請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54885
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 施養信 | |
dc.contributor.author | Chia-En Hsiung | en |
dc.contributor.author | 熊佳恩 | zh_TW |
dc.date.accessioned | 2021-06-16T03:40:41Z | - |
dc.date.available | 2020-02-26 | |
dc.date.copyright | 2015-02-26 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-02-13 | |
dc.identifier.citation | Almusallam, A.S., Abdulraheem, Y.M., Shahat, M., and Korah, P. (2012). Aggregation behavior of titanium dioxide nanoparticles in aqueous environments. J Disper Sci Technol 33, 728-738.
Alrousan, D.M.A., Polo-Lopez, M.I., Dunlop, P.S.M., Fernandez-Ibanez, P., and Byrne, J.A. (2012). Solar photocatalytic disinfection of water with immobilised titanium dioxide in re-circulating flow CPC reactors. Appl Catal B-Environ 128, 126-134. Aluru, N., Leatherland, J.F., and Vijayan, M.M. (2010). Bisphenol A in oocytes leads to growth suppression and altered stress performance in juvenile rainbow trout. Plos One 5. Aruoja, V., Dubourguier, H.C., Kasemets, K., and Kahru, A. (2009). Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407, 1461-1468. Basheer, C. (2013). Nanofiber-membrane-supported TiO2 as a catalyst for oxidation of benzene to phenol. J Chem 2013, 1-7. Bessekhouad, Y., Robert, D., Weber, J.V., and Chaoui, N. (2004). Effect of alkaline-doped TiO2 on photocatalytic efficiency. J Photoch Photobio A 167, 49-57. Botta, C., Labille, J., Auffan, M., Borschneck, D., Miche, H., Cabie, M., Masion, A., Rose, J., and Bottero, J.Y. (2011). TiO2-based nanoparticles released in water from commercialized sunscreens in a life-cycle perspective: structures and quantities. Environ Pollut 159, 1543-1550. Brant, J., Lecoanet, H., Hotze, M., and Wiesner, M. (2005). Comparison of electrokinetic properties of colloidal fullerenes (n-C60) formed using two procedures. Environ Sci Technol 39, 6343-6351. Cheng, X., Yu, X., Xing, Z., and Yang, L. (2012). Enhanced visible light photocatalytic activity of mesoporous anatase codoped with nitrogen and chlorine. Int J Photoenergy 2012, 1-6. Chiang, K., Lim, T.M., Tsen, L., and Lee, C.C. (2004). Photocatalytic degradation and mineralization of bisphenol A by TiO2 and platinized TiO2. Appl Catal A-Gen 261, 225-237. Chinnapongse, S.L., MacCuspie, R.I., and Hackley, V.A. (2011). Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters. Sci Total Environ 409, 2443-2450. Cho, K., Qu, Y., Kwon, D., Zhang, H., Cid, C.A., Aryanfar, A., and Hoffmann, M.R. (2014). Effects of anodic potential and chloride ion on overall reactivity in electrochemical reactors designed for solar-powered wastewater treatment. Environ Sci Technol 48, 2377-2384. Cho, M., Chung, H., Choi, W., and Yoon, J. (2005). Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Appl Environ Microbiol 71, 270-275. Chu, S., Haffner, G.D., and Letcher, R.J. (2005). Simultaneous determination of tetrabromobisphenol A, tetrachlorobisphenol A, bisphenol A and other halogenated analogues in sediment and sludge by high performance liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr A 1097, 25-32. Company, V.L. (2015). The chemistry of chlorine. Cousins, I.T., Staples, C.A., Klecka, G.M., and Mackay, D. (2002). A multimedia assessment of the environmental fate of bisphenol A. Hum Ecol Risk Assess 8, 1107-1135. Demierre, A.L., Peter, R., Oberli, A., and Bourqui-Pittet, M. (2012). Dermal penetration of bisphenol A in human skin contributes marginally to total exposure. Toxicol Lett 213, 305-308. Deonarine, A., Lau, B.L., Aiken, G.R., Ryan, J.N., and Hsu-Kim, H. (2011). Effects of humic substances on precipitation and aggregation of zinc sulfide