請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54894
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王愛玉(Ai-Yu Wang) | |
dc.contributor.author | Yu-Chiao Huang | en |
dc.contributor.author | 黃玉嬌 | zh_TW |
dc.date.accessioned | 2021-06-16T03:40:54Z | - |
dc.date.available | 2020-03-16 | |
dc.date.copyright | 2015-03-16 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-02-13 | |
dc.identifier.citation | Absmanner, B., Schmeiser, V., Kampf, M. and Lehle, L. (2010) Biochemical characterization, membrane association and identification of amino acids essential for the function of Alg11 from Saccharomyces cerevisiae, an alpha1,2-mannosyltransferase catalysing two sequential glycosylation steps in the formation of the lipid-linked core oligosaccharide. Biochem J 426: 205-217.
Amor, Y., Haigler, C.H., Johnson, S., Wainscott, M. and Delmer, D.P. (1995) A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc Natl Acad Sci USA 92: 9353-9357. Anguenot, R., Yelle, S. and Nguyen-Quoc, B. (1999) Purification of tomato sucrose synthase phosphorylated isoforms by Fe(III)-immobilized metal affinity chromatography. Arch Biochem Biophys 365: 163-169. Baroja-Fernandez, E., Munoz, F.J., Li, J., Bahaji, A., Almagro, G., Montero, M., et al. (2012) Sucrose synthase activity in the sus1/sus2/sus3/sus4 Arabidopsis mutant is sufficient to support normal cellulose and starch production. Proc Natl Acad Sci USA 109: 321-326. Baroja-Fernandez, E., Munoz, F.J., Montero, M., Etxeberria, E., Sesma, M.T., Ovecka, M., et al. (2009) Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield. Plant Cell Physiol 50: 1651-1662. Baroja-Fernandez, E., Munoz, F.J., Saikusa, T., Rodriguez-Lopez, M., Akazawa, T. and Pozueta-Romero, J. (2003) Sucrose synthase catalyzes the de novo production of ADPglucose linked to starch biosynthesis in heterotrophic tissues of plants. Plant Cell Physiol 44: 500-509. Barratt, D.H., Barber, L., Kruger, N.J., Smith, A.M., Wang, T.L. and Martin, C. (2001) Multiple, distinct isoforms of sucrose synthase in pea. Plant Physiol 127: 655-664. Barratt, D.H., Derbyshire, P., Findlay, K., Pike, M., Wellner, N., Lunn, J., et al. (2009) Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase. Proc Natl Acad Sci USA 106: 13124-13129. Barrero-Sicilia, C., Hernando-Amado, S., Gonzalez-Melendi, P. and Carbonero, P. (2011) Structure, expression profile and subcellular localisation of four different sucrose synthase genes from barley. Planta 234: 391-403. Baud, S., Vaultier, M.N. and Rochat, C. (2004) Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J Exp Bot 55: 397-409. Boraston, A.B., Bolam, D.N., Gilbert, H.J. and Davies, G.J. (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382: 769-781. Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. Breton, C., Bettler, E., Joziasse, D.H., Geremia, R.A. and Imberty, A. (1998) Sequence-function relationships of prokaryotic and eukaryotic galactosyltransferases. J Biochem 123: 1000-1009. Breton, C. and Imberty, A. (1999) Structure/function studies of glycosyltransferases. Curr Opin Struct Biol 9: 563-571. Breton, C., Snajdrova, L., Jeanneau, C., Koca, J. and Imberty, A. (2006) Structures and mechanisms of glycosyltransferases. Glycobiology 16: 29R-37R. Brumbaugh, E.E. and Ackers, K.G. (1971) Molecular sieve studies of interacting protein system. Direct optical scanning method for ligand-macromolecule binding studies. Ana Biochem 41: 543-559. Campbell, J.A., Davies, G.J., Bulone, V. and Henrissat, B. (1997) A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J 326 ( Pt 3): 929-939. Campbell, J.A., Davies, G.J., Bulone, V.V. and Henrissat, B. (1998) A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J 329 (Pt 3): 719. Cardini, C.E., Leloir, L.F. and