請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54878
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王培育(Pei-Yu Wang) | |
dc.contributor.author | Shu-Yun Yuan | en |
dc.contributor.author | 袁淑韵 | zh_TW |
dc.date.accessioned | 2021-06-16T03:40:31Z | - |
dc.date.available | 2018-12-31 | |
dc.date.copyright | 2015-03-12 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-02-13 | |
dc.identifier.citation | Abe, O., Yamasue, H., Aoki, S., Suga, M., Yamada, H., Kasai, K., Ohtomo, K. (2008). Aging in the CNS: comparison of gray/white matter volume and diffusion tensor data. Neurobiology of Aging, 29(1), 102–116. doi:10.1016/j.neurobiolaging.2006.09.003
Baudouin, A., Clarys, D., Vanneste, S., & Isingrini, M. (2009). Executive functioning and processing speed in age-related differences in memory: contribution of a coding task. Brain and Cognition, 71(3), 240–245. doi:10.1016/j.bandc.2009.08.007 Baxter, C. F. (1970). The Nature of γ-Aminobutyric Acid. In A. Lajtha (Ed.), Metabolic Reactions in the Nervous System (pp. 289–353). Bowman, G. L., Silbert, L. C., Howieson, D., Dodge, H. H., Traber, M. G., Frei, B., Quinn, J. F. (2012). Nutrient biomarker patterns, cognitive function, and MRI measures of brain aging. Neurology, 78(4), 241–249. doi:10.1212/WNL.0b013e3182436598 Chee, M. W. L., Chen, K. H. M., Zheng, H., Chan, K. P. L., Isaac, V., Sim, S. K. Y., Ng, T. P. (2009). Cognitive function and brain structure correlations in healthy elderly East Asians. NeuroImage, 46(1), 257–269. doi:10.1016/j.neuroimage.2009.01.036 Craft, S., Newcomer, J., Kanne, S., Dagogo-Jack, S., Cryer, P., Sheline, Y., Alderson, A. (1996). Memory improvement following induced hyperinsulinemia in Alzheimer’s disease. Neurobiology of Aging, 17(1), 123–130. Creavin, S. T., Gallacher, J., Pickering, J., Fehily, A., Fish, M., Ebrahim, S., Ben-Shlomo, Y. (2012). High caloric intake, poor cognition and dementia: the Caerphilly Prospective Study. European Journal of Epidemiology, 27(3), 197–203. doi:10.1007/s10654-012-9667-9 Dodge, H. H., Du, Y., Saxton, J. A., & Ganguli, M. (2006). Cognitive domains and trajectories of functional independence in nondemented elderly persons. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 61(12), 1330–1337. Factors Associated with the Functional Status of Community‐d. : Journal of Geriatric Physical Therapy. (n.d.). Retrieved January 20, 2015, from http://journals.lww.com/jgpt/Fulltext/2006/12000/Factors_Associated_with_the_Functional_Status_of.4.aspx Fehm, H. L., Kern, W., & Peters, A. (2006). The selfish brain: competition for energy resources. Progress in Brain Research, 153, 129–140. doi:10.1016/S0079-6123(06)53007-9 Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., Dale, A. M. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341–355. Fernstrom, J. D. (1976). The effect of nutritional factors on brain amino acid levels and monoamine synthesis. Federation Proceedings, 35(5), 1151–1156. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198. Hutton, C., Draganski, B., Ashburner, J., & Weiskopf, N. (2009). A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. NeuroImage, 48(2), 371–380. doi:10.1016/j.neuroimage.2009.06.043 Isaacs, E. B. (2013). Neuroimaging, a new tool for investigating the effects of early diet on cognitive and brain development. Frontiers in Human Neuroscience, 7, 445. doi:10.3389/fnhum.2013.00445 Kalmijn, S., Feskens, E. J., Launer, L. J., & Kromhout, D. (1997). Polyunsaturated fatty acids, antioxidants, and cognitive function in very old men. American Journal of Epidemiology, 145(1), 33–41. Kaplan, R. J., Greenwood, C. E., Winocur, G., & Wolever, T. M. (2001). Dietary protein, carbohydrate, and fat enhance memory performance in the healthy elderly. The American Journal of Clinical Nutrition, 74(5), 687–693. Kramer, J. H., Mungas, D., Reed, B. R., Wetzel, M. E., Burnett, M. M., Miller, B. L., Chui, H. C. (2007). Longitudinal MRI and cognitive change in healthy elderly. Neuropsychology, 21(4), 412–418. doi:10.1037/0894-4105.21.4.412 Kurth, F., Levitt, J. G., Phillips, O. R., Luders, E., Woods, R. P., Mazziotta, J. C., Narr, K. L. (2013). Relationships between gray matter, body mass index, and waist circumference in healthy adults. Human Brain Mapping, 34(7), 1737–1746. doi:10.1002/hbm.22021 Lieberman, H. R., Corkin, S., Spring, B. J., Wurtman, R. J., & Growdon, J. H. (1985). The effects of dietary neurotransmitter precursors on human behavior. The American Journal of Clinical Nutrition, 42(2), 366–370. Martin, B., Mattson, M. P., & Maudsley, S. (2006). Caloric restriction and intermittent fasting: two potential diets for successful brain aging. Ageing Research Reviews, 5(3), 332–353. doi:10.1016/j.arr.2006.04.002 McGuire, L. C., Ford, E. S., & Ajani, U. A. (2006). Cognitive functioning as a predictor of functional disability in later life. The American Journal of Geriatric Psychiatry: Official Journal of the American Association for Geriatric Psychiatry, 14(1), 36–42.doi:10.1097/01.JGP.0000192502.10692.d6 Messier, C. (2004). Glucose improvement of memory: a review. European Journal of Pharmacology, 490(1-3), 33–57. doi:10.1016/j.ejphar.2004.02.043 Morgan, T. E., Xie, Z., Goldsmith, S., Yoshida, T., Lanzrein, A. S., Stone, D., Finch, C. E. (1999). The mosaic of brain glial hyperactivity during normal ageing and its attenuation by food restriction. Neuroscience, 89(3), 687–699. Mosconi, L., Murray, J., Tsui, W. H., Li, Y., Davies, M., Williams, S., de Leon, M. J. (2014). Mediterranean Diet and Magnetic Resonance Imaging-Assessed Brain Atrophy in Cognitively Normal Individuals at Risk for Alzheimer’s Disease. The Journal of Prevention of Alzheimer’s Disease, 1(1), 23–32. Nilsson, L.-G. (2003). Memory function in normal aging. Acta Neurologica Scandinavica. Supplementum, 179, 7–13. Ooi, C. P., Loke, S. C., Yassin, Z., & Hamid, T.-A. (2011). Carbohydrates for improving the cognitive performance of independent-living older adults with normal cognition or mild cognitive impairment. The Cochrane Database of Systematic Reviews, (4), CD007220. doi:10.1002/14651858.CD007220.pub2 Parrella, E., Maxim, T., Maialetti, F., Zhang, L., Wan, J., Wei, M., Longo, V. D. (2013). Protein restriction cycles reduce IGF-1 and phosphorylated Tau, and improve behavioral performance in an Alzheimer’s disease mouse model. Aging Cell, 12(2), 257–268. doi:10.1111/acel.12049 Patel, N. V., Gordon, M. N., Connor, K. E., Good, R. A., Engelman, R. W., Mason, J., Finch, C. E. (2005). Caloric restriction attenuates Abeta-deposition in Alzheimer transgenic models. Neurobiology of Aging, 26(7), 995–1000. doi:10.1016/j.neurobiolaging.2004.09.014 Peters, A., Schweiger, U., Pellerin, L., Hubold, C., Oltmanns, K. M., Conrad, M., Fehm, H. L. (2004). The selfish brain: competition for energy resources. Neuroscience