nanoparticles. Environ Sci Technol 45, 3217-3223. Durando, M., Kass, L., Piva, J., Sonnenschein, C., Soto, A.M., Luque, E.H., and Munoz-de-Toro, M. (2006). Prenatal bisphenol A exposure induces preneoplastic lesions in the mammary gland in wistar rats. Environ Health Persp 115, 80-86. Emerson, D.W. (1994). Microdetermination of bromine, chlorine, and chlorine dioxide in water in any combination. Microchem J 50, 116-124. Erdem, B., Hunsicker, R.A., Simmons, G.W., Sudol, E.D., Dimonie, V.L., and El-Aasser, M.S. (2001). XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir 17, 2664-2669. Fang, J., Fu, Y., and Shang, C. (2014). The roles of reactive species in micropollutant degradation in the UV/free chlorine system. Environ Sci Technol 48, 1859-1868. Fang, J., Shan, X.Q., Wen, B., Lin, J.M., and Owens, G. (2009). Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns. Environ Pollut 157, 1101-1109. Gallard, H., Leclercq, A., and Croue, J.P. (2004). Chlorination of bisphenol A: kinetics and by-products formation. Chemosphere 56, 465-473. Ge, Y., Schimel, J.P., and Holden, P.A. (2011). Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45, 1659-1664. Geens, T., Aerts, D., Berthot, C., Bourguignon, J.P., Goeyens, L., Lecomte, P., Maghuin-Rogister, G., Pironnet, A.M., Pussemier, L., Scippo, M.L., et al. (2012). A review of dietary and non-dietary exposure to bisphenol-A. Food Chem Toxicol 50, 3725-3740. Geens, T., Goeyens, L., and Covaci, A. (2011). Are potential sources for human exposure to bisphenol-A overlooked? Int J Hyg Environ Health 214, 339-347. Gottschalk, F., Sonderer, T., Scholz, R.W., and Nowack, B. (2009). Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43, 9216-9222. Gustafsson, J., Nordenswan, E., and Rosenholm, J.B. (2003). Consolidation behavior in sedimentation of TiO2 suspensions in the presence of electrolytes. J Colloid Interf Sci 258, 235-243. Hao, W.C., Zheng, S.K., and Wang, C. (2002). Comparison of the photocatalytic activity of TiO2 powder with different particle size. J Mater Sci Lett 21, 1627-1629. Hu, J.D., Zevi, Y., Kou, X.M., Xiao, J., Wang, X.J., and Jin, Y. (2010). Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions. Sci Total Environ 408, 3477-3489. Huang, A., Wang, N., Lei, M., Zhu, L., Zhang, Y., Lin, Z., Yin, D., and Tang, H. (2013). Efficient oxidative debromination of decabromodiphenyl ether by TiO2-mediated photocatalysis in aqueous environment. Environ Sci Technol 47, 518-525. Huang, Y.Q., Wong, C.K., Zheng, J.S., Bouwman, H., Barra, R., Wahlstrom, B., Neretin, L., and Wong, M.H. (2012). Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts. Environ Int 42, 91-99. Huang, Y.Z., and Blackwood, D.J. (2005). Characterisation of titanium oxide film grown in 0.9% NaCl at different sweep rates. Electrochimica Acta 51, 1099-1107. Ishibashi, K., Fujishima, A., Watanabe, T., and Hashimoto, K. (2000). Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem Commun 2, 207-210. Jafry, H.R., Liga, M.V., Li, Q., and Barron, A.R. (2011). Simple route to enhanced photocatalytic activity of p25 titanium dioxide nanoparticles by silica addition. Environ Sci Technol 45, 1563-1568. Jang, H.D., Kim, S.K., and Kim, S.J. (2001). Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. J Nanopart Res 3, 141-147. Jia, C., Wang, Y., Zhang, C., Qin, Q., Kong, S., and Kouakou Yao, S. (2012). Photocatalytic degradation of bisphenol A in aqueous suspensions of titanium dioxide. Environ Eng Sci 29, 630-637. Jiang, G., Tang, H., Zhu, L., Zhang, J., and Lu, B. (2009). Improving electrochemical properties of liquid phase deposited TiO2 thin films by doping sodium dodecylsulfonate and its application as bioelectrocatalytic sensor for hydrogen peroxide. Sensor Actuat B-Chem 138, 607-612. Kaneco, S., Rahman, M.A., Suzuki, T., Katsumata, H., and Ohta, K. (2004). Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide. J Photoch Photobio A 163, 419-424. Kasemets, K., Ivask, A., Dubourguier, H.C., and Kahru, A. (2009). Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol In Vitro 23, 1116-1122. Keiter, S., Baumann, L., Farber, H., Holbech, H., Skutlarek, D., Engwall, M., and Braunbeck, T. (2012). Long-term effects of a binary mixture of perfluorooctane sulfonate (PFOS) and bisphenol A (BPA) in zebrafish (Danio rerio). Aquat Toxicol 118-119, 116-129. Keller, A.A., Wang, H., Zhou, D., Lenihan, H.S., Cherr, G., Cardinale, B.J., Miller, R., and Ji, Z. (2010). Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44, 1962-1967. Kiel, S., Grinberg, O., Perkas, N., Charmet, J., Kepner, H., and Gedanken, A. (2012). Forming nanoparticles of water-soluble ionic molecules and embedding them into polymer and glass substrates. Beilstein J Nanotechnol 3, 267-276. Kim, D.S., and Kwak, S.-Y. (2009). Photocatalytic inactivation of E-coli with a mesoporous TiO2 coated film using the film adhesion method. Environ Sci Technol 43, 148-151. Krysa, J., Keppert, M., Jirkovsky, J.r., Štengl, V., and Šubrt, J. (2004). The effect of thermal treatment on the properties of TiO2 photocatalyst. Mater Chem Phys 86, 333-339. Labille, J., and Brant, J. (2010). Stability of nanoparticles in water. Nanomedicine-UK 5, 985-998. Lakshminarasimhan, N., Kim, W., and Choi, W. (2008). Effect of the agglomerated state on the photocatalytic hydrogen production with in situ agglomeration of colloidal TiO2 nanoparticles. J Phys Chem C 112, 20451-20457. LeBel, C.P., Ischiropoulos, H., and Bondy, S.C. (1992). Evaluation of the probe 2', 7'-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5, 227-231. Lee, J.M., Kim, M.S., and Kim, B.W. (2004). Photodegradation of bisphenol-A with TiO2 immobilized on the glass tubes including the UV light lamps. Water Res 38, 3605-3613. Li, G., Park, S., and Rittmann, B.E. (2012). Developing an efficient TiO2-coated biofilm carrier for intimate coupling of photocatalysis and biodegradation. Water Res 46, 6489-6496. Li, M., Czymmek, K.J., and Huang, C.P. (2011). Responses of Ceriodaphnia dubia to TiO2 and Al2O3 nanoparticles: a dynamic nano-toxicity assessment of energy budget distribution. J Hazard Mater 187, 502-508. Lin, H., Huang, C., Li, W., Ni, C., Shah, S., and Tseng, Y. (2006). Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl Catal B-Environ 68, 1-11. Lin, H., Li, L., Zhao, M., Huang, X., Chen, X., Li, G., and Yu, R. (2012). Synthesis of high-quality brookite TiO2 single-crystalline nanosheets with specific facets exposed: tuning catalysts from inert to highly reactive. J Am Chem Soc 134, 8328-8331. Liu, C., Roder, R., Zhang, L., Ren, Z., Chen, H., Zhang, Z., Ronning, C., and Gao, P.-X. (2014). Highly efficient visible-light driven photocatalysts: a case of zinc stannate based nanocrystal assemblies. J Mater Chem A 2, 4157. Liu, H., Zhao, H., Quan, X., Zhang, Y., and Chen, S. (2009). Formation of chlorinated intermediate from bisphenol A in surface saline water under simulated solar light irradiation. Environ Sci Technol 43, 7712-7717. Louit, G., Foley, S., Cabillic, J., Coffigny, H., Taran, F., Valleix, A., Renault, J.P., and Pin, S. (2005). The reaction of coumarin with the OH radical revisited: hydroxylation product analysis determined by fluorescence and chromatography. Radiat Phys Chem 72, 119-124. Luo, T., Cui, J., Hu, S., Huang, Y., and Jing, C. (2010). Arsenic removal and recovery from copper smelting wastewater