Chiriboga, J. (1955) The biosynthesis of sucrose. J Biol Chem 214: 149-155. Carlson, S.J. and Chourey, P.S. (1996) Evidence for plasma membrane-associated forms of sucrose synthase in maize. Mol Gen Genet 252: 303-310. Carlson, S.J., Chourey, P.S., Helentjaris, T. and Datta, R. (2002) Gene expression studies on developing kernels of maize sucrose synthase (SuSy) mutants show evidence for a third SuSy gene. Plant Mol Biol 49: 15-29. Chen, A., He, S., Li, F., Li, Z., Ding, M., Liu, Q., et al. (2012) Analyses of the sucrose synthase gene family in cotton: structure, phylogeny and expression patterns. BMC Plant Biol 12: 85. Chengappa, S., Guilleroux, M., Phillips, W. and Shields, R. (1999) Transgenic tomato plants with decreased sucrose synthase are unaltered in starch and sugar accumulation in the fruit. Plant Mol Biol 40: 213-221. Chikano, H., Ogawa, M., Ikeda, Y., Koizumi, N., Kusano, T. and Sano, H. (2001) Two novel genes encoding SNF-1 related protein kinases from Arabidopsis thaliana: differential accumulation of AtSR1 and AtSR2 transcripts in response to cytokinins and sugars, and phosphorylation of sucrose synthase by AtSR2. Mol Gen Genet 264: 674-681. Chua, T.K., Bujnicki, J.M., Tan, T.C., Huynh, F., Patel, B.K. and Sivaraman, J. (2008) The structure of sucrose phosphate synthase from Halothermothrix orenii reveals its mechanism of action and binding mode. Plant Cell 20: 1059-1072. Cid, E., Gomis, R.R., Geremia, R.A., Guinovart, J.J. and Ferrer, J.C. (2000) Identification of two essential glutamic acid residues in glycogen synthase. J Biol Chem 275: 33614-33621. Coleman, H.D., Yan, J. and Mansfield, S.D. (2009) Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc Natl Acad Sci USA 106: 13118-13123. Coutinho, P.M., Deleury, E., Davies, G.J. and Henrissat, B. (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328: 307-317. Deilarduya, O.M., Vicentecarbajosa, J., Delahoz, P.S. and Carbonero, P. (1993) Sucrose synthase genes in barley - cDNA cloning of the Ss2 type and tissue-specific expression of Ss1 and Ss2. FEBS Lett 320: 177-181. Dejardin, A., Sokolov, L.N. and Kleczkowski, L.A. (1999) Sugar/osmoticum levels modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis. Biochem J 344 Pt 2: 503-509. Delahoz, P.S., Vicentecarbajosa, J., Mena, M. and Carbonero, P. (1992) Homologous sucrose synthase genes in barley (Hordeum vulgare) are located in chromosomes 7H (syn. 1) and 2H - Evidence for a gene translocation? FEBS Lett 310: 46-50. Delmer, D.P. and Albersheim, P. (1970) The biosynthesis of sucrose and nucleoside diphosphate glucoses in Phaseolus aureus. Plant Physiol 45: 782-786. Duncan, K.A., Hardin, S.C. and Huber, S.C. (2006) The three maize sucrose synthase isoforms Differ in distribution, localization, and phosphorylation. Plant Cell Physiol. Duncan, K.A. and Huber, S.C. (2007) Sucrose synthase oligomerization and F-actin association are regulated by sucrose concentration and phosphorylation. Plant Cell Physiol 48: 1612-1623. Echt, C.S. and Chourey, P.S. (1985) A comparison of two sucrose synthetase isozymes from normal and shrunken-1 Maize. Plant Physiol 79: 530-536. Elling, L. (1995) Effect of metal ions on sucrose synthase from rice grains--a study on enzyme inhibition and enzyme topography. Glycobiology 5: 201-206. Etxeberria, E. and Gonzalez, P. (2003) Evidence for a tonoplast-associated form of sucrose synthase and its potential involvement in sucrose mobilization from the vacuole. J Exp Bot 54: 1407-1414. Fujii, S., Hayashi, T. and Mizuno, K. (2010) Sucrose synthase is an integral component of the cellulose synthesis machinery. Plant Cell Physiol 51: 294-301. Gerber, L., Zhang, B., Roach, M., Rende, U., Gorzsas, A., Kumar, M., et al. (2014) Deficient sucrose synthase activity in developing wood does not specifically affect cellulose biosynthesis, but causes an overall decrease in cell wall polymers. New Phytol 203: 1220-1230. Ghafoor, A., Jordens, Z. and Rehm, B.H. (2013) Role of PelF in pel polysaccharide biosynthesis in Pseudomonas aeruginosa. Appl Environ Microbiol 79: 2968-2978. Goren, S., Huber, S.C. and Granot, D. (2011) Comparison of a novel tomato sucrose synthase, SlSUS4, with previously described SlSUS isoforms reveals distinct sequence features and differential expression patterns in association with stem maturation. Planta 233: 1011-1023. Haagenson, D.M., Klotz, K.L. and McGrath, J.M. (2006) Sugarbeet sucrose synthase genes differ in organ-specific and developmental expression. J Plant physiol 163: 102-106. Hardin, S.C., Tang, G.Q., Scholz, A., Holtgraewe, D., Winter, H. and Huber, S.C. (2003) Phosphorylation of sucrose synthase at serine 170: occurrence and possible role as a signal for proteolysis. Plant J 35: 588-603. Hardin, S.C., Winter, H. and Huber, S.C. (2004) Phosphorylation of the amino terminus of maize sucrose synthase in relation to membrane association and enzyme activity. Plant Physiol 134: 1427-1438. Henrissat, B. and Davies, G. (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7: 637-644. Huang, D.Y. and Wang, A.Y. (1998) Purification and characterization of sucrose synthase isozymes from etiolated rice seedlings. Biochem Mol Biol Int 46: 107-113. Huang, J.W., Chen, J.T., Yu, W.P., Shyur, L.F., Wang, A.Y., Sung, H.Y., et al. (1996) Complete structures of three rice sucrose synthase isogenes and differential regulation of their expressions. Biosci Biotechnol Bioshem 60: 233-239. Hubbard, N.L., Huber, S.C. and Pharr, D.M. (1989) Sucrose phosphate synthase and acid invertase as determinants of sucrose concentration in developing muskmelon (Cucumis melo L.) fruits. Plant Physiol 91: 1527-1534. Huber, S.C., Huber, J.L., Liao, P.C., Gage, D.A., McMichael, R.W., Jr., Chourey, P.S., et al. (1996) Phosphorylation of serine-15 of maize leaf sucrose synthase. Occurrence in vivo and possible regulatory significance. Plant Physiol 112: 793-802. Kampf, M., Absmanner, B., Schwarz, M. and Lehle, L. (2009) Biochemical characterization and membrane topology of Alg2 from Saccharomyces cerevisiae as a bifunctional alpha1,3- and 1,6-mannosyltransferase involved in lipid-linked oligosaccharide biosynthesis. J Biol Chem 284: 11900-11912. Kapitonov, D. and Yu, R.K. (1999) Conserved domains of glycosyltransferases. Glycobiology 9: 961-978. Kikuchi, N., Kwon, Y.D., Gotoh, M. and Narimatsu, H. (2003) Comparison of glycosyltransferase families using the profile hidden Markov model. Biochem Biophys Res Commun 310: 574-579. Klotz, K.L. and Haagenson, D.M. (2008) Wounding, anoxia and cold induce sugarbeet sucrose synthase transcriptional changes that are unrelated to protein expression and activity. J Plant Physiol 165: 423-434. Koch, K. (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7: 235-246. Koch, K.E. (1996) Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47: 509-540. Koch, K.E., Nolte, K.D., Duke, E.R., Mccarty, D.R. and Avigne, W.T. (1992) Sugar levels modulate differential expression of maize sucrose synthase genes. Plant Cell 4: 59-69. Kostova, Z., Yan, B.C., Vainauskas, S., Schwartz, R., Menon, A.K. and Orlean, P. (2003) Comparative importance in vivo of conserved glutamate residues in the EX7E motif retaining glycosyltransferase Gpi3p, the UDP-GlcNAc-binding subunit of the first enzyme in glycosylphosphatidylinositol assembly. Eur J Biochem 270: 4507-4514. Lairson, L.L. and Withers, S.G. (2004) Mechanistic analogies amongst carbohydrate modifying enzymes. Chem Commun (Camb): 2243-2248. Lambert, C., Leonard, N., De Bolle, X. and Depiereux, E. (2002) ESyPred3D: Prediction of proteins 3D structures. Bioinformatics 18: 1250-1256. Lariviere, L. and Morera, S. (2002) A base-flipping mechanism for the T4 phage beta-glucosyltransferase and identification of a transition-state analog. J Mol Biol 324: 483-490. Li, J., Baroja-Fernandez, E., Bahaji, A., Munoz, F.J., Ovecka, M., Montero, M., et al. (2013) Enhancing sucrose synthase activity results in increased levels of starch and ADP-glucose in maize (Zea mays L.) seed endosperms. Plant Cell Physiol 54: 282-294. Liao, Y.C. and Wang, A.Y. (2003) Sugar-modulated gene expression of sucrose synthase in suspemsion-cultured cells of rice. Physiol Plant 118: 9. Liu, J. and Mushegian, A. (2003) Three monophyletic superfamilies account for the majority of the known glycosyltransferases. Protein Sci 12: 1418-1431. MacGregor, E.A. (2002) Possible structure and active site residues of starch, glycogen, and sucrose synthases. J Protein Chem 21: 297-306. Marana, C., Garcia-Olmedo, F. and Carbonero, P. (1988) Linked sucrose synthase genes in group-7 chromosomes in hexaploid wheat (Triticum aestivum L.). Gene 63: 253-260. Marana, C., Garcia-Olmedo, F. and Carbonero, P. (1990) Differential expression of two types of sucrose synthase-encoding genes in wheat in response to anaerobiosis, cold shock and light. Gene 88: 167-172. Marchler-Bauer, A., Anderson, J.B., Cherukuri, P.F., DeWeese-Scott, C., Geer, L.Y., Gwadz, M., et al. (2005) CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res 33: D192-196. Marchler-Bauer, A., Anderson, J.B., Chitsaz, F., Derbyshire, M.K., DeWeese-Scott, C., Fong, J.H., et al. (2009) CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 37: D205-210. Martin, T., Frommer, W.B., Salanoubat, M. and Willmitzer, L. (1993) Expression of an Arabidopsis sucrose synthase gene indicates a role in metabolization of sucrose both during phloem loading and in sink organs. Plant J 4: 367-377. Matic, S., Akerlund, H.E., Everitt, E. and Widell, S. (2004) Sucrose synthase isoforms in cultured tobacco cells. Plant Physiol Biochem 42: 299-306. McCarty, D.R., Shaw, J.R. and Hannah, L.C. (1986) The cloning, genetic mapping, and expression of the constitutive sucrose synthase locus of maize. Proc Natl Acad Sci USA 83: 9099-9103. Munoz, F.J., Baroja-Fernandez, E., Moran-Zorzano, M.T., Viale, A.M., Etxeberria, E., Alonso-Casajus, N., et al. (2005) Sucrose synthase controls both intracellular ADP glucose levels and transitory starch biosynthesis in source leaves. Plant Cell Physiol 46: 1366-1376. Murray, B.W., Takayama, S., Schultz, J. and Wong, C.H. (1996) Mechanism and specificity of human alpha-1,3-fucosyltransferase V. Biochemistry 35: 11183-11195. Nakai, T., Konishi, T., Zhang, X.Q., Chollet, R., Tonouchi, N., Tsuchida, T., et al. (1998) An increase in apparent affinity for sucrose of mung bean sucrose synthase is caused by in vitro phosphorylation or directed mutagenesis of Ser11. Plant Cell Physiol 39: 1337-1341. Nakai, T., Tonouchi, N., Konishi, T., Kojima, Y., Tsuchida, T., Yoshinaga, F., et al. (1999) Enhancement of cellulose production by expression of sucrose synthase in Acetobacter xylinum. Proc Natl Acad Sci USA 96: 14-18. Nguyen-Quoc, B., Krivitzky, M., Huber, S.C. and Lecharny, A. (1990) Sucrose synthase in developing maize leaves: Regulation of activity by protein level during the import to export transition. Plant Physiol 94: 516-523. Nichols, D.J., Keeling, P.L., Spalding, M. and Guan, H. (2000) Involvement of conserved aspartate and glutamate residues in the catalysis and substrate binding of maize starch synthase. Biochemistry 39: 7820-7825. Nolte, K.D., Hendrix, D.L., Radin, J.W. and Koch, K.E. (1995) Sucrose synthase localization during initiation of seed development and trichome differentiation in cotton ovules. Plant Physiol 109: 1285-1293. Nolte, K.D. and Koch, K.E. (1993) Companion-cell specific localization of sucrose synthase in zones of phloem loading and unloading. Plant Physiol 101: 899-905. Persia, D., Cai, G., Del Casino, C., Faleri, C., Willemse, M.T. and Cresti, M. (2008) Sucrose synthase is associated with the cell wall of tobacco pollen tubes. Plant Physiol 147: 1603-1618. Pozueta-Romero, J., Yamaguchi, J. and Akazawa, T. (1991) ADPG formation by the ADP-specific cleavage of sucrose-reassessment of sucrose synthase. FEBS Lett 291: 233-237. Ramakrishnan, B., Boeggeman, E., Ramasamy, V. and Qasba, P.K. (2004) Structure and catalytic cycle of beta-1,4-galactosyltransferase. Curr Opin Struct Biol 14: 593-600. Romer, U., Schrader, H., Gunther, N., Nettelstroth, N., Frommer, W.B. and Elling, L. (2004) Expression, purification and characterization of recombinant sucrose synthase 1 from Solanum tuberosum L. for carbohydrate engineering. J Biotechnol 107: 135-149. Rowland, L.J., Robertson, D.S. and Strommer, J. (1989) Chromosome breakage undetectable in active Mu lines of maize. Genetics 122: 205-209. Ruan, Y.L., Chourey, P.S., Delmer, D.P. and Perez-Grau, L. (1997) The differential expression of sucrose synthase in relation to diverse patterns of carbon partitioning in developing cotton seed. Plant Physiol 115: 375-385. Schafer, W.E., Rohwer, J.M. and Botha, F.C. (2004) A kinetic study of sugarcane sucrose synthase. Eur J Biochem 271: 3971-3977. Shaw, J.R., Ferl, R.J., Baier, J., St Clair, D., Carson, C., McCarty, D.R., et al. (1994) Structural features of the maize sus1 gene and protein. Plant Physiol 106: 1659-1665. Silvente, S., Camas, A. and Lara, M. (2003) Heterogeneity of sucrose synthase genes in bean (Phaseolus vulgaris L.): evidence for a nodule-enhanced sucrose synthase gene. J Exp Bot 54: 749-755. Sinnott, M.L. (1990) Catalytic mechanisms of enzymatic glycosyl transfer. Chem. Rev. 90: 1171-1202. Soding, J. (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21: 951-960. Song, D., Shen, J. and Li, L. (2010) Characterization of cellulose synthase complexes in Populus xylem differentiation. New Phytol 187: 777-790. Stitt, M., Kurzel, B. and Heldt, H.W. (1984) Control of photosynthetic sucrose synthesis by fructose 2,6-bisphosphate : II. Partitioning between sucrose and starch. Plant Physiol 75: 554-560. Su, J.C., J.L., W. and Yang, C.L. (1977) Purification and characterization of sucrose synthetase from the shoot of bamboo Leleba oldhami. Plant Physiol 60: 17-21. Subbaiah, C.C., Palaniappan, A., Duncan, K., Rhoads, D.M., Huber, S.C. and Sachs, M.M. (2006) Mitochondrial localization and putative signaling function of sucrose synthase in maize. J Biol Chem 281: 15625-15635. Sung, H.Y. and Su, J.C. (1977) Sucrose synthase isozymes of pea seedling - Purification and general prperties. J. Chin. Biochem. Soc. 6: 22-37. Tang, T., Xie, H., Wang, Y., Lu, B. and Liang, J. (2009) The effect of sucrose and abscisic acid interaction on sucrose synthase and its relationship to grain filling of rice (Oryza sativa L.). J Exp Bot 60: 2641-2652. Tomlinson, P.T., Duke, E.R., Nolte, K.D. and Koch, K.E. (1991) Sucrose synthase and invertase in isolated vascular bundles. Plant Physiol 97: 1249-1252. Tsai, C.Y. and Wang, A.Y. (2003) Identification of rice manganese-dependent protein kinases that phosphorylate sucrose synthase at multiple serine residues. Bot Bull Acad Sin 44: 141-150. Unligil, U.M. and Rini, J.M. (2000) Glycosyltransferase structure and mechanism. Curr Opin Struct Biol 10: 510-517. Vrielink, A., Ruger, W., Driessen, H.P. and Freemont, P.S. (1994) Crystal structure of the DNA modifying enzyme beta-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. EMBO J 13: 