and Biobehavioral Reviews, 28(2), 143–180. doi:10.1016/j.neubiorev.2004.03.002 Peters, Achim. (2011). The selfish brain: Competition for energy resources. American Journal of Human Biology: The Official Journal of the Human Biology Council, 23(1), 29–34. doi:10.1002/ajhb.21106 Pistell, P. J., Morrison, C. D., Gupta, S., Knight, A. G., Keller, J. N., Ingram, D. K., & Bruce-Keller, A. J. (2010). Cognitive impairment following high fat diet consumption is associated with brain inflammation. Journal of Neuroimmunology, 219(1-2), 25–32. doi:10.1016/j.jneuroim.2009.11.010 Qiu, C., De Ronchi, D., & Fratiglioni, L. (2007). The epidemiology of the dementias: an update. Current Opinion in Psychiatry, 20(4), 380–385. doi:10.1097/YCO.0b013e32816ebc7b Rabbitt, P., Ibrahim, S., Lunn, M., Scott, M., Thacker, N., Hutchinson, C., Jackson, A. (2008). Age-associated losses of brain volume predict longitudinal cognitive declines over 8 to 20 years. Neuropsychology, 22(1), 3–9. doi:10.1037/0894-4105.22.1.3 Rabin, L. A., Barr, W. B., & Burton, L. A. (2005). Assessment practices of clinical neuropsychologists in the United States and Canada: a survey of INS, NAN, and APA Division 40 members. Archives of Clinical Neuropsychology: The Official Journal of the National Academy of Neuropsychologists, 20(1), 33–65. doi:10.1016/j.acn.2004.02.005 Riccardi, G., Giacco, R., & Rivellese, A. A. (2004). Dietary fat, insulin sensitivity and the metabolic syndrome. Clinical Nutrition (Edinburgh, Scotland), 23(4), 447–456. doi:10.1016/j.clnu.2004.02.006 Salat, D. H., Buckner, R. L., Snyder, A. Z., Greve, D. N., Desikan, R. S. R., Busa, E., Fischl, B. (2004). Thinning of the cerebral cortex in aging. Cerebral Cortex (New York, N.Y.: 1991), 14(7), 721–730. doi:10.1093/cercor/bhh032 Salthouse, T. A. (2009a). When does age-related cognitive decline begin? Neurobiology of Aging, 30(4), 507–514. doi:10.1016/j.neurobiolaging.2008.09.023 Salthouse, T. A. (2009b). When does age-related cognitive decline begin? Neurobiology of Aging, 30(4), 507–514. doi:10.1016/j.neurobiolaging.2008.09.023 Scanlan, J. M., Binkin, N., Michieletto, F., Lessig, M., Zuhr, E., & Borson, S. (2007a). Cognitive impairment, chronic disease burden, and functional disability: a population study of older Italians. The American Journal of Geriatric Psychiatry: Official Journal of the American Association for Geriatric Psychiatry, 15(8), 716–724. doi:10.1097/JGP.0b013e3180487cd7 Scanlan, J. M., Binkin, N., Michieletto, F., Lessig, M., Zuhr, E., & Borson, S. (2007b). Cognitive impairment, chronic disease burden, and functional disability: a population study of older Italians. The American Journal of Geriatric Psychiatry: Official Journal of the American Association for Geriatric Psychiatry, 15(8), 716–724. doi:10.1097/JGP.0b013e3180487cd7 Schroeder, J. E., Richardson, J. C., & Virley, D. J. (2010). Dietary manipulation and caloric restriction in the development of mouse models relevant to neurological diseases. Biochimica Et Biophysica Acta, 1802(10), 840–846. doi:10.1016/j.bbadis.2010.04.007 Smith, M. A., & Scholey, A. B. (2014). Nutritional influences on human neurocognitive functioning. Frontiers in Human Neuroscience, 8, 358. doi:10.3389/fnhum.2014.00358 Solfrizzi, V., Panza, F., Torres, F., Mastroianni, F., Del Parigi, A., Venezia, A., & Capurso, A. (1999). High monounsaturated fatty acids intake protects against