請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54848完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄧茂華(Mao-Hua Teng) | |
| dc.contributor.author | Chia-Hao Kuo | en |
| dc.contributor.author | 郭迦豪 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:39:49Z | - |
| dc.date.available | 2016-03-16 | |
| dc.date.copyright | 2015-03-16 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-02-17 | |
| dc.identifier.citation | [1] R. G. T. Geesink, K. de Groot, and C. P. A. T. Klein, (1987) “Chemical implant fixation using hydroxyl-apatite coatings: The development of a human total hip prosthesis for chemical fixation to bone using hydroxyl-apatite coatings on titanium substrates.” Clin Orthop Relat Res., 225, 147-170.
[2] Y. Fujishiro, L. L. Hench, and H. Oonishi, (1997) “Quantitative rates of in-vivo bone generation for bioglass and hydroxyapatite particles as bone graft substitute” J. Mater. Sci. Mater. Med., 8, 649-651. [3] K. Soballe, E. S. Hansen, H. B. Rasmussen, C. M. Pedersen, and C. Bunger, (1990) “Hydroxyapatite coating enhances fixation of porous coated implants” Acta Orthop. Scand, 61(4), 299-306. [4] F. H. Jones (2001) “Teeth and bones applications of surface science to dental materials and related biomaterials” Surface Science Reports, 42(3-5), 75-205. [5] H. Aoki, (1994) Medical application of hydroxyapatite, Ishiyaku EuroAmerica, St. Louis [6] E. Nery, R. LeGeros, K. Lynch, and K. Lee, (1992) “Tissue response to biphasic calcium phosphate ceramic with different ratios of HA/beta TCP in periodontal osseous defects.” Journal of Periodontal, 63(9), 729-735. [7] American Ceramic Society (1983) Phase Diagrams for Ceramists, Vol. 5, 321-322, American Ceramic Society, Washington DC. [8] G. M. Laslett, P. F. Green, I. R. Duddy, and A. J. W. Gleadow (1987) “Thermal annealing of fission tracks in apatite 2. A quantitative analysis” Chem. Geol. Isot. Geosci. Sect., 65, 1–13 [9] K. Gallagher (1995) “Evolving temperature histories from apatite fission-track data” Earth and Planetary Science Letters, 136(3-4), 421-435. [10] H. S. Liu, T.S. Chin, L.S. Lai, S.Y. Chiu, K.H. Chung, C.S. Chang, and M.T. Lui, (1997) “Hydroxyapatite synthesized by a simplified hydrothermal method.” Ceram. Int., 23(1), 19-25. [11] K. Ohta, M. Kikuchi, J. Tana ka, and H. Eda, (2002) “Synthesis of c Axes Oriented Hydroxyapatite Aggregate” Chem. Lett., 894-895. [12] G. Muralithran and S. Ramesh, (2000) “The Effect of sintering temperature on the properties of hydroxyapatite.” Ceram Int., 26, 221-230. [13] L. G. Ellies, D. G. A. Nelson, and J. D. B. Featherstone, (1992) “Crystallographic changes in calcium phosphates during plasma spraying.” Biomaterials, 13, 313-316. [14] I. Abrahams and J. C. Knowles, (1994) “Effects of sintering conditions of hydroxyapatite for use in medical applications: a powder diffraction study” J. Mater. Chem., 4, 185-188. [15] J. C. Trombe and G. Montel, (1978) “Some features of the incorporation of oxygen in different oxidation states in the apatitc lattice, I: on the existence of calcium and strontium oxyapatites.” J. Inorg. Nucl. Chem., 40, 15-30. [16] J. Cihlar, A. Buchal, and M. Trunec, (1999) “Kinetics of thermal decomposition of hydroxyapatite bioceramics.” J. Mater. Sci., 34, 6121-6131. [17] T. Kijima and M. Tsutsumi, (1979) “Preparation and thermal properties of dense polycrystalline oxhydroxyapatite.” J. Am. Ceram. Soc., 62 (9/10), 455-460. [18] J. Zhou, X. Zhang, J. Chen, S. Zeng, and K. DE Groot, (1993) “High temperature characteristics of synthetic hydroxyapatite.” J. Mater. Sci. Mater. Med., 4, 83-85. [19] C. J. Liao, F. H. Lin, K. S. Chen, and J. S. Sun, (1999) “Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere” Biomaterials, 20, 1807-1813. [20] A. Rapacz-Kmita, A. Slosarczyk, Z. Paszkiewicz, and C. Paluszkiewicz, (2005) “FTIR and XRD investigations on the thermal stability of hydroxyapatite during hot pressing and pressureless sintering processes” J. Mol. Struct., 744-747, 653-656. [21] P. E. Wang and T. K. Chaki, (1993) “Sintering behavior and mechanical properties of hydroxyapatite and dicalcium phosphate” J. Mater. Sci. Mater. Med., 4, 150-158. [22] A. J. Ruys, M. Wei, C. C. Sorrell, and M. R. Dickson, A. Brandwood and B. K. Milthorpe, (1995) “Sintering effects on the strength of hydroxyapatite” Biomaterials, 16, 409-415. [23] M. Yashima and A. Sakai, (2003) “High-temperature neutron powder diffraction study of the structural phase transition between α and α′phases in tricalcium phoshpate Ca3(PO4)2“ Chem Phys Lett, 372, 779-83. [24] B. Dickens, W. E. Brown, G. J. Kruger, and J. M. Stewart, (1973) “Ca4(PO4)2O, tetracalcium diphosphate monoxide, crystal structures and relationships to Ca5(PO4)3OH and K3Na(SO4)2”. Acta Crystallogr, Sect B, 29, 2046–56. [25] C. P. A. T. Klein, J. M. A. de Blieck-Hogemrst, J. G. C. Wolket, and K. de Groot, (1990) “Studies of the solubility of different calcium phosphate ceramic particles in vitro” Biomaterials, 11(7), 509-512. [26] W. D. Emmerich, J. Hayhurst and E. Kaisersberger, (1986) “High temperature dilatometer study of special ceramics and their sintering kinetics,” Thermochimica Acta, 106, 71-78. [27] D. T. Beruto, R. Botter, R. Cabella and A. Lagazzo, (2010) “A consecutive decomposition- sintering dilatometer method to study the effect of limestone impurities on lime microstructure and its water reactivity,” Journal of the European Ceramic Society, 30, 1277-1286. [28] N. N. Burtsev and A. P. Savitskii, (1983) “A dilatometer for studies of liquid-phase sintering processes,” Powder Metallurgy and Metal Ceramics, 21, 977-980. [29] 王紹宇 (2011) “主導動力學曲線與三種不同動力學模型之比較研究”,國立台灣大學碩士論文。 [30] 林書弘 (2007) “蒸發岩礦物熱分解反應動力學之研究方法與應用探討”,國立台灣大學碩士論文。 [31] 連維帆 (2010) “銳鈦礦-金紅石與霰石-方解石相變反應之主導動力學曲線研究”,國立台灣大學碩士論文。 [32] 梁家豪 (2003) “三種分析反應動力學及燒結資料的新方法”,國立台灣大學碩士論文。 [33] 張育維 (2007) “奈米二氧化鈦之視燒結活化能與相變研究”,國立台灣大學碩士論文。 [34] J. Chen, W. Tong, C. Yang, J. Feng, and X. Zhang, (1997) “Effect of atmosphere on phase transformation in plasma-sprayed hydroxyapatite coatings during heat treatment” J Biomed Mater Res, 34, 15-20. [35] C. Y. Wang, R. F. Quan, H. B. Wang, X. C. Wei, and Z. J. Zhao, (2009) “Investigation on high-temperature decomposition characteristic of hydroxyapatite” in Proc. 3rd IEEE International Conference, NANOMED, 65-70. [36] P. Parente, B. Savoini, B. Ferrari, M. A. Monge, R. Pareja, and A. J. Sanchez-herencia, (2013) “Effect of highly dispersed yttria addition on thermal stability of hydroxyapatite” Materials Science and Engineering, 33, 864-869. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54848 | - |
| dc.description.abstract | 氫氧基磷灰石(Hydroxyapatite,簡稱HA)為人體骨骼和牙齒的主要成分,因極具生物相容性,故常用於生醫材料領域;係主要為製成骨填補材或與骨組織結合之支架的應用範疇。以高溫製備生醫陶瓷時,氫氧基磷灰石會在升溫的過程中熱分解脫去氫氧基,產生相變化;而相變會使得材料機械強度降低不利於應用。為避免製備過程中有熱分解情形發生,前人便針對脫氫氧基反應及相變反應的溫度範圍研究,但由於氫氧基磷灰石的熱分解產物在常壓下極易受降溫過程中水氣的作用而改變定性分析結果,致使眾人對於熱分解溫度之範圍無一致的答案。為解決前人研究中熱分解溫度不一致之問題,本研究利用熱膨脹儀此種以直接觀察氫氧基磷灰石升溫過程中體積變化之分析手段,配合不同的粉末冷卻方式來進行材料特性之研究和探討,藉以針對氫氧基磷灰石熱分解溫度範圍不一致之情形提出說明與解釋。研究過程輔以XRD與FTIR進行分析,並進一步利用數值模擬與主導動力學曲線(Master Kinetics Curve, MKC)了解氫氧基磷灰石在升溫燒結的過程中脫氫氧基反應及相變反應的溫度範圍與反應動力學。
實驗結果顯示,利用液態氮冷卻的方法可快速降溫且能保留粉末於高溫時的礦物晶相,降溫過程亦不會受水氣作用而改變產物性質;故對於研究氫氧基磷灰石熱分解之材料特性,以液態氮冷卻高溫粉末至室溫再進行後續分析最為適當。XRD結果顯示,1300oC時氫氧基磷灰石開始相變,到1500oC時完全相變化為四鈣磷酸鹽(C4P)以及α-三鈣磷酸鹽(αC3P )。FTIR結果顯示,脫氫氧基反應與相變反應皆不會改變粉末中OH-鍵的存在與否,所以無法藉由FTIR結果界定脫氫氧基反應發生的溫度範圍。 本研究藉熱膨脹儀成功在常壓下界定氫氧基磷灰石之脫氫氧基反應發生的溫度範圍為900oC至1100oC。綜合XRD與熱膨脹儀的結果可知,氫氧基磷灰石的最佳燒結溫度在1300oC以前;如此可得最緻密且無相變發生的樣品。此外,熱膨脹儀1100oC至1500oC的結果顯示,燒結反應與相變反應的溫度範圍有部分重疊,故本研究利用數值模擬方法分離溫度重疊的反應並以主導動力學曲線擬合。主導動力學曲線擬合的結果顯示,數值模擬所得各反應的曲線皆可由MKC擬合,各資料點皆符合擬合曲線,表示利用數值模擬方法分離不同機制的反應是一套有效的分析法。此結果也表示,主導動力學曲線配合數值模擬的分析法可應用於複雜反應機制之擬合。 | zh_TW |
| dc.description.abstract | Hydroxyapatite (HA) is a natural mineral apatite comprising hydroxyl functional groups in its structure, and is widely used as a bone replacement material because of its substantial bioactivity and biocompatibility. A well-controlled thermal processing procedure is essential to manufacture high-strength HA bioceramics. However, the procedure of the processing involves not only sintering but also thermal decomposition which could lead to the degradation of bioceramics properties. In the process of HA decomposition, as the temperature increasing, there are two reactions: dehydroxylation and phase transformation. It is crucial to examine the temperature range of HA decomposition, since it will further influence the strength and the solubility of the bioceramics. However, previous researched discussing about the HA thermal decomposition temperature range were inconsistent.
In the present study, we aimed to use the dilatometer, which can detect the length difference when temperature increases in-situ and continuously, to identify the range of temperature during dehydroxylation to address the contradictory findings in literature. The detected data were then analyzed by numerical simulation method and were fitted by Master Kinetics Curve (MKC), which was developed by our group and has been proved can fit sintering, phase transformation and thermal decomposition. In addition, we used three different methods to cool the heated HA powder, analyzed the powder by XRD and FTIR, and then compared the dilatometer results. We found that the adequate cooling method for studying the thermal decomposition of HA is quenching with liquid nitrogen because it’s rapid cooling and water-free characteristics. The dilatometer results clearly showed that a shrinkage reaction of samples, caused by dehydroxylation, occurred prior to the phase transformation at ca. 900oC to 1100oC. The XRD results showed that the phase transformation of HA began at 1300oC, and fully phase transformed when 1500oC; all of the HA phase in powder transform to tetracalcium phosphate and alpha-tricalcium phosphate. The present study found that the numerical simulation method can successfully distinguish the overlapping reactions and be modeled by the MKC. The MKC fitting results of each reaction implicates that the method could be applied to data fitting for more complex reaction mechanism. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:39:49Z (GMT). No. of bitstreams: 1 ntu-104-R99224117-1.pdf: 2896303 bytes, checksum: 72953a24ce6cabff9a250808ece97304 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 誌謝........................................................i
中文摘要....................................................ii Abstract....................................................iv 目錄........................................................vi 圖目錄......................................................ix 表目錄......................................................xi 縮寫對照表..................................................xii 第一章 緒論.................................................1 1.1 介紹....................................................1 1.2 目的................................................3 第二章 文獻回顧.............................................5 2.1 關於氫氧基磷灰石的熱分解反應........................5 2.1.1 脫氫氧基反應(Dehydroxylation).................6 2.1.2 相變反應......................................8 2.2 關於熱膨脹儀的應用..................................11 2.3 主導動力學曲線模型..................................12 2.3.1主導動力學曲線介紹.............................12 2.3.2主導動力學曲線模型推導.........................13 第三章 實驗方法.............................................16 3.1 利用熱膨脹儀測量氫氧基磷灰石熱分解之實驗步驟........16 3.1.1 粉末購置和分析................................16 3.1.2 圓錠製備......................................18 3.1.3 升溫曲線設計..................................20 3.1.4 主導動力學曲線模型分析........................21 3.2 比較三種不同冷卻方法之實驗設計......................23 3.2.1 管型高溫爐及其校正............................25 3.3 實驗分析儀器........................................26 3.3.1 X光粉末繞射儀.................................26 3.3.2 掃描式電子顯微鏡..............................27 3.3.3 比表面積分析儀................................28 3.3.4 傅立葉轉換式紅外光譜儀........................29 3.3.5 熱膨脹儀......................................30 第四章 實驗結果與討論.......................................31 4.1 原始粉末分析結果....................................31 4.2 不同降溫方法對於FTIR、XRD測量之影響的結果與討論.....33 4.2.1 以空氣冷卻的結果..............................34 4.2.2 以水冷卻的結果................................36 4.2.3 以液態氮冷卻的結果............................37 4.2.4 討論FTIR分析結果..............................39 4.2.5 討論XRD分析結果...............................41 4.3 熱膨脹儀分析結果與討論..............................43 4.3.1 熱膨脹儀分析的結果............................43 4.3.2 藉熱膨脹儀所解決的問題........................46 4.4 關於利用主導動力學曲線模型擬合的結果與討論..........48 4.4.1 利用密度作為換算反應百分比的結果與討論........48 4.4.2 利用數值模擬方法換算反應百分比的結果與討論....50 第五章 結論與建議...........................................56 參考文獻....................................................58 附錄A.......................................................63 附錄B.......................................................65 附錄C.......................................................67 附錄D.......................................................69 | |
| dc.language.iso | zh-TW | |
| dc.subject | 氫氧基磷灰石;熱膨脹儀;熱分解;主導動力學曲線 | zh_TW |
| dc.subject | hydroxyapatite | en |
| dc.subject | Master Kinetics Curve | en |
| dc.subject | thermal decomposition | en |
| dc.subject | dilatometer | en |
| dc.title | 利用熱膨脹儀探討氫氧基磷灰石之熱分解反應與反應動力學 | zh_TW |
| dc.title | study on the hydroxyapatite thermal decomposition reaction and reaction kinetics by dilatometer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉雅瑄(Ya-Hsuan Liou),余炳盛(Bing-Sheng Yu),王玉瑞(Yuh-Ruey Wang) | |
| dc.subject.keyword | 氫氧基磷灰石;熱膨脹儀;熱分解;主導動力學曲線, | zh_TW |
| dc.subject.keyword | hydroxyapatite,dilatometer,thermal decomposition,Master Kinetics Curve, | en |
| dc.relation.page | 73 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-02-17 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