using TiO2. Environ Sci Technol 44, 9094-9098. Maira, A.J., Yeung, K.L., Lee, C.Y., Yue, P.L., and Chan, C.K. (2000). Size effects in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO2 catalysts. J Catal 192, 185-196. Marotta, E., Ceriani, E., Schiorlin, M., Ceretta, C., and Paradisi, C. (2012). Comparison of the rates of phenol advanced oxidation in deionized and tap water within a dielectric barrier discharge reactor. Water Res 46, 6239-6246. Mendez-Diaz, J.D., Shimabuku, K.K., Ma, J., Enumah, Z.O., Pignatello, J.J., Mitch, W.A., and Dodd, M.C. (2014). Sunlight-driven photochemical halogenation of dissolved organic matter in seawater: a natural abiotic source of organobromine and organoiodine. Environ Sci Technol 48, 7418-7427. Mudunkotuwa, I.A., and Grassian, V.H. (2010). Citric acid adsorption on TiO2 nanoparticles in aqueous suspensions at acidic and circumneutral pH: Surface coverage, surface speciation, and its impact on nanoparticle-nanoparticle interactions. J Am Chem Soc 132, 14986-14994. Ohko, Y., Ando, I., Niwa, C., Tatsuma, T., Yamamura, T., Nakashima, T., Kubota, Y., and Fujishima, A. (2001). Degradation of bisphenol A in water by TiO2 photocatalyst. Environ Sci Technol 35, 2365-2368. Park, Y., Kim, W., Monllor-Satoca, D., Tachikawa, T., Majima, T., and Choi, W. (2013). Role of interparticle charge transfers in agglomerated photocatalyst nanoparticles: demonstration in aqueous suspension of dye-sensitized TiO2. J Phys Chem Lett 4, 189-194. Petosa, A.R., Brennan, S.J., Rajput, F., and Tufenkji, N. (2012). Transport of two metal oxide nanoparticles in saturated granular porous media: role of water chemistry and particle coating. Water Res 46, 1273-1285. Raghupathi, K.R., Koodali, R.T., and Manna, A.C. (2011). Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27, 4020-4028. Ramjaun, S.N., Yuan, R., Wang, Z., and Liu, J. (2011). Degradation of reactive dyes by contact glow discharge electrolysis in the presence of Cl− ions: Kinetics and AOX formation. Electrochimica Acta 58, 364-371. Reyes-Coronado, D., Rodriguez-Gattorno, G., Espinosa-Pesqueira, M.E., Cab, C., de Coss, R., and Oskam, G. (2008). Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19, 145605. Rubin, B.S. (2011). Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol 127, 27-34. Segets, D., Marczak, R., Schaefer, S., Paula, C., Gnichwitz, J.-F., Hirsch, A., and Peukert, W. (2011). Experimental and theoretical studies of the colloidal stability of nanoparticles - A general interpretation based on stability maps. Acs Nano 5, 4658-4669. Sharma, V.K., Anquandah, G.A.K., Yngard, R.A., Kim, H., Fekete, J., Bouzek, K., Ray, A.K., and Golovko, D. (2009). Nonylphenol, octylphenol, and bisphenol-A in the aquatic environment: A review on occurrence, fate, and treatment. J Environ Sci Heal A 44, 423-442. Sheng, H., Li, Q., Ma, W., Ji, H., Chen, C., and Zhao, J. (2013). Photocatalytic degradation of organic pollutants on surface anionized TiO2: Common effect of anions for high hole-availability by water. Appl Catal B-Environ 138-139, 212-218. Shih, Y., Wu, S., and Doong, R. (2008). The fate and transformation of nanoparticles in water environmental media. Simon-Deckers, A., Loo, S., Mayne-L'Hermite, M., Herlin-Boime, N., Menguy, N., Reynaud, C., Gouget, B., and Carriere, M. (2009). Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ Sci Technol 43, 8423-8429. Sin, J.-C., Lam, S.-M., Mohamed, A.R., and Lee, K.