age-related cognitive decline. Neurology, 52(8), 1563–1569. Spring, B., Maller, O., Wurtman, J., Digman, L., & Cozolino, L. (1982). Effects of protein and carbohydrate meals on mood and performance: interactions with sex and age. Journal of Psychiatric Research, 17(2), 155–167. Stranahan, A. M., & Mattson, M. P. (2008). Impact of energy intake and expenditure on neuronal plasticity. Neuromolecular Medicine, 10(4), 209–218. doi:10.1007/s12017-008-8043-0 Verhaeghen, P., Marcoen, A., & Goossens, L. (1993). Facts and fiction about memory aging: a quantitative integration of research findings. Journal of Gerontology, 48(4), P157–171. Yokum, S., Ng, J., & Stice, E. (2012). Relation of regional gray and white matter volumes to current BMI and future increases in BMI: a prospective MRI study. International Journal of Obesity (2005), 36(5), 656–664. doi:10.1038/ijo.2011.175 Zimmerman, M. E., Brickman, A. M., Paul, R. H., Grieve, S. M., Tate, D. F., Gunstad, J., Gordon, E. (2006). The relationship between frontal gray matter volume and cognition varies across the healthy adult lifespan. The American Journal of Geriatric Psychiatry: Official Journal of the American Association for Geriatric Psychiatry, 14(10), 823–833. doi:10.1097/01.JGP.0000238502.40963.ac | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54878 | - |
dc.description.abstract | 在生命發展的過程中,來自飲食攝取的能量及其營養素是對神經結構發展與功能極其重要的因子。但對於飲食中的巨量營養素與腦部結構與功能在非肥胖或非飲食失功能的人類身上,其間的關聯,目前的資訊是有限的。我們假設隨著人類攝取的巨量營養素的不同程度,會使腦中灰質體積大小與認知功能表現有差異。更重要地,飲食與腦的關係會隨著年齡的不同,而有需求上的不同。在本研究中,我們徵求了在台灣本地32位年輕成人(年齡在20~30歲之間)與21位年長成人(年齡在60歲以上),讓他們參與(a)至少三天的系統性飲食紀錄(b)受測關於認知功能表現的神經心理學測驗,以及(c)結構性腦部核磁共振照影,以得知參與者腦中灰質體積大小。參與者必須無臨床上的身心疾病,且無飲食失調狀況。研究方法(a)我們依照台灣地區衛福部食品藥物管理署的資料庫,算出每位受試者其飲食內容中的碳水化合物含量、蛋白質含量,及脂質含量(b)我們使用的神經心理學測驗有簡短智能測驗(MMSE)、魏氏智力測驗III(WAIS III)、魏氏記憶測驗III (WMS III)、早期失智症篩檢量表(AD-8) (c)計算腦中灰質體積大小則是用版本5.2.0的Freesurfer 軟體,以得知全腦不同腦區的灰質體積。我們的研究結果發現在健康年輕成人當中,飲食中攝取較多比例的碳水化合物者,腦中易有較小的灰質體積;而在健康老年人當中,飲食中攝取較多比例的碳水化合物者,腦中卻易有較大的灰質體積。而在攝取蛋白質含量的多寡,對健康年輕成人來說其腦中灰質體積較不易受影響;但對老年人來說,攝取蛋白質含量越高,其腦中灰質體積就越小。在巨量營養素與腦中灰質在健康年輕成人與健康老年人的關係,年紀不同對於營養攝取的需求不同占了一個關鍵性的角色。 | zh_TW |
dc.description.abstract | Energy and molecular substrates from dietary intake are important factors for neuronal structural development and function over the lifespan. There is limited information, however, on how human dietary macronutrient levels are associated with brain structure and function, particularly for those not affected by obesity or other dietary dysfunctions. We hypothesized that macronutrient intake levels in humans should have measurable associations with gray matter volume and cognitive ability even in individuals maintaining healthy dietary habits. Importantly, diet-brain associations may differ across age due to differential nutritional requirements. In this study, 32 young (age20-30) and 21 older (age above 60) Taiwanese adults participated in (a) systematic dietary monitoring at least 3 days, (b) neuropsychological tests of cognitive abilities, and (c) T1-weighted magnetic resonance imaging (MRI) of gray matter volumes (256*256 mm in-plane field of view, 1*1*1 mm3 voxels, TR = 2 s, inversion time = 0.9 s, flip angle = 9°). Participants were physically healthy at time of testing with no dietary dysfunction or neurocognitive counter-indications. Individual intake levels of calorie, carbohydrates, lipids, and proteins were scored based on the local food and drug administration