Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54867
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇炫榮(Hsuan-Jung Su)
dc.contributor.authorAlan Shenghan Tsaien
dc.contributor.author蔡昇翰zh_TW
dc.date.accessioned2021-06-16T03:40:15Z-
dc.date.available2020-03-16
dc.date.copyright2015-03-16
dc.date.issued2015
dc.date.submitted2015-02-14
dc.identifier.citationBibliography
[1] C.-H. Chang, H.-Y. Hsieh and H.-J. Su, “Not Every Bit Counts: Shifting
the Focus from Machine to Data for Machine-to-Machine Communica-
tions,” Asilomar Conference on Signals, Systems and Computers, Nov.
2012.
[2] 3GPP Std. TR 37.868 v11.0.0, “Study on RAN Improvements for
Machine-Type Communications,” Release 11, 2011.
[3] Q. D. Vo, J.-P. Choi, H. M. Chang, and W. C. Lee, “Green Perspective
Cognitive Radiobased M2M Communications for Smart Meters,” Proc.
Int. Conf. Inf. Commun. Technol. Convergence, pp. 382-383, Nov. 2010.
[4] Z. M. Fadlullah, M. M. Fouda, N. Kato, A. Takeuchi, N. Iwasaki, and Y.
Nozaki, “Machine-to-Machine Communications for Healthcare,” Journal
of Computing Science and Engineering, pp. 119-126, Jun. 2012.
[5] Z. M. Fadlullah, M. M. Fouda, N. Kato, A. Takeuchi, N. Iwasaki, and
Y. Nozaki, “Toward Intelligent Machine-to-Machine Communications in
Smart Grid,” IEEE Commun. Mag., vol. 49, no. 4, pp. 60-65, Apr. 2011.
[6] “Machine-to-Machine communications (M2M); Functional Architec-
ture,” ETSI TS 102 690 V1.1.1, Oct. 2011.
[7] D. Baron, M. F. Duarte, M. B. Wakin, S. Sarvotham, and R. G. Bara-
niuk, “Distributed Compressive Sensing,” arXiv.org cs.IT, Jan. 2009.
[8] W. U. Bajwa, K. Gedalyahu, and Y. C. Eldar, “Identification of Under-
spread Linear Systems with Application to Super-Resolution Radar,”
IEEE Transactions on Signal Processing, vol. 59, no. 6, pp. 2548-2561,
Jun. 2011.
[9] Z. Tian and G. B. Giannakis, “Compressed Sensing for Wideband Cog-
nitive Radio,” n ICASSP, vol. 4, pp. 1357-1360, April. 2006.
[10] E. Candes, J. K. Romberg, and T. Tao., “Stable Signal Recovery from
Incomplete and Inaccurate Measurements,” Communications on Pure
and Applied Mathematics, vol. 59, pp. 1207-1223, 2006.
[11] E. J. Candes, “The Restricted Isometry Property and Its Implications
for Compressed Sensing,” C. R. Acad. Sci. Paris, Ser. I, vol. 346, no.
12, pp. 589-592, Dec. 2008.
[12] A. Cohen, W. Dahmen, and R. DeVore, “Compressed Sensing and Best
k-term Approximation,” J. AMS, vol. 22, pp. 211-231, 2009.
[13] M. Vehkapera, S. Chatterjee, and M. Skoglund, “Analysis of MMSE
Estimation for Compressive Sensing of Block Sparse Signals,” Theory
Workshop, pp. 553-557, Oct. 2011.
[14] G. Yu and G Sapiro, “Statistical Compressed Sensing of Gaussian Mix-
ture Models,” IEEE Trans of Signal Processing, vol. 59, no. 12, pp.
5842-5857, Dec. 2011.
[15] C. R. Rao, “The Use and Interpretation of Principal Component Anal-
ysis in Applied Research,” Sankhya: The Indian J. Statistics, vol. 26,
pp. 329-358, 1964.
[16] G. J. Pottie, W. J. Kaiser, “Wireless Integrated Network Sensors,” Com-
munications of the ACM, vol. 43, no. 5, pp. 51-58, May, 2000.