-T. (2012). Degrading endocrine disrupting chemicals from wastewater by TiO2 photocatalysis; photocatalysis: A Review. Int J Photoenergy 2012, 1-23. Sojic, D.V., Anderluh, V.B., Orcic, D.Z., and Abramovic, B.F. (2009). Photodegradation of clopyralid in TiO2 suspensions: identification of intermediates and reaction pathways. J Hazard Mater 168, 94-101. Staples, C.A., Dorn, P.B., Klecka, G.M., O'Block, S.T., and Harris, L.R. (1998). A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36, 2149-2173. Subagio, D.P., Srinivasan, M., Lim, M., and Lim, T.-T. (2010). Photocatalytic degradation of bisphenol-A by nitrogen-doped TiO2 hollow sphere in a vis-LED photoreactor. Appl Catal B-Environ 95, 414-422. Tao, H., Hao, S., Chang, F., Wang, L., Zhang, Y., Cai, X., and Zeng, J.-S.-D. (2010). Photodegradation of bisphenol A by titana nanoparticles in mesoporous MCM-41. Water Air Soil Poll 214, 491-498. Thio, B.J., Zhou, D., and Keller, A.A. (2011). Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles. J Hazard Mater 189, 556-563. Tso, C.P., Zhung, C.M., Shih, Y.H., Tseng, Y.M., Wu, S.C., and Doong, R.A. (2010). Stability of metal oxide nanoparticles in aqueous solutions. Water Sci Technol 61, 127-133. Umar, M., and Abdul, H. (2013). Photocatalytic Degradation of Organic Pollutants in Water. Van Wieren, E.M., Seymour, M.D., and Peterson, J.W. (2012). Interaction of the fluoroquinolone antibiotic, ofloxacin, with titanium oxide nanoparticles in water: adsorption and breakdown. Sci Total Environ 441, 1-9. Venkatachalam, S., Hayashi, H., Ebina, T., and Nanjo, H. (2013). Preparation and characterization of nanostructured TiO2 thin films by hydrothermal and anodization methods. Vijay, M., Ramachandran, K., Ananthapadmanabhan, P.V., Nalini, B., Pillai, B.C., Bondioli, F., Manivannan, A., and Narendhirakannan, R.T. (2013). Photocatalytic inactivation of Gram-positive and Gram-negative bacteria by reactive plasma processed nanocrystalline TiO2 powder. Curr Appl Phys 13, 510-516. Vikesland, P.J., Fiss, E.M., Wigginton, K.R., McNeill, K., and Arnold, W.A. (2013). Halogenation of bisphenol-A, triclosan, and phenols in chlorinated waters containing iodide. Environ Sci Technol 47, 6764-6772. Watanabe, N., Horikoshi, S., Kawabe, H., Sugie, Y., Zhao, J., and Hidaka, H. (2003). Photodegradation mechanism for bisphenol A at the TiO2/H2O interfaces. Chemosphere 52, 851-859. Wesarg, F., Schlott, F., Grabow, J., Kurland, H.D., Hessler, N., Kralisch, D., and Muller, F.A. (2012). In situ synthesis of photocatalytically active hybrids consisting of bacterial nanocellulose and anatase nanoparticles. Langmuir 28, 13518-13525. Wiesner, M.R., Lowry, G.V., Casman, E., Bertsch, P.M., Matson, C.W., Di Giulio, R.T., Liu, J., and Hochella, M.F., Jr. (2011). Meditations on the ubiquity and mutability of nano-sized materials in the environment. Acs Nano 5, 8466-8470. Wu, J., Liu, W., Xue, C., Zhou, S., Lan, F., Bi, L., Xu, H., Yang, X., and Zeng, F.D. (2009). Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicol Lett 191, 1-8. Wu, J., Tu, D., Yuan, L.Y., Yuan, H., and Wen, L.X. (2013). T-2 toxin exposure induces apoptosis in rat ovarian granulosa cells through oxidative stress. Environ Toxicol Pharmacol 36, 493-500. Yang, L., Luo, S., Li, Y., Xiao, Y., Kang, Q., and Cai, Q. (2010). High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p-n heterojunction network catalyst. Environ Sci Technol 44, 7641-7646. Yu, Q., Wu, P., Xu, P., Li, L., Liu, T., and Zhao, L. (2008). Synthesis of cellulose/titanium dioxide hybrids in supercritical carbon dioxide. Green Chem 10, 1061. Yuan, R., Ramjaun, S.N., Wang, Z., and Liu, J. (2012). Photocatalytic degradation and chlorination of azo dye in saline wastewater: Kinetics and AOX formation. Chem Eng J 192, 171-178. Yurdakal, S., Loddo, V., Ferrer, B.B., Palmisano, G., Augugliaro, V., Farreras, J.G., and Palmisano, L. (2007). Optical properties of TiO2 suspensions: Influence of pH and powder concentration on mean particle size. Ind Eng Chem Res 46, 7620-7626. Zacharakis, A., Chatzisymeon, E., Binas, V., Frontistis, Z., Venieri, D., and Mantzavinos, D. (2013). Solar photocatalytic degradation of bisphenol A on immobilized ZnO or TiO2. Int J Photoenergy 2013, 1-9. Zafiriou, O.C. (1974). Sources and reactions of OH and daughter radicals in seawater. J Geophys Res 79, 4491-4497. Zanoni, M.V.B., Sene, J.J., Selcuk, H., and Anderson, M.A. (2004). Photoelectrocatalytic production of active chlorine on nanocrystalline titanium dioxide thin-film electrodes. Environ Sci Technol 38, 3203-3208. Zhang, F., Li, M., Li, W., Feng, C., Jin, Y., Guo, X., and Cui, J. (2011). Degradation of phenol by a combined independent photocatalytic and electrochemical process. Chem Eng J 175, 349-355. Zhang, R., Bai, Y., Zhang, B., Chen, L., and Yan, B. (2012). The potential health risk of titania nanoparticles. J Hazard Mater 211-212, 404-413. Zhang, Y., Chen, Y., Westerhoff, P., and Crittenden, J. (2009). Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res 43, 4249-4257. Zhang, Z.B., Wang, C.C., Zakaria, R., and Ying, J.Y. (1998). Role of particle size in nanocrystalline TiO2-based photocatalysts. J Phys Chem B 102, 10871-10878. Zhu, H.Y., Orthman, J.A., Li, J.Y., Zhao, J.C., Churchman, G.J., and Vansant, E.F. (2002). Novel composites of TiO2 (anatase) and silicate nanoparticles. Chem Mater 14, 5037-5044. Zhu, X., Zhou, J., and Cai, Z. (2011). TiO2 nanoparticles in the marine environment: impact on the toxicity of tributyltin to abalone (Haliotis diversicolor supertexta) embryos. Environ Sci Technol 45, 3753-3758. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54885 | - |
dc.description.abstract | 二氧化鈦奈米顆粒(titanium dioxide nanoparticles,TiO2 NPs)是一種常見的奈米材料,並應用於許多消費產品當中。它們於環境中的宿命如聚集與沉降,及對生態系統和人類健康的影響日益受到關注。雙酚A(4,4'-(propane-2,2-diyl)diphenol,BPA)已長時間被應用,然而,暴露於雙酚A可能會干擾內分泌系統的運作。本研究的目的是了解TiO2 NP之聚集與沉降,並研究聚集之TiO2光降解模式汙染物BPA之機制。
商用TiO2奈米顆粒(commercial TiO2 NPs,CTiO2 NPs)的顆粒濃度並不會影響其穩定性,CTiO2 NPs在溶液pH值接近其等電點(pHpzc = 6.0)時會發生聚集及沉降。CTiO2的顆粒大小隨著NaCl及Na2SO4濃度的提高而增加,而其臨界凝聚濃度(critical coagulation concentration,CCC)分別為100及1.5 mM,並且CTiO2於Na2SO4存在下的聚集及沉降幅度明顯較於NaCl存在下高。以過濾及離心除去溶液中的NaCl後,已聚集的CTiO2顆粒大小降低至85~100 nm。不同腐植酸濃度下,只在含20 mg/L SRHA時,CTiO2才會發生聚集及沉降現象。在綜合pH、NaCl及SRHA等因子之實驗中,除了在pH 7,200 mM NaCl及10 mg/L SRHA的狀況下,CTiO2的聚集及沉降都會發生。 BPA的降解速率隨著NaCl及NaBr濃度的提高與TiO2粒徑增加而增加,然而,在高濃度NaNO3的存在下,BPA的降解速率不但沒有增加,甚至會降低,這表明鹵素離子會影響BPA的降解速率,並且NaBr增加幅度大於NaCl。再以預先已聚集的粉體TiO2奈米顆粒(ATiO2),即粒徑不隨鹽類有大變化,進行BPA的降解實驗時,觀察到BPA降解速率及NaCl濃度之間存在良好的相關性。在加入500 mM NaCl之前及之後,BPA分別在中性及酸性條件下,有最高的降解速率,這可能是由於pH會影響高濃度NaCl所衍生之次氯酸(hypochlorous acid,HOCl)及次氯酸根離子(hypochlorite ion,OCl-)之間的轉換。次氯酸的反應性遠高於次氯酸根離子,而在酸性條件下次氯酸的含量較豐富,因此可提高與BPA的反應性。添加0.2 M甲醇會降低CTiO2對BPA的降解,但同時含有NaCl時,則仍較只添加甲醇為高,所以氫氧自由基不是降解BPA的唯一因子。在日光照射之BPA降解實驗中,高NaCl/NaBr濃度也會增加CTiO2光降解BPA,而且LC-MS的分析顯示,在高濃度NaBr會產生單溴BPA(monobromo-bisphenol A)。BPA降解速率的增加是由於Cl-或Br-濃度的提高,而不是TiO2顆粒大小的增加。氯或溴離子於TiO2表面接受光照時,由鹵素離子衍生的鹵素自由基能夠與BPA反應,進而增加BPA的降解速率。比對不同苯環有機化合物於含NaCl之光降解,有機化合物的結構可能導致自由基攻擊的特異性。 | zh_TW |
dc.description.abstract | Titanium dioxide nanoparticle (TiO2 NP) is one of the most common nanomaterials and used in several consumer goods. As a result, their fate such as aggregation and sedimentation and effects on the ecosystem and human health are of growing concern. Bisphenol A (4,4'-(propane-2,2-diyl)diphenol, BPA) has been used for a long period of time, however, its exposure could result in endocrine disruption. This study aims to conduct the aggregation and sedimentation of TiO2 NPs and to understand photodegradation mechanism by using TiO2 NP aggregates as a catalyst and BPA as a model molecule.