database. The neuropsychological test battery included: the mini-mental State Examination (MMSE), the Wechsler Adult Intelligence Scale III (WAIS III), the Wechsler Memory Scale III (WMS III), and the Alzheimer Disease-8 (AD-8) questionnaire.T1 images were analyzed using Freesurfer software ver. 5.2.0 to parcellate regional gray matter volumes across the whole brain. We found in healthy adults, higher proportion of dietary carbohydrates decreased brain volumes in young adults, but increased brain volumes in older adults. Proportion of dietary proteins had minimal effects on young adult brain volumes, but decreased brain volumes in older adults. Age requirements play a critical role in the effect of macronutrients on brain volume in young and older adults. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T03:40:31Z (GMT). No. of bitstreams: 1 ntu-104-R01454007-1.pdf: 2105267 bytes, checksum: d1914e357ca481e1eb6333af2bf9c150 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 目 錄
口試委員會審定書………………………………………………… i 誌謝………………………………………………………………… ii 中文摘要…………………………………………………………… iii 英文摘要…………………………………………………………… v Introduction ……………………………………………………… 1 Method……………………………………………………………… 5 Result……………………………………………………………… 11 Discussion………………………………………………………… 17 Conclusion………………………………………………………… 20 Reference………………………………………………………… 22 Supplement……………………………………………………… 47 圖目錄 Tables 1 Demographic……………………………………………… 31 Table 2.Brain region labels for Figure 3………………… 36 Table 3.Association of dietary component with cognitive tasks………………………………………………………………… 39 Table 4.Correlation estimates (beta) between regional brain volumes and cognitive task via macronutrients in multiple regression…………………………………………………………… 44 Table 5.Correlation estimates (beta) between the general healthy indexes and regional brain volumes in multiple regression………………………………………………………… 46 表目錄 Figure 1. Dietary record sample……………………………… 32 Figure 2. Individual dietary record number of days of each participant ………………………………………………………………………… 33 Figure 3. The association of carbohydrate % and protein % with regional brain volume……………………………………………………… 34 Figure 4. Carbohydrate% positively modulates age effects in frontal & hippocampus ROIs…………………………………… 37 Figure 5. Protein% negatively modulates age effects on frontal & hippocampus ROIs…………………………………… 38 Figure 6. Correlation between cortical thickness and carbohydrate% in multiple regression……………………… 42 Figure 7. Correlation between regional cortical thickness and protein% in multiple regression………………………… 43 | |
dc.language.iso | en | |
dc.title | 飲食中的巨量營養素組成與腦中灰質在健康年輕成人與老年人的不同關係 | zh_TW |
dc.title | Dietary macronutrient composition is differentially associated with gray matter volume in healthy young and older adults | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-1 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 吳恩賜(Joshua Oon Soo Goh) | |
dc.contributor.oralexamcommittee | 蕭寧馨(Ning-Sing Shaw) | |
dc.subject.keyword | 健康成人,腦部灰質,飲食紀錄,認知功能,核磁共振腦照影, | zh_TW |
dc.subject.keyword | healthy adults,gray matter volume,dietary record,cognitive ability,magnetic resonance images (MRI), | en |
dc.relation.page | 57 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-02-13 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 腦與心智科學研究所 | zh_TW |
顯示於系所單位: | 腦與心智科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 2.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。