[17] Goldak, A. Chakravarti, M. Bibby, “A New Fnite Element Model for
Welding Heat Source,” Metall. Trans. B, vol. 15B, vol. 21, pp. 299-305,
Jan, 1984.
[18] R.W. Ziolkowski, D.K. Lewis, B.D. Cook, “Evidence of Localized Wave
Transmission,” Phys. Rev. Lett., vol. 62, pp. 147-150, Jan, 1989.
[19] J. Berger, V. de Oliveira, and B. Sanso, “Objective Bayesian Analy-
sis of Spatially Correlated Data,” Journal of the American Statistical
Association, vol. 96, no. 456, pp. 1361-1374, 2001.
[20] M. C. Vuran, O. B. Akan, and F. Akyildiz, “Spatio-Temporal Correla-
tion: Theory and Applications for Wireless Sensor Networks,” Comput.
Netw. J., vol. 45, no. 3, pp. 245-259, Jun. 21, 2004.
[21] S. Sinanovic, S. N. Serafimovski, H. Haas, and G. Auer, “Maximizing the
System Spectral Efficency in a Decentralised 2-link Wireless Network,”
EURASIP Journal on Wireless Communications and Networking, 2008.
[22] J. A. Gubner, “Probability and Random Processes for Electrical and
Computer Engineers,” New York: Cambridge Univ. Press, 2006.
[23] P. Frauenfelder, C. Schwab and R. A. Todor, “Finite Elements for El-
liptic Problems with Stochastic Coeffcients,” Comput. Methods Appl.
Mech. Engrg., pp. 205-228, 2005.
[24] G. Quer, R. Masiero, G.Pillonetto, M. Rossi, and M. Zorzi, “Sensing,
Compression, and Recovery for WSNs : Sparse Signal Modeling and
Monitoring Framework,” IEEE Trans. on Wireless Comm., vol. 11, no.
10, pp. 3447-3461, Oct. 2012.
[25] Ledoux M., “Concentration of Measure Phenomenon,” Providence, RI:
Amer. Math. Soc., 2001.
[26] V. V. Buldygin and Y. V. Kozachenko, “Metric Characterization of Ran-
dom Variables and Random Processes,” Providence, RI: Amer. Math.
Soc, 2000.
[27] R. David, “Feedback shift register testing,” in Proc. FTCS 8, Tou- louse,
France, pp. 103-107, June 1978.
[28] R. Baraniuk, M. Davenport, R. DeVore, and M.Wakin, “A simple proof
of the restricted isometry property for random matrices,” Construct.
Approx., vol. 28, no. 3, pp. 253V263, 2008.
[29] C. J. Willmott, K. Matsuura, “Advantages of the Mean Absolute Error
(MAE) Over the Root Mean Square Error (RMSE) in Assessing Average
Model Performance,” Climate Research, vol. 30, pp. 79-82, 2005.
[30] R. Baraniuk, M. Davenport, M. Duarte, and C., “An Introduction to
Compressive Sensing,” Addison-Wesley, 2011.
[31] R. Calderbank, S. Howard, and S. Jafarpour, “Construction of a Large
Class of Determinsitic Sensing Matrices That Satisfy a Statistical Isom-
etry Property,” IEEE Trans. Inf. Theory, vol. 4, no. 2, pp. 358-374, Apr.
2010.
[32] A. Averbuch, S. Dekel, and S. Deutsch, “Adaptive compressed image
sensing using dictionaries,” SIAM J. Imag. Sci.
[33] J. Haupt, R. Nowak, and R. M. Castro, “Adaptive sensing for sparse
recovery,” in Proc. DSP/SPE, Marco Island, FL, 2009, pp. 702V707.
[34] J. Haupt, R. M. Castro, and R. Nowak, “Distilled sensing: Selective
sampling for sparse signal recovery,” IEEE Trans. Inf. Theory, vol. 57,
no. 9, pp. 6222V6235, 2011.
[35] A. Aldroubi, H. Wang, and K. Zarringhalam, “Sequential adaptive com-
pressed sampling via Huffman codes,” Oct. 2008, arXiv:0810.4916v2.
[36] A. Ashok, P. K. Baheti, and M. A. Neifeld, “Compressive imaging sys-
tem design using task-specific information,” Appl. Opt., vol. 47, no. 25,
pp. 4457V4471, 2008.