The particle concentrations of commercial TiO2 (CTiO2) NPs did not affect their stability. The CTiO2 NPs aggregated and settled down at pH that closed to the point of zero charge around 6.0. The size of CTiO2 increased with the increasing concentrations of NaCl and Na2SO4, and their critical coagulation concentrations were 100 and 1.5 mM, respectively. The magnitude in aggregation and sedimentation of CTiO2 in the presence of Na2SO4 was higher than that in NaCl. After removing NaCl, the sizes of aggregated CTiO2 were reduced to 85~100 nm. Among all SRHA concentrations, CTiO2 NPs aggregated and settled down at 20 mg/L SRHA. When mixing these above factors together, aggregation and sedimentation occurred except for the condition of pH 7, 200 m M NaCl and 10 mg/L SRHA. The degradation rate of BPA increased with increasing NaCl and NaBr concentrations. However, with 500 mM NaNO3, the degradation kinetics of BPA decreased, which indicates that only halide ions eventually affect BPA degradation rate. The enhanced effect by NaBr is higher than NaCl. In the BPA degradation experiments conducted by pre-aggregated TiO2 NPs, whose size does not change a lot with electrolytes, a good correlation between BPA degradation rate and NaCl concentration was observed. BPA had higher degradation rate under neutral and acidic conditions before and after adding 500 mM NaCl compared to basic conditions. This may be because pH affects the transformation between hypochlorous acid (HOCl) and hypochlorite ion (OCl-) generated from high concentration of NaCl. The reactivity of HOCl is much higher than that of OCl-. HOCl is more abundant in acidic conditions than in basic conditions, thereby increasing the degradation of BPA. The decrease of BPA degradation with 0.2 M methanol was higher than that with NaCl and 0.2 M methanol, indicated that hydroxyl radical was not the only factor for BPA degradation. Under sunlight, the degradation of BPA by CTiO2 NPs with NaCl/NaBr also increased. Furthermore, LC-MS analysis showed the formation of monobromo-bisphenol A. Halogen radicals produced from photocatalytic reaction of halide ions on TiO2 NPs were capable of reacting with BPA, leading to the increase of BPA degradation. Compared to different aromatic compounds, the specificity of radical attack may be due to the configuration of organic compounds. The increase in the degradation rate of BPA is due to the increasing Cl or Br ion concentration instead of TiO2 particle size. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T03:40:41Z (GMT). No. of bitstreams: 1 ntu-104-R01623003-1.pdf: 3246572 bytes, checksum: 645e6cf6d7712f68616f16bf019b3a29 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 誌謝 I
摘要 II Tables of contents V List of Tables VIII List of Figures X Chapter 1 Introduction 1 Chapter 2 Literature Review 4 2.1 Introduction of bisphenol A 4 2.2 Effects of BPA in Biota 5 2.2.1 Effect in terrestrial invertebrates 5 2.2.2 Human hazard potential 6 2.3 The fate of BPA in the environment 7 2.4 Introduction of titanium dioxide particles 7 2.4.1 The titanium dioxide 7 2.4.2 The aggregation and sedimentation of TiO2 NPs 9 2.4.2.1 Effect of pH 11 2.4.2.2 Effect of ions 11 2.4.2.3 Effect of natural organic matters (NOM) 11 2.4.3 The application of TiO2 in the environment 13 2.5 The degradation of BPA