3413-3422. Wang, A.Y., Kao, M.H., Yang, W.H., Sayion, Y., Liu, L.F., Lee, P.D., et al. (1999) Differentially and developmentally regulated expression of three rice sucrose synthase genes. Plant Cell Physiol 40: 800-807. Wang, A.Y., Yu, W.P., Juang, R.H., Huang, J.W., Sung, H.Y. and Su, J.C. (1992a) Presence of three rice sucrose synthase genes as revealed by cloning and sequencing of cDNA. Plant Mol Biol 18: 1191-1194. Wang, F., Smith, A.G. and Brenner, M.L. (1993) Isolation and sequencing of tomato fruit sucrose synthase cDNA. Plant Physiol 103: 1463-1464. Wang, F., Smith, A.G. and Brenner, M.L. (1994) Temporal and spatial expression pattern of sucrose synthase during tomato fruit development. Plant Physiol 104: 535-540. Wang, M.B., Boulter, D. and Gatehouse, J.A. (1992b) A complete sequence of the rice sucrose synthase-1 (RSs1) gene. Plant Mol Biol 19: 881-885. Winter, H., Huber, J.L. and Huber, S.C. (1997) Membrane association of sucrose synthase: changes during the graviresponse and possible control by protein phosphorylation. FEBS Lett 420: 151-155. Winter, H., Huber, J.L. and Huber, S.C. (1998) Identification of sucrose synthase as an actin-binding protein. FEBS Lett 430: 205-208. Wolosiuk, R.W. and Pontis, H.G. (1971) Evidence of the existence of two forms of sucrose synthetase. FEBS Lett 16: 237-240. Yen, S.F., Su, J.C. and Sung, H.Y. (1994) Purification and characterization of rice sucrose synthase isozymes. Biochem Mol Biol Int 34: 613-620. Yep, A., Ballicora, M.A. and Preiss, J. (2006) The ADP-glucose binding site of the Escherichia coli glycogen synthase. Arch Biochem Biophys 453: 188-196. Yu, W.P., Wang, A.Y., Juang, R.H., Sung, H.Y. and Su, J.C. (1992) Isolation and sequences of rice sucrose synthase cDNA and genomic DNA. Plant Mol Biol 18: 139-142. Zeng, Y., Wu, Y., Avigne, W.T. and Koch, K.E. (1998) Differential regulation of sugar-sensitive sucrose synthases by hypoxia and anoxia indicate complementary transcriptional and posttranscriptional responses. Plant Physiol 116: 1573-1583. Zhang, X.Q. and Chollet, R. (1997) Seryl-phosphorylation of soybean nodule sucrose synthase (nodulin-100) by a Ca2+-dependent protein kinase. FEBS Lett 410: 126-130. Zheng, Y., Anderson, S., Zhang, Y.F. and Garavito, R.M. (2011) The Structure of Sucrose Synthase-1 from Arabidopsis thaliana and Its Functional Implications. J Biol Chem 286: 36108-36118. 陳姿利 (2005) 水稻蔗糖合成酶 RSuS2 在酵母菌 Pichia pastoris 中表現及生化性質檢定. 國立臺灣大學微生物與生化學研究所. 黃玉嬌 (2006) 水稻蔗糖合成酶 RSuS1 野生型與突變型蛋白質之表現與檢定. 國立臺灣大學微生物與生化學研究所. 黃德宜 (2003) 水稻蔗糖合成酶 RSuS3基因表現與酵素功能之探討. 國立臺灣大學農業化學所. 廖憶純 (2003) 水稻懸浮培養細胞中蔗糖合成酶基因表現受糖調控之研究. 國立臺灣大學農業化學研究所. 蔡逸君 (2006) 酵母菌 Pichia pastoris 中表現重組水稻蔗糖合成酶 RSuS3 之性質與結構探討. 國立臺灣大學微生物與生化學研究所. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54894 | - |
dc.description.abstract | 蔗糖合成酶 (SuS) 催化蔗糖與 UDP 轉化為果糖與 UDP-glucose 的可逆反應。水稻中蔗糖合成酶 (RSuS) 至少由七種異構基因 (RSus) 所表現,且不同異構酶間的胺基酸序列高度相似。
本研究的目標是解析 RSuS 結構與功能間的關係。基質結合分析的結果顯示,RSuS 在蔗糖分解方向的先導基質為 UDP,而在蔗糖合成方向的先導基質為果糖。嘗試利用小角度 X-ray 散射、蛋白質結晶繞射及同源模擬的方式,進行 RSuS 蛋白質結構的解析。利用阿拉伯芥蔗糖合成酶 AtSuS1 為模版進行同源模擬,得到接近全長的 RSuS 模擬結構。由模擬結構的資訊推測,Gln307 及 E-X7-E motif 與基質結合相關。將 Gln307 突變成 Asn 或 Ser 會導致 RSuS1 酵素活性喪失,RSuS1(Q307N) 仍保有與果糖的結合能力,但 RSuS1(Q307S) 則喪失與果糖結合的能力。在糖基轉移酶 3、4 及 5 家族中,E-X7-E motif 是保守性高的區塊。此區塊中的突變株雖不影響 RSuS3 蛋白質四元體的形成,但僅 F680Y 與E686D 保有部分活性,E678D、E678Q、F680S 及 E686Q 則無酵素活性。對此區塊內無活性的突變株進行基質結合能力分析,結果顯示 E678D、E678Q、F680S 及 E686Q 皆保有與 UDP 結合的能力,但都無法與果糖結合。對 RSuS3 與保有活性的突變株 F680Y 及 E686D 進行酵素動力學分析,結果顯示這兩個胺基酸突變不僅影響酵素與 UDP-glucose 的結合能力,也影響酵素活性的展現。 | zh_TW |
dc.description.abstract | Sucrose synthase (SuS, EC 2.4.1.13) catalyzes the reversible conversion of sucrose and UDP into fructose and UDP-glucose. The enzyme is encoded by at least seven RSus genes in rice. The amino acid sequences of different RSuS are highly similar.
The objective of this study is to elucidate the structure-function relationships of RSuS. The results of substrate binding assay shown that UDP and fructose are the leading substrate of sucrose cleavage and sucrose synthesis direction, respectively. Different approaches including small angle X-ray scattering, protein crystallography and homology modeling, have been attempted to obtain the structure information of RSuS. The theoretical structure of partial RSuS, which was built with the structure of Arabidopsis sucrose synthase 1 as template, revealed that Gln307 and E-X7-E motif of RSuS was involved in fructose binding. Changing the Gln307 to Asn or Ser resulted in completely loss of enzyme activity. Substrate binding assays revealed that the mutant RSuS1(Q307N) retained the capability of fructose binding while RSuS1(Q307S) did not. The E-X7-E motif is conserved in members of glycosyltransferase family 4 (GT4) and other two GT families. The results of enzyme activity assay showed that the mutants E686D and F680Y retained partial enzyme activity and the mutants E678D, E678Q, F680S and E686Q were inactive; however, the tetrameric conformation was maintained in these mutant proteins. The results of substrate binding assays revealed that the mutants E6786D, E686Q, F680S and E686Q could bind UDP but lost the capability of sucrose binding and fructose binding. The kinetic parameters of RSuS3, F680Y and E686D indicated that the residues in E-X7-E motif are important in UDP-glucose binding and enzyme activity. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T03:40:54Z (GMT). No. of bitstreams: 1 ntu-104-D96B47201-1.pdf: 4065106 bytes, checksum: 700f2016e4ccfc3c3205bbcf0fd3b0ad (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 目錄 I
縮寫表 V 中文摘要 VII Abstract VIII 第一章 研究背景 9 第一節 蔗糖合成酶之生化性質 9 1.1 蔗糖合成酶之生化性質 9 1.2 蔗糖合成酶異構酶及異構基因 9 第二節 蔗糖合成酶之生理功能 10 2.1 參與蔗糖運輸 10 2.2 參與澱粉的生合成 11 2.3 參與細胞壁多醣類的生合成 12 第三節 蔗糖合成酶之細胞內定位及活性調控 13 3.1 蔗糖合成酶的膜結合形式與細胞內定位 13 3.2 蔗糖合成酶之磷酸化 13 3.3 蔗糖合成酶活性調控 14 第四節 蔗糖合成酶基因調控 14 4.1 蔗糖合成酶基因之表現具組織特異性 14 4.2 逆境對蔗糖合成酶基因表現的影響 15 4.3 糖調控蔗糖合成酶基因表現 15 第五節 糖基轉移酶家族與其結構 16 5.1 醣類代謝酵素整合型資料庫 - CAZy 16 5.2 糖基轉移酶家族與分類 16 5.3 糖基轉移酶的結構類型 18 5.4 蔗糖合成酶在糖基轉移酶家族中的分類 19 第六節 論文緣起與研究目的 19 6.1 研究緣起 19 6.2 本論文之研究目的 21 第二章 材料與方法 22 第一節 實驗材料與藥品 22 1.1 菌種 22 1.2 質體 22 1.3 實驗藥品 23 第二節 實驗儀器 23 2.1 核酸電泳設備 23 2.2 蛋白質電泳與轉印設備 23 2.3 離心機 23 2.4 恆溫水浴槽 23 2.5 分光光度計 24 2.6 其它 24 第三節 實驗方法 24 3.1 水稻蔗糖合成酶 RSuS 功能性區塊分析與結構預測 24 3.1.1 功能區塊分析 24 3.1.2 三級結構同源性分析 24 3.1.3 三級結構模擬 25 3.1.4 基質嵌合模擬 25 3.2 蔗糖合成酶活性測定法 26 3.2.1 蔗糖分解方向活性測定 26 3.2.1.1 UDPG 去氫酶酵素耦合法 26 3.2.1.2 還原糖定量法 26 3.2.2 蔗糖合成方向活性測定法: Anthrone 定量法 27 3.3 蛋白質定量與分析 28 3.3.1 蛋白質定量 28 3.2.2 蛋白質電泳 28 3.3.3 蛋白質轉印 29 3.3.4免疫染色法 29 3.4 重組蛋白質之生產與純化 30 3.4.1 重組 RSuS1 蛋白質之生產與蛋白質粗萃取 30 3.4.1.1 大量培養 30 3.4.1.2 粗抽及硫酸銨分劃 30 3.4.2 重組 RSuS3蛋白質之生產與蛋白質粗萃取 31 3.4.2.1 誘導酵母菌 Pichia pastoris 中 RSuS3 重組蛋白質的生產 31 3.4.2.2 粗抽與硫酸銨分劃 31 3.4.3 離子交換管柱層析 32 3.4.4 膠體過濾管柱層析 32 3.5 RSus3 突變株之建構與重組蛋白質生產 32 3.5.1 以定位點突變法建構 RSus3 突變株之表現質體 32 3.5.1.1 質體 DNA 小量製備 32 3.5.1.2 以聚合聚合酶連鎖反應進行定位點突變 33 3.5.1.3 PCR產物DNA以限制酶 DpnI 作用 34 3.5.1.4 質體DNA之轉形 34 (1) Competent cells之製備 34 (2) 質體之轉形 34 3.5.1.5 轉形株之檢定 35 3.5.2 酵母菌之轉形 35 3.5.2.1 直線型質體 DNA 的製備 35 3.5.2.2 酵母菌 competent cells之製備 36 3.5.2.3 電穿孔轉形 36 3.5.3 酵母菌轉形株的篩選與鑑定 36 3.5.3.1 鑑定轉形株性狀 37 3.5.3.2 目標基因插入染色體之 PCR 檢定 37 (1) 酵母菌染色體DNA的分離 37 (2) PCR檢定 38 3.5.4 酵母菌轉形株的小量表現與最佳誘導時間探討 38 3.6 水稻蔗糖合成酶之基質結合分析 39 3.6.1 平衡透析法 39 3.6.2 膠體過濾管柱層析 39 第三章 結果 41 第一節 水稻蔗糖合成酶基質結合區與活性中心之探討 41 1.1 水稻蔗糖合成酶與糖基轉移酶之多重序列比對 41 1.2 水稻蔗糖合成酶功能區塊的分析 41 1.3 水稻蔗糖合成酶蛋白質結構同源性分析 41 1.4 水稻蔗糖合成酶蛋白質結構模擬 42 1.5 水稻蔗糖合成酶蛋白質基質嵌合模擬 (substrate docking) 43 第二節 水稻蔗糖合成酶重組蛋白質之純化及活性分析 44 2.1 重組蛋白質 RSuS1 與 RSuS3 之純化 44 2.2 RSus3 突變株之建構 44 2.2.1 RSus3 突變株表現質體之建構 45 2.2.2 突變株小量表現 45 2.3 RSuS1 與 RSuS3 突變重組蛋白質之活性分析 46 第三節 水稻蔗糖合成酶與基質結合之分析 46 3.1平衡透析 47 3.2 Sephadex G25 膠體過濾管柱層析 48 3.2.1 RSuS1 與 RSuS3: 48 3.2.2 RSuS1 與 RSuS3 突變株: 48 3.2.3 添加不同基質組合: 49 第四節 水稻蔗糖合成酶 RSuS3 酵素動力學分析 49 第五節 水稻蔗糖合成酶 RSuS3 結構解析 50 5.1 蛋白質結晶與 X-ray 繞射分析 50 5.2 小角度雷射光散射分析 (Small angle X-ray scattering) 50 第四章 討論 51 第一節 水稻蔗糖合成酶具有 GT-B 摺疊結構 51 第二節 DTGGQV 及 E-X7-E motif 中之胺基酸影響水稻蔗糖合成酶之酵素活性 52 第三節 水稻蔗糖合成酶酵素催化反應機制推測為 sequential-order mechanism 52 第四節 DTGGQV 及 E-X7-E motif 中之胺基酸影響水稻蔗糖合成酶與基質的結合能力 54 第五節 Phe680 及 Glu686 影響水稻蔗糖合成酶對基質的親和力及催化反應速率 56 第五章 結論與未來展望 59 參考文獻 62 圖與表 72 附錄 104 | |
dc.language.iso | zh-TW | |
dc.title | 水稻蔗糖合成酶催化反應機制與蛋白質結構之探討 | zh_TW |
dc.title | Studies on the catalytic mechanism and the structure of rice sucrose synthase | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 宋賢一(Hsien-Yi Sung),楊健志(Chien-Chih Yang),楊啟伸(Chii-Shen Yang),陳佩燁,張世宗(Shih-Chung Chang) | |
dc.subject.keyword | 蔗糖合成?,反應機制,蛋白質結構,定位點突變,同源模擬, | zh_TW |
dc.subject.keyword | sucrose synthase,catalytic mechanism,protein structure,site-directed mutagenesis,homology modeling, | en |
dc.relation.page | 115 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-02-13 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科技學系 | zh_TW |
顯示於系所單位: | 生化科技學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 3.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。