[37] J. Ke, A. Ashok, and M. A. Neifeld, “Object reconstruction from adap-
tive compressive measurements in feature-specific imaging,” Appl. Opt.,
vol. 49, no. 34, pp. H27VH39, 2010.
[38] W. R. Carson, M. R. D. Rodrigues, M. Chen, L. Carin, and R. Calder-
bank, “How to focus the discriminative power of a dictionary,” in Proc.
Int. Conf. Acoust., Speech, Signal Process. (ICASSP), 2012, to be pub-
lished.
[39] P. K. Baheti and M. A. Neifeld, “Recognition using information-op-
timal adaptive feature-specific imaging,” J. Opt. Soc. Amer. A, vol. 26,
no. 4, pp. 1055V1070, 2009.
[40] R. Calderbank, L. Carin, and M. Chen, private communication, 2011.
[41] S. Prasad, “Certain relations between mutual information and fidelity
of statistical estimation,” Ann. Appl. Probab., vol. 17, no. 3, pp.
1102V1116, 2006.
[42] T. M. Cover and J. A. Thomas, , D. L. Schilling, Ed., Elements of
Information Theory, ser. Telecommunications, 2nd ed. New York: Wiley,
1991.
[43] P. H. Schonemann, “A generalized solution of the orthogonal procrustes
problem,” Psychometrika, vol. 31, no. 1, pp. 1V10, Mar. 1966.
[44] Z. Nenadic, “Information discriminant analysis: Feature extraction with
an information-theoretic objective,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 29, no. 8, pp. 1394V1407, 2007.
[45] M. Padmanabhan and S. Dharanipragada, “Maximizing information
content in feature extraction,” IEEE Trans. Speech Audio Process., vol.
13, no. 4, pp. 512V519, 2005.
[46] J. M. Duarte-Carvajalino, G. Yu, L. Carin, and G. Sapiro, “Task-driven
adaptive statistical compressive sensing of gaussian mixture models,”
IEEE Trans. Signal Processing, vol. 61, no. 3, pp. 585V600, 2013.
[47] Steven M.Kay, “Fundamentals of statistical signal processing: estima-
tion theory”,1993.
[48] I. E. Telatar. “ Capacity of Multi-Antenna Gaussian Channels,Tech.”
Rep. Bell Labs, Lucent Technologies, 1995.
[49] J. M. Duarte-Carvajalino and G. Sapiro, “Learning to sense sparse sig-
nals: Simultaneous sensing matrix and sparsifying dictionary optimiza-
tion,” IEEE Trans. Image Process., vol. 18, no. 7, pp. 1395V1408, 2009.
[50] K. Rosenblum, L. Zelnik-Manor, and Y. C. Eldar, “Sensing matrix op-
timization for block-sparse decoding,” Sep. 2010.
[51] D. Guo, S. Shamai (Shitz), and S. Verdu, “Mutual Information and
Minimum Mean-Square Error in Gaussian Channels,” IEEE Trans. Inf.
Theory, vol. 51, no. 4, pp. 1261 V 1283, Apr. 2005.
[52] Y. Wu and S. Verdu, “Functional properties of MMSE and mutual infor-
mation,” IEEE Trans. Inf. Theory, Vol. 58, no. 3,pp. 1289 - 1301,2011.
[53] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, pp. 379V423 and 623V656, Jul. and Oct. 1948.
[54] M. Chen,C. Kuo, P.Lin,S. Lin and H. Su, “Low-Complexity Remote
Compressive Sensing Schemes for Machine-to-Machine Networks with
Stochastic Sources”Intelligent Green Building and Smart Grid (IG-
BSG),pp.1 - 6, April 2014.
[55] A. Lozano, A. Tulino, and S. Verdu, “Optimum power allocation for
parallel Gaussian channels with arbitrary input distributions,” in IEEE
Trans. Inf. Theory, July 2006, pp. 3033V3051.
[56] F. Perez-Cruz, M. R. Rodrigues, and S. Verdu, “MIMO Gaussian chan-
nels with arbitrary inputs: Optimal precoding and power allocation,” in
IEEE Trans. Inf. Theory, Mar. 2010, pp. 1070V1084.