and other compounds using TiO2 NPs 14 2.5.1 Effect of pH 15 2.5.2 Effect of ions 17 2.5.3 Effect of particle size 19 Chapter 3 Material and Methods 21 3.1 Chemicals 21 3.2 Characterization of the TiO2 nanoparticles 21 3.3 Aggregation and sedimentation of TiO2 22 3.4 BPA photodegradation 24 3.5 TOC measurement 25 3.6 Radical measurements 25 3.6.1 Hydroxyl radical measurement 25 3.6.2 Total ROS measurement 26 3.6.3 The measurement of chlorine and bromine 27 3.7 Analytical methods 28 3.7.1 BPA stock solution 28 3.7.2 Extraction method of BPA in solid phase and aqueous phase 28 3.7.3 Analysis of BPA 29 3.7.4 Extraction and analysis of intermediate products 29 3.7.5 Analysis of benzoic acid and nitrobenzene 30 3.8 Caculation 30 3.8.1 Determination of NPs sedimentation rate 30 3.8.2 BPA reaction rate constants 30 3.8.3 Removal efficiency 31 Chapter 4 Results and Discussion 33 4.1 Characterization of CTiO2 and ATiO2 nanoparticles 33 4.2 Aggregation and sedimentation of CTiO2 39 4.2.1 The effect of CTiO2 NPs concentrations 39 4.2.2 The effect of pH 41 4.2.3 The effect of NaCl 43 4.2.4 The effect of Na2SO4 49 4.2.5 The effect of SRHA 54 4.2.6 The combination effect of pH, NaCl and SRHA on the stability of CTiO2 NPs 56 4.2.7 The effect of centrifugation and filtration on CTiO2 NP aggregates with 500 mM NaCl 58 4.3 Degradation of BPA using CTiO2 59 4.3.1 The effect of salt concentration on the removal of BPA with CTiO2 NPs 59 4.3.1.1 The effects of NaCl concentration on the removal of BPA by CTiO2 NPs 60 4.3.1.2 The effect of NaBr concentration on the removal of BPA by CTiO2 NPs 64 4.3.1.3 The effect of NaOH on the removal of BPA by CTiO2 NPs 66 4.3.1.4 The effect of NaNO3 concentration on the removal of BPA by CTiO2 NPs 68 4.3.2 The effect of different types of TiO2 on the removal of BPA by TiO2 NPs 69 4.3.2.1 The effect of NaCl concentration on the removal of BPA by ATiO2 NPs 70 4.3.2.2 The effect of NaBr concentration on the removal of BPA by ATiO2 NPs 73 4.3.2.3 The effect of NaNO3 concentration on the removal of BPA by ATiO2 NPs 75 4.3.3 The effect of pH on the removal of BPA by CTiO2 NPs 77 4.3.4 The effect of methanol as a scavenger of hydroxyl radical on the removal of BPA by CTiO2 NPs 82 4.3.5 Sunlight irradiation experiment 84 4.3.6 TOC measurements 86 4.4 Mechanism and discussion – the production of halogenated radicals 89 4.4.1 Measurements of hydroxyl radicals 89 4.4.2 Measurements of total ROS 92 4.4.3 Measurements of chlorine and bromine 93 4.4.4 Degradation of benzoic acid and nitrobenzene by CTiO2 96 4.4.5 Intermediate products measurements 98 Chapter 5 Conclusion 101 Reference 104 Appendix 113 | |
dc.language.iso | en | |
dc.title | 電解質對二氧化鈦奈米顆粒的聚集及其降解雙酚A之影響 | zh_TW |
dc.title | The aggregation of titanium dioxide nanoparticle and its degradation of bisphenol A in the presence of electrolytes | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳先琪,董瑞安 | |
dc.subject.keyword | 聚集,雙酚A (BPA),降解,鹵素離子,奈米顆粒(NPs),沉降,二氧化鈦 (TiO2), | zh_TW |
dc.subject.keyword | aggregation,bisphenol A (BPA),degradation,halide ions,nanoparticles (NPs),sedimentation,titanium dioxide (TiO2), | en |
dc.relation.page | 121 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-02-13 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 3.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。