Figure 2-6. Flow cytometry analyses of asynchronous and G2/M synchronous U2OS cells transfected with siNIFK. 46 Figure 2-7. Cell proliferation assay (A), Western blot analysis (B), and flow cytometry (C) were conducted for MCF7 cells transfected with indicated NIFK siRNA. 47 Figure 2-8. Western blot analysis of the expressions of NIFK, p53, and p21 in asynchronous U2OS cells transfected with indicated siRNA. 47 Figure 2-9. Flow cytometry analyses of G2/M synchronous U2OS cells transfected with indicated siRNA alone or in combination. 48 Figure 2-10. Flow cytometry analysis of G2/M synchronous U2OS cells transfected with indicated siRNAs. 48 Figure 2-11. RT-qPCR quantification of indicated gene transcription in U2OS cells transfected with indicated siRNAs. 49 Figure 2-12. Immunofluorescent staining of U2OS cells showing subnucleolar localization of NIFK (green), Ki67 (red), fibrillarin (red), and nuclei (blue). 49 Figure 2-13. U2OS cells transfected with siNIFK were immunostained by anit-NIFK (green) and anti-fibrillarin (red) antibodies, and nuclei (blue) were stained by Hochest 33258. 49 Figure 2-14. 32P-orthophosphate based pulse-chase analysis showing the kinetics of nascent rRNA synthesis in U2OS cells transfected with siNIFK. 50 Figure 2-15. 32P-orthophosphate based pulse-chase analysis showing the kinetics of nascent rRNA synthesis in U2OS cells transfected with siNIFK. 50 Figure 2-16. Pulse-chase analysis showing the kinetics of nascent rRNA synthesis in U2OS cells transfected with indicated siRNAs. 51 Figure 2-17. Schematic representation of NIFK functional domains and designing of ectopic NIFK expression constructs (upper panel). 51 Figure 2-18. Cell proliferation assay for cells phenotypically rescued by NIFK wild-type and mutants. 52 Figure 2-19. Flow cytometry analyses and quantification of rescued cells after G2/M synchronization. 52 Figure 2-20. 32P-orthophosphate based pulse-chase analysis showing the nascent rRNA synthesis in phenotypically rescued cells. 53 Figure 2-21. Western blot analysis showing p53 and p21 levels in the phenotypically rescued cells described in (D) 53 Figure 2-22. Localizations of NIFK wild-type and mutants. 54 Figure 2-23. Sequence alignment of NIFK-RRM orthologues from different species. 54 Figure 2-24. Fluorescent microscopy showing subcellular localizations of GFP-tagged NIFK-RRM mutants. 55 Figure 2-25. Putative RNA-interacting residues of NIFK-RRM. 55 Figure 2-26. Flow cytometry analyses and quantification of rescued cells after G2/M synchronization. 56 Figure 2-27. 32P-orthophosphate based pulse-chase analysis showing the nascent rRNA synthesis in phenotypically rescued cells. 57 Figure 2-28. Western blot analysis showing p53 and p21 levels in the phenotypically rescued cells. 58 Figure 2-29. NIFK regulates 28S and 5.8S rRNA maturation through processing of ITS1 site 2. 60 Figure 2-30. Western blot analysis of NIFK associated with indicated RNAs. 61 Figure 2-31. Coomassie blue staining of recombinant NIFK wild-type and RRM mutants. 61 Figure 2-32. Northern blot of RNase footprinting of ITS2 1-200 RNA protected by rNIFK. 62 Figure 2-33. ITS2 50-150 RNA secondary structure detection. 63 Figure 2-34. REMSA analyses of RNAs bound by recombinant NIFK and NIFK-RRM mutants in vitro. 64 Figure 2-35. Northern blot analysis of NIFK associated rRNA species. 65 List of Tables Table 1-1. Primers for RT-qPCR. 66 Table 1-2. Probes for Northern blot analysis. 66 Table 1-3. PCR primers for preparation of T7 promoter-containing DNA templates. 67 | |
| dc.language.iso | en | |
| dc.subject | RNA辨識區域 | zh_TW |
| dc.subject | Ki-67 | zh_TW |
| dc.subject | NIFK | zh_TW |
| dc.subject | 細胞週期 | zh_TW |
| dc.subject | 核醣體RNA後製 | zh_TW |
| dc.subject | 核仁壓力 | zh_TW |
| dc.subject | 核醣體生成 | zh_TW |
| dc.subject | Ki-67 | en |
| dc.subject | RNA recognition motif (RRM) | en |
| dc.subject | ribosome biogenesis | en |
| dc.subject | nucleolar stress | en |
| dc.subject | rRNA processing | en |
| dc.subject | cell cycle | en |
| dc.subject | NIFK | en |
| dc.title | Ki67交互作用之蛋白NIFK在細胞週期運行、p53訊息傳遞與核醣體生成的功能 | zh_TW |
| dc.title | Functions of NIFK, a Ki67 interacting protein, in cell cycle progression, p53 signaling and ribosome biogenesis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳瑞華(Ruey-Hwa Chen),張?仁(Ching-Jin Chang),管永恕(Yung-Shu Kuan),何孟樵(Meng-Chiao Ho) | |
| dc.subject.keyword | Ki-67,NIFK,細胞週期,核醣體RNA後製,核仁壓力,核醣體生成,RNA辨識區域, | zh_TW |
| dc.subject.keyword | Ki-67,NIFK,cell cycle,rRNA processing,nucleolar stress,ribosome biogenesis,RNA recognition motif (RRM), | en |
| dc.relation.page | 78 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-02-13 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 5.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