[57] M. Chen, J. Silva, J. Paisley, C. Wang, D. Dunson, and L. Carin, “Com-
pressive sensing on manifolds using a nonparametric mixture of factor
analyzers: Algorithm and performance bounds,” in IEEE Trans. Signal
Process., vol. 58, no. 12, Dec. 2010, pp. 6140 V6155.
[58] E. Candes and M. Wakin, “An introduction to compressive sampling,”
in IEEE Signal Process. Mag., vol. 25, no. 2, 2008, pp. 21V30.
[59] M. Payar’o and D. P. Palomar, “On optimal precoding in linear vector
Gaussian channels with arbitrary input distribution”, in IEEE ISIT 09,
July 2009, pp. 1085V1089.
[60] M. Lamarca, “Linear precoding for mutual information maximization in
MIMO systems”, in ISWCS 09, Sept. 2009, pp. 26V30.
[61] Y. Wu and S. Verdu, “Functional properties of MMSE and mutual infor-
mation,” IEEE Trans. Inf. Theory, Vol. 58, no. 3,pp. 1289 - 1301,2011.
[62] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, pp. 379V423 and 623V656, Jul. and Oct. 1948.
[63] M. Chen, C. Kuo, P.Lin, S. Lin and H. Su, “Low-Complexity Remote
Compressive Sensing Schemes for Machine-to-Machine Networks with
Stochastic Sources”,Intelligent Green Building and Smart Grid (IG-
BSG),pp.1 - 6, April 2014.
[64] J. M. Cioffi and G. D. Forney, “Generalized Decision-Feedback Equaliza-
tion for Packet Transmission with ISI and Gaussian Noise”, in ”Com-
munications, Computation, Control and Signal Processing,A. Paulraj,
V. Roychowdhury and C. Schaper, Eds, Kluwer, 1997.
[65] J. Yang and S. Roy, “Joint Transmitter-Receiver Optimization for Multi-
Input Multi-Output Systems with Decision Feedback”, IEEE Trans. In-
format. Theory, vol. 40, pp. 1334V1347, Sept. 1994.
[66] G. Quer, D. Zordan, R. Masiero, M. Zorzi, and M. Rossi, “WSN-Control:
Signal Reconstruction through Compressive Sensing in Wireless Sensor
Networks,” in IEEE SenseApp Workshop, Denver, CO, US, Dec. 2010,
pp. 937V944.
[67] D. Zordan, G. Quer, M. Zorzi, and M. Rossi, “Modeling and generation
of space-time correlated signals for sensor network fields,” in Proc. IEEE
GLOBECOM, Houston, TX, USA, Dec. 2011, pp. 1V6.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54867-
dc.description.abstract在最近幾年,互聯網 (M2M) 被廣泛應用於無限通訊系統中。機器本身會有功率限制,
處理和通訊能力也都會有限。壓縮感測技術可以避免傳多餘的資訊出去,進而壓縮傳送資料
量。在此篇論文中,在雙層架構下,我們於互聯網中針對隨機訊號源提出一個遠程的壓縮感
知架構,目的是壓縮閘道 (gateway) 的傳輸資料,並且我們將原本問題簡化成隨機壓縮感知
的問題。進一步,針對原本的系統中,在壓縮閘道到基地台中間,考慮通過一個白色雜訊的
通道的情況,讓系統更貼近真實生活的環境。
最後,我們找到兩種產生感知矩陣的方法。一個是奇異值分解共變異數矩陣 ( SVD
Covariance Matrix),這方法是使用機器跟機器之間在空間上存在的關聯性來壓縮傳送資料。
另一個是適應性統計壓縮感知(Adaptive Statistical Compressive Sensing),這方法是參考過去傳
送過的資料,結合互信息來產生新的感知矩陣。將兩種方法應用於我們所提出的系統中,並
且驗證我們所選擇的這兩種感知矩陣在不同的系統下,可以達到傳統訊號傳輸所能達到的效
果優於之前的高斯 (Gaussian)或伯努力(Bernoulli) 感知矩陣。
zh_TW
dc.description.abstractIn recent years, machine-to-machine (M2M) networks are widely con-
sidered in wireless communication systems. To avoid the transmission of
redundant information to improve the data rate, compressive sensing is a
promising tool to be considered. In this paper under the two-tier architec-
ture, we propose a remote compressive sensing scheme for the M2M networks
with stochastic sources to improve the data rate and formulate a statistical
compressive sensing problem. First we propose to use the minimum mean
square error estimator at the gateway and the base station to transform the
problem as a noisy statistical CS. We derive the form of a optimal decoder by
following MMSE estimation for the proposed scheme. Furthermore We find
two ways, that can produce the sensing matrices. There are SVD covariance
matrix(SCM) and adaptive statistical compressive sensing(ASCS). SCM is
using machines covariance matrix to compressed the data by reducing the
correlation between each machines. ASCS uses the previous measurements
and the sensing matrices obtained in the past states and combines and com-
bine the mutual information to become a new method of CS.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:40:15Z (GMT). No. of bitstreams: 1
ntu-104-R01942138-1.pdf: 606002 bytes, checksum: da8ef05ad7477816003e0d2d76eb551e (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsContents
1 Introduction 1
1.1 Machine-to-Machine Networks . . . . . . . . . . . . . . . . . . 1
1.2 Compressive Sensing . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Statistical Compressed Sensing of Gaussian Source . . . . . . 4
1.4 Why Use Gaussian Source . . . . . . . . . . . . . . . . . . . . 5
1.5 Adaptive Statistical Compressive Sensing . . . . . . . . . . . . 5
1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 System Model 8
2.1 Proposed Remote Compressive Sensing Schemes for Machine-
to-Machine Networks over noisy channel . . . . . . . . . . . . 9
2.2 Adaptive Remote Compressive Sensing Schemes for M2M Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 Statistical Compressive Sensing for Gaussian Signals 15
3.1 Previous Research Results . . . . . . . . . . . . . . . . . . . . 15
3.1.1 The Restrictive Isometry Property (RIP) . . . . . . . . 15
3.1.2 Random Sensing Matrices that satisfies the RIP . . . . 19
3.2 The Optimal Decoder for Gaussian Signals . . . . . . . . . . . 21
3.3 Design Sensing Matrix . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 Mean Square Error and Mutual Information in Gaus-
sian Channels . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 SVD Covariance Sensing Matrix . . . . . . . . . . . . . 28
3.4 Adaptive Statistical Compressive Sensing . . . . . . . . . . . . 31
4 Simulation Results 35
4.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . 35
4.2 Performance Comparison . . . . . . . . . . . . . . . . . . . . . 36
4.2.1 The overall performance . . . . . . . . . . . . . . . . . 37
4.2.2 Remote Compressive Sensing Over Noisy Channel . . . 38
4.2.3 Remote Compressive Sensing with SVD Covariance Ma-
trix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.4 Adaptive Remote Compressive Sensing . . . . . . . . . 42
5 Conclusions 43
6 Future Works 45
Bibliography 46
dc.language.isoen
dc.subject適應性統計壓縮感知zh_TW
dc.subject互聯網zh_TW
dc.subject毛細管網路zh_TW
dc.subject壓縮感知zh_TW
dc.subject奇異值分解zh_TW
dc.subject共變異數矩陣zh_TW
dc.subjectCompressive sensingen
dc.subjectAdaptive statistical compressive sensingen
dc.subjectSVD covariance matrixen
dc.subjectMutual informationen
dc.subjectNoisy channelen
dc.subjectMachine-to-Machine networksen
dc.title使用遠程壓縮感測技術在有雜訊的物聯網zh_TW
dc.titleRemote Compressive Sensing for Noisy Machine-to-Machine Networksen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇柏青,林秉勳
dc.subject.keyword互聯網,毛細管網路,壓縮感知,奇異值分解,共變異數矩陣,適應性統計壓縮感知,zh_TW
dc.subject.keywordMachine-to-Machine networks,Compressive sensing,Noisy channel,Mutual information,SVD covariance matrix,Adaptive statistical compressive sensing,en
dc.relation.page55
dc.rights.note有償授權
dc.date.accepted2015-02-14
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
591.8 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved