Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 職業醫學與工業衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54849
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳章甫(Chang-Fu Wu)
dc.contributor.authorYi-Tzu Lien
dc.contributor.author李翊慈zh_TW
dc.date.accessioned2021-06-16T03:39:50Z-
dc.date.available2015-03-12
dc.date.copyright2015-03-12
dc.date.issued2015
dc.date.submitted2015-02-16
dc.identifier.citationAnttila, P., Paatero, P., Tapper, U., Jarvinen, O., 1995. Source identification of bulk wet deposition in Finland by positive matrix factorization. Atmospheric Environment 29, 1705-1718.
Arhami, M., Sillanpaa, M., Hu, S., Olson, M.R., Schauer, J.J., Sioutas, C., 2009. Size-Segregated Inorganic and Organic Components of PM in the Communities of the Los Angeles Harbor. Aerosol Science and Technology 43, 145-160.
Ashbaugh, L.L., Malm, W.C., Sadeh, W.Z., 1985. A residence time probability analysis of sulfur concentrations at grand Canyon National Park. Atmospheric Environment (1967) 19, 1263-1270.
Bha, A., 2013. Chemical Composition and Source Contribution of
Particulate Matter Emitted During Injection of
Biosolids into an Agricultural Field in Ohio, USA.
Bon, D.M., Ulbrich, I.M., de Gouw, J.A., Warneke, C., Kuster, W.C., Alexander, M.L., Baker, A., Beyersdorf, A.J., Blake, D., Fall, R., Jimenez, J.L., Herndon, S.C., Huey, L.G., Knighton, W.B., Ortega, J., Springston, S., Vargas, O., 2011. Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: measurement comparison, emission ratios, and source attribution. Atmos. Chem. Phys. 11, 2399-2421.
Brown, S.G., Frankel, A., Hafner, H.R., 2007. Source apportionment of VOCs in the Los Angeles area using positive matrix factorization. Atmospheric Environment 41, 227-237.
Bukowiecki, N., Dommen, J., Prevot, A.S.H., Richter, R., Weingartner, E., Baltensperger, U., 2002. A mobile pollutant measurement laboratory—measuring gas phase and aerosol ambient concentrations with high spatial and temporal resolution. Atmospheric Environment 36, 5569-5579.
Buzcu-Guven, B., Brown, S.G., Frankel, A., Hafner, H.R., Roberts, P.T., 2007. Analysis and Apportionment of Organic Carbon and Fine Particulate Matter Sources at Multiple Sites in the Midwestern United States. Journal of the Air & Waste Management Association 57, 606-619.
Buzcu-Guven, B., Olaguer, E.P., Herndon, S.C., Kolb, C.E., Knighton, W.B., Cuclis, A.E., 2013. Identification of the source of benzene concentrations at Texas City during SHARP using an adjoint neighborhood-scale transport model and a receptor model. Journal of Geophysical Research: Atmospheres 118, 8023-8031.
Buzcu, B., Fraser, M.P., 2006. Source identification and apportionment of volatile organic compounds in Houston, TX. Atmospheric Environment 40, 2385-2400.
Carter, W.P.L., 1994. Development of Ozone Reactivity Scales for Volatile Organic Compounds. Air & Waste 44, 881-899.
Cecile Gaimoz, S.e.S., Val erie Gros,Frank Herrmann,Jonathan Williams,Nadine Locoge,Olivier Perrussel,Bernard Bonsang,Odile d'Argouges,Roland Sarda-Este`ve and Jean Sciare Akhtar, 2011. Volatile organic compounds sources in Paris in spring 2007.Part II: source apportionment using positive matrix
factorisation. Environ. Chem.
Cetin, E., Odabasi, M., Seyfioglu, R., 2003. Ambient volatile organic compound (VOC) concentrations around a petrochemical complex and a petroleum refinery. Science of The Total Environment 312, 103-112.
Chan, Y.-c., Hawas, O., Hawker, D., Vowles, P., Cohen, D.D., Stelcer, E., Simpson, R., Golding, G., Christensen, E., 2011. Using multiple type composition data and wind data in PMF analysis to apportion and locate sources of air pollutants. Atmospheric Environment 45, 439-449.
Choi, E., Heo, J.-B., Hopke, P., Jin, B.-B., Yi, S.-M., 2011. Identification, Apportionment, and Photochemical Reactivity of Non-methane Hydrocarbon Sources in Busan, Korea. Water Air Soil Pollut 215, 67-82.
Choi, Y.-J., Ehrman, S.H., 2004. Investigation of sources of volatile organic carbon in the Baltimore area using highly time-resolved measurements. Atmospheric Environment 38, 775-791.
Cohen, M.A., Ryan, P.B., Spengler, J.D., Ozkaynak, H., Hayes, C., 1991a. Source-receptor study of volatile organic compounds and particulate matter in the Kanawha Valley, WV—I. Methods and descriptive statistics. Atmospheric Environment. Part B. Urban Atmosphere 25, 79-93.
Cohen, M.A., Ryan, P.B., Spengler, J.D., Ozkaynak, H., Hayes, C., 1991b. Source-receptor study of volatile organic compounds and particulate matter in the Kanawha Valley, WV—II. Analysis of factors contributing to VOC and particle exposures. Atmospheric Environment. Part B. Urban Atmosphere 25, 95-107.
Durant, J.L., Ash, C.A., Wood, E.C., Herndon, S.C., Jayne, J.T., Knighton, W.B., Canagaratna, M.R., Trull, J.B., Brugge, D., Zamore, W., Kolb, C.E., 2010. Short-term variation in near-highway air pollutant gradients on a winter morning. Atmos. Chem. Phys. 10, 8341-8352.
Edgerton, S.A., Holdren, M.W., Smith, D.L., Shah, J.J., 1989. Inter-Urban Comparison of Ambient Volatile Organic Compound Concentrations in U.S. Cities. JAPCA 39, 729-732.
Elbir, T., Cetin, B., Cetin, E., Bayram, A., Odabasi, M., 2007. Characterization of Volatile Organic Compounds (VOCs) and Their Sources in the Air of Izmir, Turkey. Environ Monit Assess 133, 149-160.
Freney, E., Sellegri, K., Canonaco, F., Colomb, A., Borbon, A., Michoud, V., Doussin, J.-F., Crumeyrolle, S., Amarouche, N., Pichon, J.-M., 2014. Characterizing the impact of urban emissions on regional aerosol particles: airborne measurements during the MEGAPOLI experiment. Atmospheric Chemistry and Physics 14, 1397-1412.
Gaimoz, C., Sauvage, S., Gros, V., Herrmann, F., Williams, J., Locoge, N., Perrussel, O., Bonsang, B., d’Argouges, O., Sarda-Esteve, R., Sciare, J., 2011. Volatile organic compounds sources in Paris in spring 2007. Part II: source apportionment using positive matrix factorisation. Environmental Chemistry 8, 91-103.
Guanlan, W., K., H.P., R., J.T., 2011. Using highly time resolved fine particulate compositions to find
particle sources in St. Louis, MO Atmospheric Pollution Research 219-230.
Guo.H, 2011. Which emission sources are responsible for the volatile organic compounds in the atmosphere of Pearl River Delta?
Hoque, R.R., Khillare, P.S., Agarwal, T., Shridhar, V., Balachandran, S., 2008. Spatial and temporal variation of BTEX in the urban atmosphere of Delhi, India. Science of The Total Environment 392, 30-40.
Jenkin, M.E., Clemitshaw, K.C., 2000. Ozone and other secondary photochemical pollutants: chemical processes governing their formation in the planetary boundary layer. Atmospheric Environment 34, 2499-2527.
Jiang, M., Marr, L.C., Dunlea, E.J., Herndon, S.C., Jayne, J.T., Kolb, C.E., Knighton, W.B., Rogers, T.M., Zavala, M., Molina, L.T., Molina, M.J., 2005. Vehicle fleet emissions of black carbon, polycyclic aromatic hydrocarbons, and other pollutants measured by a mobile laboratory in Mexico City. Atmos. Chem. Phys. 5, 3377-3387.
Jorquera, H., Rappengluck, B., 2004. Receptor modeling of ambient VOC at Santiago, Chile. Atmospheric Environment 38, 4243-4263.
Juntto, S., Paatero, P., 1994. Analysis of daily precipitation data by positive matrix factorization. Environmetrics 5, 127-144.
Kampa, M., Castanas, E., 2008. Human health effects of air pollution. Environmental Pollution 151, 362-367.
Kim, E., 2005. Estimation of Organic Carbon Blank Values and Error
Structures of the Speciation Trends Network Data for
Source Apportionment.
Kim, E., Hopke, P.K., 2004. Comparison between Conditional Probability Function and Nonparametric Regression for Fine Particle Source Directions. Atmospheric Environment 38, 4667-4673.
Kim, E., Hopke, P.K., Edgerton, E.S., 2003. Source Identification of Atlanta Aerosol by Positive Matrix Factorization. Journal of the Air & Waste Management Association 53, 731-739.
Kolb, C.E., Herndon, S.C., McManus, J.B., Shorter, J.H., Zahniser, M.S., Nelson, D.D., Jayne, J.T., Canagaratna, M.R., Worsnop, D.R., 2004. Mobile Laboratory with Rapid Response Instruments for Real-Time Measurements of Urban and Regional Trace Gas and Particulate Distributions and Emission Source Characteristics. Environmental science & technology 38, 5694-5703.
Kozawa, K.H., Fruin, S.A., Winer, A.M., 2009. Near-road air pollution impacts of goods movement in communities adjacent to the Ports of Los Angeles and Long Beach. Atmospheric Environment 43, 2960-2970.
Kumar, A., Viden, I., 2007. Volatile Organic Compounds: Sampling Methods and Their Worldwide Profile in Ambient Air. Environ Monit Assess 131, 301-321.
Kuo, C.-P., Liao, H.-T., Chou, C.C.K., Wu, C.-F., 2014. Source apportionment of particulate matter and selected volatile organic compounds with multiple time resolution data. Science of The Total Environment 472, 880-887.
Lau, A.K.H., Yuan, Z., Yu, J.Z., Louie, P.K.K., 2010. Source apportionment of ambient volatile organic compounds in Hong Kong. Science of The Total Environment 408, 4138-4149.
Lee, E., Chan, C.K., Paatero, P., 1999. Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. Atmospheric Environment 33, 3201-3212.
Lee, S.C., Chiu, M.Y., Ho, K.F., Zou, S.C., Wang, X., 2002. Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong. Chemosphere 48, 375-382.
Lestari, P., Mauliadi, Y.D., 2009. Source apportionment of particulate matter at urban mixed site in Indonesia using PMF. Atmospheric Environment 43, 1760-1770.
Leuchner, M., Rappengluck, B., 2010. VOC source–receptor relationships in Houston during TexAQS-II. Atmospheric Environment 44, 4056-4067.
Liao, H.-T., Kuo, C.-P., Hopke, P.K., Wu, C.-F., 2013. Evaluation of a modified receptor model for solving multiple time resolution equations: a simulation study. Aerosol Air Qual Res 13, 1253-1262.
Liu, P.-W.G., Yao, Y.-C., Tsai, J.-H., Hsu, Y.-C., Chang, L.-P., Chang, K.-H., 2008a. Source impacts by volatile organic compounds in an industrial city of southern Taiwan. Science of The Total Environment 398, 154-163.
Liu, Y., Shao, M., Fu, L., Lu, S., Zeng, L., Tang, D., 2008b. Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmospheric Environment 42, 6247-6260.
Logue, J.M., Small, M.J., Stern, D., Maranche, J., Robinson, A.L., 2010. Spatial Variation in Ambient Air Toxics Concentrations and Health Risks between Industrial-Influenced, Urban, and Rural Sites. Journal of the Air & Waste Management Association 60, 271-286.
McMeeking, G.R., Bart, M., Chazette, P., Haywood, J.M., Hopkins, J.R., McQuaid, J.B., Morgan, W.T., Raut, J.C., Ryder, C.L., Savage, N., Turnbull, K., Coe, H., 2012. Airborne measurements of trace gases and aerosols over the London metropolitan region. Atmos. Chem. Phys. 12, 5163-5187.
Min, S., Bin, W., Sihua, L., Bin, Y., Ming, W., 2010. Effects of Beijing Olympics Control Measures on Reducing Reactive Hydrocarbon Species. Environmental science & technology 45, 514-519.
Mukerjee, S., Norris, G.A., Smith, L.A., Noble, C.A., Neas, L.M., Ozkaynak, A.H., Gonzales, M., 2004. Receptor Model Comparisons and Wind Direction Analyses of Volatile Organic Compounds and Submicrometer Particles in an Arid, Binational, Urban Air Shed. Environmental science & technology 38, 2317-2327.
Na, K., Pyo Kim, Y., 2007. Chemical mass balance receptor model applied to ambient C2–C9 VOC concentration in Seoul, Korea: Effect of chemical reaction losses. Atmospheric Environment 41, 6715-6728.
OEHHA, 2015. OEHHA Toxicity Criteria Database. CalEPA.
Olson, D.A., Norris, G.A., Seila, R.L., Landis, M.S., Vette, A.F., 2007. Chemical characterization of volatile organic compounds near the World Trade Center: Ambient concentrations and source apportionment. Atmospheric Environment 41, 5673-5683.
Paatero, P., 1997. Least squares formulation of robust non-negative factor analysis. Chemometrics and Intelligent Laboratory Systems 37, 23-35.
Paatero, P., Hopke, P.K., 2003. Discarding or downweighting high-noise variables in factor analytic models. Analytica Chimica Acta 490, 277-289.
Paatero, P., Tapper, U., 1994. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111-126.
Pekney, N.J., Veloski, G., Reeder, M., Tamilia, J., Rupp, E., Wetzel, A., 2014. Measurement of atmospheric pollutants associated with oil and natural gas exploration and production activity in Pennsylvania’s Allegheny National Forest. Journal of the Air & Waste Management Association 64, 1062-1072.
Polissar, A.V., 1998. Atmospheric aerosol over Alaska 2. Elemental composition and sources. Journal of Geophysical Research: Atmospheres, 19045-19057
Ras, M., Marce, R., Borrull, F., 2010. Volatile organic compounds in air at urban and industrial areas in the Tarragona region by thermal desorption and gas chromatography–mass spectrometry. Environ Monit Assess 161, 389-402.
Rasmussen, R.A., Jones, C.A., 1973. Emission isoprene from leaf discs of hamamelis. Phytochemistry 12, 15-19.
Reff, A., Eberly, S.I., Bhave, P.V., 2007. Receptor Modeling of Ambient Particulate Matter Data Using Positive Matrix Factorization: Review of Existing Methods. Journal of the Air & Waste Management Association 57, 146-154.
Sarafraz-Yazdi, A., Rounaghi, G., Razavipanah, I., Vatani, H., Amiri, A., 2014. New polypyrrole–carbon nanotubes–silicon dioxide solid-phase microextraction fiber for the preconcentration and determination of benzene, toluene, ethylbenzene, and o-xylene using gas liquid chromatography. Journal of Separation Science 37, 2605-2612.
Sauvage, S., Plaisance, H., Locoge, N., Wroblewski, A., Coddeville, P., Galloo, J.C., 2009. Long term measurement and source apportionment of non-methane hydrocarbons in three French rural areas. Atmospheric Environment 43, 2430-2441.
Schauer, J.J., Lough, G. C., Shafer, M. M., Christensen, W. F., Arndt, M. F., DeMinter, J. T., , 2008. Characterization of Metals Emitted from Motor Vehicles. 133.
Seila, R.L., Main, H.H., Arriaga, J.L., Martı́nez V, G., Ramadan, A.B., 2001. Atmospheric volatile organic compound measurements during the 1996 Paso del Norte Ozone Study. Science of The Total Environment 276, 153-169.
Sharkey, T.D., Singsaas, E.L., 1995. Why plants emit isoprene. Nature 374, 769-769.
Sharkey, T.D., Singsaas, E.L., Vanderveer, P.J., Geron, C., 1996. Field measurements of isoprene emission from trees in response to temperature and light. Tree Physiology 16, 649-654.
Sillman, S., 1999. The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmospheric Environment 33, 1821-1845.
Song, Y., Dai, W., Shao, M., Liu, Y., Lu, S., Kuster, W., Goldan, P., 2008. Comparison of receptor models for source apportionment of volatile organic compounds in Beijing, China. Environmental Pollution 156, 174-183.
Srivastava, A., Joseph, A.E., Devotta, S., 2006. Volatile organic compounds in ambient air of Mumbai—India. Atmospheric Environment 40, 892-903.
Thornhill, D.A., Williams, A.E., Onasch, T.B., Wood, E., Herndon, S.C., Kolb, C.E., Knighton, W.B., Zavala, M., Molina, L.T., Marr, L.C., 2010. Application of positive matrix factorization to on-road measurements for source apportionment of diesel- and gasoline-powered vehicle emissions in Mexico City. Atmos. Chem. Phys. 10, 3629-3644.
USEPA, 2000. Integrated Risk Information System USEPA.Web: http://www.epa.gov/iris/index.html
USEPA, 2008. EPA Positive Matrix Factorization (PMF) 3.0 Fundamentals &User Guide USEPA.
USEPA, 2010. Volatile Organic Compounds Emissions. Web: http://cfpub.epa.gov/eroe/index.cfm?fuseaction=detail.viewInd&lv=list.listByAlpha&r=219697&subtop=341
Wallace, J., Corr, D., Deluca, P., Kanaroglou, P., McCarry, B., 2009. Mobile monitoring of air pollution in cities: the case of Hamilton, Ontario, Canada. Journal of Environmental Monitoring 11, 998-1003.
Wang, H.L., Chen, C.H., Wang, Q., Huang, C., Su, L.Y., Huang, H.Y., Lou, S.R., Zhou, M., Li, L., Qiao, L.P., Wang, Y.H., 2013. Chemical loss of volatile organic compounds and its impact on the source analysis through a two-year continuous measurement. Atmospheric Environment 80, 488-498.
Wang, Y., Ren, X., Ji, D., Zhang, J., Sun, J., Wu, F., 2012. Characterization of volatile organic compounds in the urban area of Beijing from 2000 to 2007. Journal of Environmental Sciences 24, 95-101.
Warneke, C., Geiger, F., Edwards, P., Dube, W., Petron, G., Kofler, J., Zahn, A., Brown, S., Graus, M., Gilman, J., 2014. Volatile organic compound emissions from the oil and natural gas industry in the Uintah Basin, Utah: oil and gas well pad emissions compared to ambient air composition. Atmospheric Chemistry and Physics 14, 10977-10988.
Xie, Y., Berkowitz, C.M., 2006. The use of positive matrix factorization with conditional probability functions in air quality studies: An application to hydrocarbon emissions in Houston, Texas. Atmospheric Environment 40, 3070-3091.
Yuan, B., Shao, M., de Gouw, J., Parrish, D.D., Lu, S., Wang, M., Zeng, L., Zhang, Q., Song, Y., Zhang, J., Hu, M., 2012. Volatile organic compounds (VOCs) in urban air: How chemistry affects the interpretation of positive matrix factorization (PMF) analysis. Journal of Geophysical Research: Atmospheres 117, D24302.
Yuan, Z., Lau, A.K.H., Shao, M., Louie, P.K.K., Liu, S.C., Zhu, T., 2009. Source analysis of volatile organic compounds by positive matrix factorization in urban and rural environments in Beijing. Journal of Geophysical Research: Atmospheres 114, D00G15.
Yuan, Z., Zhong, L., Lau, A.K.H., Yu, J.Z., Louie, P.K.K., 2013. Volatile organic compounds in the Pearl River Delta: Identification of source regions and recommendations for emission-oriented monitoring strategies. Atmospheric Environment 76, 162-172.
Zhang, Y., Wang, X., Barletta, B., Simpson, I.J., Blake, D.R., Fu, X., Zhang, Z., He, Q., Liu, T., Zhao, X., Ding, X., 2013. Source attributions of hazardous aromatic hydrocarbons in urban, suburban and rural areas in the Pearl River Delta (PRD) region. Journal of Hazardous Materials 250–251, 403-411.
Zhou, L., Kim, E., Hopke, P.K., Stanier, C.O., Pandis, S., 2004. Advanced Factor Analysis on Pittsburgh Particle Size-Distribution Data Special Issue of Aerosol Science and Technology on Findings from the Fine Particulate Matter Supersites Program. Aerosol Science and Technology 38, 118-132.
行政院環保署, 2013a. 空氣品質監測網. 行政院環保署.網址: http://taqm.epa.gov.tw/taqm/tw/YearlyDataDownload.aspx
行政院環保署, 2013b. 揮發性有機物空氣污染管制及排放標準. 行政院環保署.
行政院環境保護署, 2011. 100年度光化學評估監測站操作品保例行性計畫.
林聖達, 2011. 台西地區大氣懸浮微粒化學組成分析及特性之研究, 環境資源管理所. 環球科技大學, 雲林縣, p. 89.
馬中泰, 2012. 高屏地區VOC之來源組成及其季節性變異之研究, 環境工程與科學系碩士班. 輔英科技大學, p. 81.
景丰科技股份有限公司, 2012. 100 年度六輕相關計畫之特定有害空氣污染物所致健康風險評估計畫報告 (初稿)
雲林縣四湖鄉戶政事務所, 2014. 雲林縣四湖鄉戶政事務所人口統計. 雲林縣四湖鄉戶政事務所.網址: http://sihhu.household.yunlin.gov.tw/population/population01.asp
雲林縣東勢鄉戶政事務所, 2014. 雲林縣東勢鄉戶政事務所人口統計. 雲林縣東勢鄉戶政事務所.網址: http://dongshih.household.yunlin.gov.tw/population/population01.asp
雲林縣政府, 2014. 雲林縣政府. 雲林縣政府.網址: http://www.yunlin.gov.tw/content/index.asp?m=1&m1=3&m2=14
雲林縣崙背鄉戶政事務所, 2014. 雲林縣崙背鄉戶政事務所人口統計. 雲林縣崙背鄉戶政事務所.網址: http://lunbei.household.yunlin.gov.tw/population/population01.asp
雲林縣麥寮鄉戶政事務所, 2014. 雲林縣麥寮鄉戶政事務所人口統計.網址: http://mailiao.household.yunlin.gov.tw/population/population01.asp
雲林縣褒忠鄉戶政事務所, 2014. 雲林縣褒忠鄉戶政事務所人口統計. 雲林縣褒忠鄉戶政事務所.網址: http://baojhong.household.yunlin.gov.tw/population/population01.asp
雲林縣環保局, 2013. 101年度沿海地區空氣污染物及環境健康世代研究計畫.
經濟部工業局, 2014. 經濟部工業局雲林離島式基礎工業區. 經濟部工業局.網址: http://www.moeaidb.gov.tw/iphw/yloip/
詹長權, 2009. 97年度空氣污染對沿海地區環境及居民健康影響之風險評估規劃第1年計畫. 雲林縣環境保護局.
劉鎧銘, 2009. 嘉義地區揮發性有機物來源及其臭氧生成潛勢, 環境工程學系. 國立成功大學, p. 236.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54849-
dc.description.abstract揮發性有機化合物(VOCs)在大氣中扮演重要角色。本研究使用環保署於雲林地區六座學校設置的移動監測車量測資料。量測時間為2011年4月至2012年9月共18個月的VOCs濃度變化。資料利用受體模式辨認並推估雲林地區56 種VOCs在空氣汙染物中分布情形,並進一步分析汙染源分布差異及影響因子。此外使用氣象資料,也能夠了解各地汙染源來源分布狀況。
PMF(positive matrix factorization)矩陣因子模式進行運算結果,分析出7個汙染源: Factor1石化工業、Factor2汽油揮發、Factor3液化石油氣逸散、Factor4遠程傳輸與生質燃燒混合、Factor5柴油燃燒、Factor6交通排放、Factor7有機溶劑使用。透過監測車實際到不同點量測,發現每個地點主要貢獻汙染來源不盡相同,Site1、Site3、Site6以有機溶劑使用汙染源為主; Site2以汽油揮發為主要貢獻汙染源; Site4、Site5則是以混合型的汙染源為主。另外,研究也探討風向區間、週末與週間、大氣溫度三個不同因子進行統計檢定,最後發現在所有汙染源當中,Factor3液化石油氣逸散、Factor7有機溶劑使用皆明顯受到三項變因影響。
本次研究有幾個研究限制:1.量測點偏少且分布不均。2.缺乏季節影響之探討。3.研究資料沒有同時進行量測。4.對於當地環境活動瞭解不多5.汙染源解析時會有成分相近汙染源混合的情形。6.辨識出的汙染源有可能也受到石化工業的影響卻沒有辦法排除。7.需要利用中央測站進行時間校正。未來若需要進行類似的研究建議可修正幾項研究設計,使結果更趨於完整。
zh_TW
dc.description.abstractVolatile organic compounds (VOCs) are a main group of air pollutants. This study utilized 18months VOCs data from April, 2011 to Septemper, 2012 which was measured by a mobile platform of the Taiwan EPA. The aim of this study was to identify and apportion the source of air pollutants in Yun Lin as well as the distribution of the factor effect from different source. In addition, meteorological data was also used to assist the identification and apportionment of the pollution for each site.
According to the modeling results of positive matrix factorization (PMF), this study identified 7 sources which were: Factor1 petrochemical manufacturing processes, Factor2 gasoline evaporation, Factor3 natural gas leakage,Factor4 mixture of long transportation and biomass burning,Factor5 diesel combustion,Factor6 vehicle exhaust emissions, and Factor7 solvent usage. Measurements at different sites through the monitoring vehicle found that the main contributions from the pollution sources varied from each location. At Site1、Site3、Site6, sources were mainly related to solvent usage; At Site2, the source came from gasoline evaporation; At Site4、Site5, sources came from mixture of long transport and biomass burning. Furthermore, this research discussed about wind sectors、week variation and temperature these three different impact factors. The result showed that Factor3 (natural gas leakage) and Factor7 (solvent usage) were apparently affected by these three factors.
The limitation of our study: 1.Measured sites were below normal and unevenly distributed. 2. Lack of discussion about seasons. 3. Studies did not measure simultaneously. 4. Know much about activity for the local environment. 5. There will be a similar situation when pollution parsing component mixed sources. 6. Identify possible sources of pollution were also affected by the petrochemical industry, but there was no way to exclude. 7. Need to use central site information to adjust the time. For similar studies in the future, suggestion may be amended several study designs so that the results tend to be more completed.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:39:50Z (GMT). No. of bitstreams: 1
ntu-104-R01841010-1.pdf: 2945552 bytes, checksum: 32827d7362cb584a2959196b7021aec1 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
目 錄 v
圖目錄 vii
表目錄 viii
附錄 ix
第一章 前言 1
1.1 研究背景 1
1.2 台灣地區光化測站(PAMS)簡介 2
1.2.1 行動監測車 3
1.3 受體模式相關理論 5
1.3.1 正矩陣因子轉置法(Positive Matrix Factorization, PMF) 5
1.4 研究架構 8
第二章 研究方法 15
2.1 雲林地區環境簡介 15
2.2 研究資料蒐集 15
2.3 資料前處理 16
2.4 資料品質管控 17
2.5 決定汙染源數量 17
2.6 Explained Variation (EV值) 18
2.7 條件機率函數(Conditional Probability Function,CPF) 19
第三章 結果與討論 24
3.1 光化測站物種描述性統計結果 24
3.2 光化測站物種依官能基分類結果 24
3.3 選定factor數量(p) 25
3.4 汙染源解析 25
3.5 汙染源貢獻度分析 28
3.5.1 週末與週間貢獻量趨勢 30
3.5.2 風向區間貢獻量分析 30
3.5.3 大氣溫度與貢獻度分析 31
3.5.4 特定VOCs物種貢獻度分析 32
3.6 光化測站固定站校正時間 33
第四章 結論與建議 63
第五章 參考文獻 65
第六章 附錄 74
dc.language.isozh-TW
dc.subject受體模式zh_TW
dc.subject移動監測車zh_TW
dc.subject光化學測站zh_TW
dc.subjectVOCszh_TW
dc.subjectPMFzh_TW
dc.subjectPMFen
dc.subjectSource apportionmenten
dc.subjectVOCsen
dc.subjectmobile platformen
dc.subjectPAMSen
dc.title利用移動監測資料進行揮發性有機化合物濃度特性分析以及受體模式解析zh_TW
dc.titleCharacterization of VOCs Concentrations Using Mobile Measurement and Source Apportionmenten
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳志傑,吳焜裕
dc.subject.keyword受體模式,PMF,VOCs,移動監測車,光化學測站,zh_TW
dc.subject.keywordSource apportionment,PMF,VOCs,mobile platform,PAMS,en
dc.relation.page83
dc.rights.note有償授權
dc.date.accepted2015-02-17
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept職業醫學與工業衛生研究所zh_TW
顯示於系所單位:職業醫學與工業衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
2.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved