請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54832
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 管傑雄 | |
dc.contributor.author | Pei-Jia Wu | en |
dc.contributor.author | 吳佩家 | zh_TW |
dc.date.accessioned | 2021-06-16T03:39:27Z | - |
dc.date.available | 2015-03-16 | |
dc.date.copyright | 2015-03-16 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-02-24 | |
dc.identifier.citation | [1] Steve Reyntjens and Robert Puers, “A review of focused ion beam applications in microsystem technology”, IOP J. Micromech. Microeng, vol. 11, pp.287-300, 2001
[2] S Canovic, T Jonsson and M Halvarsson, “Grain contrast imaging in FIB and SEM”, IOP Journal of Physics: Conference Series vol. 126, 2008 [3] Damjana Drobne, Marziale Milani, Vladka Leser, and Francesco Tatti, “Surface Damage Induced by Fib Milling And Imaging of Biological Samples Is Controllable”, Microscopy Research And Technique, vol70, pp.895–903, 2007 [4] C. Lehrer, L. Frey, S. Petersen, and H. Ryssel, “Limitations of focused ion beam nanomachining”, J. Vac. Sci. Technol. B, vol. 19, no. 2533, 2001 [5] Hong-Wei Li1, Dae-Joon Kang, MGBlamire and Wilhelm T S Huck, “Focused ion beam fabrication of silicon print masters”, IOP Science Nanotechnology, vol. 14, pp. 220, 2003 [6] N Chekurov, K Grigoras, A Peltonen, S Franssila and I Tittonen, “The fabrication of silicon nanostructures by local gallium implantation and cryogenic deep reactive ion etching”, IOP Science Nanotechnology vol. 20, 2009 [7] Vittoria Raffa, Orazio Vittorio, Virginia Pensabene, Arianna Menciassi and Paolo Dario, “FIB-Nanostructured Surfaces and Investigation of Bio/Nonbio Interactions at the Nanoscale”, IEEE Transactions on Nanobioscience, Vol. 7, No. 1, March 2008 [8] L. Bischoff and J. Teichert, “Focused Ion Beam Sputtering of Silicon and Related Materials”, Institute of Ion Beam Physics and Materials Research, March 1998 [9] C.A.Volkert and A.M. Minor, Guest Editors, “Focused Ion Beam Microscopy and Micromachining”, MRS Bulletin, vol. 32, pp.389-399, May 2007 [10] C. Lehrer, L. Frey, S. Petersen, and H. Ryssel, “Limitations of focused ion beam nanomachining”, J. Vac. Sci. Technol. B, vol. 19, 2001 [11] Miroslav Koĺıbal,Toḿas Matlocha,Toḿas Vystavel and Toḿas Sikola, “Low energy focused ion beam milling of silicon and germanium nanostructures”, IOP Science Nanotechnology vol. 22, 2011 [12] A. Lugstein, B. Basnar, G. Hobler, and E. Bertagnolli, “Current density profile extraction of focused ion beams based on atomicforce microscopy contour profiling of nanodots”, J. Appl. Phys., vol. 92, no. 7, Oct 2002 [13] Acques Gierak, “Focused ion beam technology and ultimate applications”, IOP Semicond. Sci. Technol., vol. 24, 2009 [14] P. Sigmund, “Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets”, Phys. Rev. 184, Aug 1969 [15] O. Renmer, J. Zemek, “Density of Amorphous Silicon Films”, Czech.J.Phys, B23, Sep 1973 [16] J. S. Custer, Michael O. Thompson, D. C. Jacobson, J. M. Poate, S. Roorda, W. C. Sinke and F. Spaepen, “Density of amorphous Si”, Appl. Phys. Lett., vol.64, 1994 [17] K. Nikawa, “Applications of focused ion beam technique to failure analysis of very large scale integrations: A review” Journal of Vacuum Science & Technology B, vol.9, 1991 [18] Alex A. Volinsky, Larry Rice,Wentao Qin, N. David Theodore, “FIB failure analysis of memory arrays”, Elsevier B.V. Microelectronic Engineering, pp.3-11, May 2004 [19] Heung-Bae Kim, Gerhard Hobler, Andreas Steiger, Alois Lugstein and Emmerich Bertagnolli, “Full three-dimensional simulation of focused ion beam micro/nanofabrication”, IOP Nanotechnology, vol. 18 ,2007 [20] 高能離子於物質內能量損失之量測分析與其應用研究, 許智祐, 2005 [21] Jon Orloff, Lynwood Swanson, Mark Utlaut, “High Resolution Focused Ion Beams FIB and its Applications”, 2002 [22] J. HI Daniel, D. F. Moore and J. F. Walker, “Focused ion beams for microfabrication”, Engineering Science and Education Journal, April 1999 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54832 | - |
dc.description.abstract | 本論文研究聚焦離子束(Focused ion beam, FIB)砰擊矽基板後所產生的腫起(swelling)和研磨(milling)的現象,研究著重在不同參數下研磨後的形貌變化。實驗過程,首先必須先調整FIB像差(stigmator)及焦距,讓FIB輪廓為圓形且砰擊於樣品時會是最集中的離子束,FIB以掃描單點(single-spot)的方式加工於基板,接著用原子力顯微鏡(Atomic force microscope, AFM)測量經過FIB加工過的矽基板形貌輪廓。單點研磨後基板會有一深度似高斯分布的凹洞,隨駐留時間(dwell time)增長凹洞會加深且變寬,可以從實驗結果觀察到在一定駐留時間範圍內,研磨深度和駐留時間程線性關係,並可得到FIB單點研磨速度的函數,而此函數是高思函數。
不同加速電壓(Accelerate voltage)、離子束電流(beam current)會改變研磨速率分布的影響。當離子束電流變高研磨速度會變快,整體的高思函數會變高變寬,加速電壓則會影響單點研磨的寬度,低電壓時高斯函數會變寬。本論文會展示使用FIB研磨速度函數,去預測FIB研磨單點、兩點、線、方形微結構後的形貌,並和實驗結果做比較,解釋預期深度和實驗結果的差距來自能量累積,能量累積造成非晶化但尚未造成濺射,因此AFM無法量測到。最後研究如何控點距(pitch)設計線結構達到波浪(fluctuation)能變小。 | zh_TW |
dc.description.abstract | In this thesis, we investigated the swelling and milling due to FIB impinging, primary research is the milling topography contours. In Experiments, before FIB patterns, we adjusted FIB stigmator and focus to obtain a circular FIB profile and tight FIB. FIB scanned on the silicon substrate using single-spot, after that Atomic force microscope (AFM) measured topography of patterned silicon substrate. The substrate surface showed a Gaussian shape crater caused by FIB milling a single spot and the crater increased depth and width with longer dwell time. We observed that milling depth is linear to dwell time in limited dwell time and calculated the FIB milling speed. FIB milling speed is a Gaussian function.
Accelerate voltage and beam current affect milling speed. The higher milling current results in higher milling speed, and Gaussian function became taller and broad. Accelerate voltage affects width of milling single spot, lower Accelerate voltage wider Gaussian shape is. This thesis presents the predicted topography of FIB milling single spot, two spots, line and square fabrication by milling speed function. The predicted topography are compared with experiments. We did the double spot experiments to explain the deviations occurs because of energy accumulation. At the end of thesis, we show adjusting pitch reduce the fluctuate of line fabrication bottom. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T03:39:27Z (GMT). No. of bitstreams: 1 ntu-104-R01945022-1.pdf: 4703204 bytes, checksum: ef0d569e4f5d3f4d0c07eff1ad905783 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 目錄
謝誌 I 摘要 II Abstract III 圖目錄 VI 表目錄 VIII 第一章 概論 1 1.1 研究動機 1 1.2 研究背景 2 1.3 章節概要 6 第二章 聚焦離子束與固體相互作用 7 2.1 離子與固體交互作用 7 2.2 聯級碰撞 8 2.3能量損失 10 2.3.1核子能損失 10 2.3.2電子能損失 14 第三章 實驗儀器介紹與實驗方法 16 3.1 聚焦離子束 16 3.1.1 聚焦離子束簡介 16 3.1.2 離子槍構造 17 3.1.2聚焦離子束工作原理 18 3.1.3掃描參數 19 3.2 原子力顯微鏡 19 3.3實驗方法及量測方法 20 3.3.1樣品準備 20 3.3.2聚焦離子束加工 21 3.3.3 原子力顯微鏡量測與資料萃取 22 第四章實驗結果與討論 23 4.1 單點研磨實驗探討研磨速度分佈 23 4.1.1駐留時間對研磨形貌之影響 23 4.1.2 聚焦離子束研磨速度分佈 27 4.2 加速電壓和離子束電流對研磨之影響 29 4.2.1 離子束電流對研磨形貌及研磨速度分佈之影響 29 4.2.2 加速電壓對研磨形貌及研磨速度分佈之影響 30 4.3 利用研磨速度預測單點研磨深度 31 4.3雙點重疊實驗探討累積能量 32 4.3.1兩點結構、一維溝槽結構和二維方形面結構 32 4.3.2雙點重疊實驗 37 4.4.2 點距對溝槽底部凹凸影響 41 第五章 結論與未來展望 45 5.1 結論 45 5.2 未來工作與展望 45 參考文獻 46 | |
dc.language.iso | zh-TW | |
dc.title | 單一聚焦離子束斑點研磨及其重疊行為之研究 | zh_TW |
dc.title | Study of Focused Ion Beam Milling Single Spot Topography and its Superimposition Behavior | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 孫建光,孫允武,賴聰賢,李世光 | |
dc.subject.keyword | 聚焦離子束,腫起,研磨,矽,研磨速度,加速電壓,離子束電流,形貌,深度, | zh_TW |
dc.subject.keyword | focused ion beam,FIB,swelling,milling,silicon,milling speed,accelerate voltage,beam current,topography,depth, | en |
dc.relation.page | 48 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-02-24 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
顯示於系所單位: | 生醫電子與資訊學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 4.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。