Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54804
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁照棣(Chau-Ti Ting)
dc.contributor.authorYu-Chien Linen
dc.contributor.author林宇謙zh_TW
dc.date.accessioned2021-06-16T03:38:51Z-
dc.date.available2020-03-16
dc.date.copyright2015-03-16
dc.date.issued2015
dc.date.submitted2015-02-25
dc.identifier.citationAgbaga MP, Mandal MN, Anderson RE. 2010. Retinal very long-chain PUFAs: new insights from studies on ELOVL4 protein. J Lipid Res. 51: 1624-1642.
Barabas P, Liu A, Xing W, Chen CK, Tong Z, Watt CB, Jones BW, Bernstein PS, Križaj D. 2013. Role of ELOVL4 and very long-chain polyunsaturated fatty acids in mouse models of Stargardt type 3 retinal degeneration. Proc Natl Acad Sci USA. 110: 5181-5186.
Bernstein PS, Tammur J, Singh N, Hutchinson A, Dixon M, Pappas CM, Zabriskie NA, Zhang K, Petrukhin K, Leppert M, Allikmets R. 2001. Diverse macular dystrophy phenotype caused by a novel complex mutation in the ELOVL4 gene. Invest Ophth Vis Sci. 42: 3331-3336.
Billeter JC, Atallah J, Krupp JJ, Millar JG, Levine JD. 2009. Specialized cells tag sexual and species identity in Drosophila melanogaster. Nature 461: 987-991.
Blomquist GJ, Borgeson CE, Vundla M. 1991. Polyunsaturated fatty acids and eicosanoids in insects. Insect Biochemistry 211: 99-106.
Bousquet F, Nojima T, Houot B, Chauvel I, Chaudy S, Dupas S, Yamamoto D, Ferveur JF. 2012. Expression of a desaturase gene, desat1, in neural and nonneural tissues separately affects perception and emission of sex pheromones in Drosophila. Proc Natl Acad Sci USA. 109: 249-254.
Butterworth FM. 1969. Lipids of Drosophila; a new detected lipid in the male. Science 163: 1256-1257.
Cameron DJ, Tong Z, Yang Z, Kaminoh J, Kamiyah S, Chen H, Zeng J, Chen Y, Luo L, Zhang K. 2007. Essential role of Elovl4 in very long chain fatty acid synthesis, skin permeability barrier function, and neonatal survival. Int J Biol Sci, 3: 111-119.
Carmona-Antoñanzas G, Tocher DR, Taggart JB, Leaver MJ. 2013. An evolutionary perspective on Elovl5 fatty acid elongase: comparison of Northern pike and duplicated paralogs from Atlantic salmon. BMC Evol Biol. 13: 85.
Chen S, Krinsky BH, Long M. 2013. New genes as drivers of phenotypic evolution. Nat Rev Genet. 14: 645-660.
Chertemps T, Duportets L, Labeur C, Wicker-Thomas C. 2005. A new elongase selectively expressed in Drosophila male reproductive system. Biochem Biophys Res Commun. 333: 1066-1072.
Chertemps T, Duportets L, Labeur C, Ueyama M, Wicker‐Thomas C. 2006. A female‐specific desaturase gene responsible for diene hydrocarbon biosynthesis and courtship behaviour in Drosophila melanogaster. Insect Mol Biol. 15: 465-473.
Chertemps T, Duportets L, Labeur C, Ueda R, TakahashiK, Saigo K, Wicker-Thomas C. 2007. A female-biased expressed elongase involved in long-chain hydrocarbon biosynthesis and courtship behavior in Drosophila melanogaster. Proc Natl Acad Sci USA. 104: 4273-4278.
Chung H, Loehlin DW, Dufour HD, Vacarro K, Millar JG, Carroll SB. 2014. A single gene affects both ecological divergence and mate choice in Drosophila. Science 343: 1148-1151.
Datta SR, Vasconcelos ML, Ruta V, Luo S, Wong A, Demir E, Flores J, Balonze K, Dickson BJ, Axel R. 2008. The Drosophila pheromone cVA activates a sexually dimorphic neural circuit. Nature 452: 473-477.
Denic V, Weissman JS. 2007. A molecular caliper mechanism for determining very long-chain fatty acid length. Cell 130: 663-677.
de Renobales M, Blomquist GJ. 1984. Biosynthesis of medium chain fatty acids in Drosophila melanogaster. Arch Biochem Biophys. 228: 407-414.
Edwards AO, Donoso LA, Ritter R. 2001. A novel gene for autosomal dominant Stargardt-like macular dystrophy with homology to the SUR4 protein family. Invest Ophth Vis Sci. 42: 2652-2663.
Fang S, Ting CT, Lee CR, Chu KH, Wang CC, Tsaur SC. 2009. Molecular evolution and functional diversification of fatty acid desaturases after recurrent gene duplication in Drosophila. Mol Biol Evol. 26: 1447-1456.
Ferveur JF. 2005. Cuticular hydrocarbons: their evolution and roles in Drosophila pheromonal communication. Behav Genet. 35: 279-295.
Giansanti MG, Farkas RM, Bonaccorsi S, Lindsley DL, Wakimoto BT, Fuller MT, Gatti M. 2004. Genetic dissection of meiotic cytokinesis in Drosophila males. Mol Biol Cell 15: 2509-2522.
Gibbs AG. 1998. Water-proofing properties of cuticular lipids. Am Zool. 38: 471-82.
Gleason JM, James RA, Wicker-Thomas C, Ritchie MG. 2009. Identification of quantitative trait loci function through analysis of multiple cuticular hydrocarbons differing between Drosophila simulans and Drosophila sechellia females. Heredity 103: 416-424.
Greenberg AJ, Moran JR, Coyne JA, Wu CI. 2003. Ecological adaptation during incipient speciation revealed by precise gene replacement. Science 302: 1754-1757.
Gregory MK, Cleland LG, James MJ. 2013. Molecular basis for differential elongation of omega-3 docosapentaenoic acid by the rat Elovl5 and Elovl2. J Lipid Res. 54: 2851-2857.
Gutierrez E, Wiggins D, Fielding B, Gould AP. 2006. Specialized hepatocyte-like cells regulate Drosophila lipid metabolism. Nature 445: 275-280.
Guillou H, Zadravec D, Martin PG, Jacobsson A. 2010. The key roles of elongases and desaturases in mammalian fatty acid metabolism: insights from transgenic mice. Prog Lipid Res. 49: 186-199.
Gu P, Welch WH, Guo L, Schegg KM, Blomquist GJ. 1997. Characterization of a novel microsomal fatty acid synthetase FAS compared to a cytosolic FAS in the housefly, Musca domestica. Comp Biochem Physiol. 118B: 447-56.
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 59: 307-321.
Harkewicz R, Du H, Tong Z, Alkuraya H, Bedell M, Sun WXiaolei, Wang X, Hsu YH, Esteve-Rudd J, Hughes G, Su Z, Zhang M, Lopes VS, Molday RS, Williams DS, Dennis EA, Zhang K. 2012. Essential role of ELOVL4 protein in very long chain fatty acid synthesis and retinal function. J Biol Chem. 287: 11469-11480.
Hashimoto K, Yoshizawa AC, Okuda S, Kuma K, Goto S, Kanehisa M. 2008. The repertoire of desaturases and elongases reveals fatty acid variations in 56 eukaryotic genomes. J Lipid Res. 49: 183-191.
Haslam TM, Kunst L. 2013. Extending the story of very-long-chain fatty acid Elongation. Plant Science 210: 93-107.
Hedlund K, Bartelt RJ, Dicke M, Vet LE. 1996. Aggregation pheromones of Drosophila immigrans, D. phalerata, and D. subobscura. J Chem Ecol. 22: 1835-1844.
Howard RW, Blomquist GJ. 2005. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol. 50: 371-393.
Ito H, Sato K, Koganezawa M, Ote M, Matsumoto K, Hama C, Yamamoto D. 2012. Fruitless recruits two antagonistic chromatin factors to establish single-neuron sexual dimorphism. Cell 149: 1327-1338.
Jafari S, Alkhori L, Schleiffer A, Brochtrup A, Hummel T, Alenius M. 2012. Combinatorial activation and repression by seven transcription factors specify Drosophila odorant receptor expression. PLoS Biol. 10: e1001280.
Jallon JM, David JR. 1987. Variations in cuticular hydrocarbons along the eight species of the Drosophila melanogaster subgroup. Evolution 41: 487-502.
Jallon JM, Wicker-Thomas C. 2003. Genetic studies on pheromone production in Drosophila. In G. J. Blomquist and R. G. Vogt eds, Insect Pheromone Biochemistry and Molecular Biology: The Biosynthesis and Detection of Pheromones and Plant Volatiles. Amsterdam: Elsevier Academic Press, pp. 253-280.
Jakobsson A, Westerberg R, Jacobsson A. 2006. Fatty acid elongases in mammals: their regulation and roles in metabolism. Prog Lipid Res. 45: 237-249.
Jeong S, Rokas A, Carroll S. B. 2006. Regulation of body pigmentation by the abdominal-B hox protein and its gain and loss in Drosophila evolution. Cell 125: 1387-1399.
Jump DB. 2011. Fatty acid regulation of hepatic lipid metabolism.. Curr Opin Clin Nutr Metab Care. 14: 115-120.
Jung A, Hollmann M, Schafer MA. 2007. The fatty acid elongase NOA is necessary for viability and has a somatic role in Drosophila sperm development. J Cell Sci. 120: 2924-2934.
Keays MC, Barker D, WICKER‐THOMAS C, Ritchie MG. 2011. Signatures of selection and sex‐specific expression variation of a novel duplicate during the evolution of the Drosophila desaturase gene family. Mol Ecol. 20: 3617-3630.
Kihara A. 2012. Very long-chain fatty acids: elongation, physiology and related disorders. J Biochem. 152: 387-395.
King MC, Wilson AC. 1975. Evolution at two levels in humans and chimpanzees. Science 1975: 107-116.
Kopp A, True JR. 2002. Evolution of male sexual characters in the oriental Drosophila melanogaster species group. Evol Dev. 4: 278-291.
Kopp A, True, JR. 2002. Phylogeny of the oriental Drosophila melanogaster species group: a multilocus reconstruction. Syst Biol. 51: 786-805.
Kosters A, Sun D, Wu H, Tian F, Felix JC, Li W, Karpen SJ. 2013. Sexually dimorphic genome-wide binding of retinoid X receptor alpha RXRα determines male-female differences in the expression of hepatic lipid processing genes in Mice. PloS One. 8: e71538.
Koyuncu E, Purdy JG, Rabinowitz JD, Shenk T. 2013. Saturated very long chain fatty acids are required for the production of infectious human cytomegalovirus progeny. PLoS Pathog. 9: e1003333.
Larkin MA, Blackshields G, Brown NP, et al. 13 co-authors. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948.
Leonard AE, Pereira SL, Sprecher H, Huang YS. 2004. Elongation of long-chain fatty acids. Prog Lipid Res. 43: 36-54.
Legendre A, Miao,XX, Da Lage JL, Wicker-Thomas C. 2008. Evolution of a desaturase involved in female pheromonal cuticular hydrocarbon biosynthesis and courtship behavior in Drosophila. Insect Biochem Mol Biol. 38: 244-255.
Li W, Sandhoff R, Kono M, Zerfas P, Hoffmann V, Ding BC, Proia RL, Deng CX. 2007. Depletion of ceramides with very long chain fatty acids causes defective skin permeability barrier function, and neonatal lethality in ELOVL4 deficient mice. Int J Biol Sci. 3: 120-128.
Logan S, Agbaga MP, Chan MD, Kabir N, Mandal NA, Brush RS, Anderson RE. 2013. Deciphering mutant ELOVL4 activity in autosomal-dominant Stargardt macular dystrophy. Proc Natl Acad Sci USA. 110: 5446-5451.
Lomakin IB, Xiong Y, Steitz TA. 2007. The crystal structure of yeast fatty acid synthase, a cellular machine with eight active sites working together. Cell 129: 319-332.
Luo SD, Shi GW, Baker, BS. 2011. Direct targets of the D. melanogaster DSXF protein and the evolution of sexual development. Development 138: 2761-2771.
Maier T, Leibundgut M, Ban N. 2008. The crystal structure of a mammalian fatty acid synthase. Science 321: 1315-1322.
Mas F, Jallon JM. 2005. Sexual isolation and cuticular hydrocarbon differences between Drosophila santomea and Drosophila yakuba. J Chem Ecol. 31: 2747-2752.
Matsuzaka T, Shimano H. 2009. Elovl6: a new player in fatty acid metabolism and insulin sensitivity. J Mol Med. 87: 379-384.
Matsuzaka T, Shimano H, Yahagi N, Kato T, Atsumi A, Yamamoto T, Inoue N, Ishikawa M, Okada S, Ishigaki N, Iwasaki H, Iwasaki Y, Karasawa T, Kumadaki S, Matsui T, Sekiya M, Ohashi K, Hasty AH, Nakagawa Y, Takahashi A, Suzuki, H, Yatoh S, Sone H, Toyoshima H, Osuga JJ, Yamada N. 2007. Crucial role of a long-chain fatty acid elongase, Elovl6, in obesity-induced insulin resistance. Nat Med. 13: 1193-1202.
Moon YA, Hammer RE, Horton JD. 2009. Deletion of ELOVL5 leads to fatty liver through activation of SREBP-1c in mice. J Lipid Res 50: 412-23.
Naganuma T, Sato Y, Sassa T, Ohno Y, Kihara A. 2011. Biochemical characterization of the very long-chain fatty acid elongase ELOVL7. FEBS Lett. 585: 3337-3341.
Ng SH, Shankar S, Shikichi Y, Akasaka K, Mori K, Yew JY. 2014. Pheromone evolution and sexual behavior in Drosophila are shaped by male sensory exploitation of other males. Proc Natl Acad Sci USA. 111: 3056-3061.
Noor MA, Coyne JA. 1996. Genetics of a difference in cuticular hydrocarbons between Drosophila pseudoobscura and D. persimilis. Genet Res. 68: 117-123.
Obara K, Kojima R, Kihara A. 2013. Effects on vesicular transport pathways at the late endosome in cells with limited very long-chain fatty acids. J Lipid Res. 54: 831-842.
Ohno S. 1970. Evolution by gene duplication. London: George Alien and Unwin Ltd. Berlin, Heidelberg and New York: Springer-Verlag.
Ohno Y, Suto S, Yamanaka M, Mizutani Y, Mitsutake S, Igarashi Y, Sassa T, Kihara A. 2010. ELOVL1 production of C24 acyl-CoAs is linked to C24 sphingolipid synthesis. Proc Natl Acad Sci USA. 107: 18439-18444.
Oh CS, Toke DA, Mandala S, Martin CE. 1997. ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. J Biol Chem. 272: 17376-17384.
Oresti GM, Reyes JG, Luquez JM, Osses N, Furland NE, Aveldaño MI. 2010. Differentiation-related changes in lipid classes with long-chain and very long-chain polyenoic fatty acids in rat spermatogenic cells. J Lipid Res. 51: 2909-2921.
Parsch J, Ellegren H. 2013. The evolutionary causes and consequences of sex-biased gene expression. Nat Rev Genet. 14: 83-87.
Parvy JP, Napal L, Rubin T, Poidevin M, Perrin L, Wicker-Thomas C, Montagne J. 2012. Drosophila melanogaster Acetyl-CoA-Carboxylase sustains a fatty acid-dependent remote signal to waterproof the respiratory system. PLoS Genet. 8: e1002925.
Paul S, Gable K, Beaudoin F, Cahoon E, Jaworski J, Napier JA, Dunn TM. 2006. Members of the Arabidopsis FAE1-like 3-Ketoacyl-CoA synthase gene family substitute for the Elop proteins of Saccharomyces cerevisiae. J Biol Chem. 281: 9018-9029.
Pechine JM, Perez F, Antony C, Jallon JM. 1985. A further characterization of Drosophila cuticular monoenes using a mass spectrometry method to localize double bonds in complex mixtures. Anal Biochem. 145: 177-182.
Pechine JM, Antony C, Jallon JM. 1988. Precise characterisation of cuticular compounds in young Drosophila by mass spectrometry. J Chem Ecol. 14: 1071-1085.
Pennanec'h M, Bricard L, Kunesh G, Jallon JM. 1997. Incorporation of fatty acids into cuticular hydrocarbons of male and female Drosophila melanogaster. J Insect Physiol. 43: 1111-1116.
Phadnis N, Hsieh E, Malik HS. 2011. Birth, death and replacement of karyopherins in Drosophila. Mol Biol Evol. 29:1429-1440.
Qiu Y, Tittiger C, Wicker-Thomas C, Le Goff G, Young S, Wajnberg E, Fricaux T, Taquet NJ, Blomquist GJ, Feyereisen R. 2012. An insect-specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proc Natl Acad Sci USA. 109: 14858-14863.
Rebeiz M, Jikomes N, Kassner VA, Carroll SB. 2011. Evolutionary origin of a novel gene expression pattern through co-option of the latent activities of existing regulatory sequences. Proc Natl Acad Sci USA. 108: 10036-10043.
Revardel E, Bonneau M, Durrens P, Aigle M. 1995. Characterization of a new gene family developing pleiotropic phenotypes upon mutation in Saccharomyces cerevisiae. Biochim Biophys Acta. 1263: 261-265.
Ross BD, Rosin L, Thomae AW, Hiatt MA, Vermaak D, de la Cruz AFA, Imhof A, Mellone G, Malik HS. 2013. Stepwise evolution of essential centromere function in a Drosophila neogene. Science 340: 1211-1214.
Sassa T, Ohno Y, Suzuki S, Nomura T, Nishioka C, Kashiwagi T, Hirayama T, Akiyama M, Taguchi R, Shimizu H, Itohara Sand Kihara A. 2013. Impaired epidermal permeability barrier in mice lacking Elovl1, the gene responsible for very-long-chain fatty acid production. Mol Cell Biol. 33: 2787-2796.
Schaner AM, Graham KJ, Jackson LL. 1989. Aggregation pheromone characterization and comparison in Drosophila ananassae and Drosophila bipectinata. J Chem Ecol. 15: 1045-1055.
Shen LR, Lai CQ, Feng X, Parnell LD, Wan JB, Wang JD, Li D, Ordovas JM, Kang JX. 2010. Drosophila lacks C20 and C22 PUFAs. J Lipid Res. 51: 2985-2992.
Shimano H. 2012. Novel qualitative aspects of tissue fatty acids related to metabolic regulation: lessons from Elovl6 knockout. Prog Lipid Res. 51: 267-271.
Shirangi TR, Dufour HD, Williams TM, Carroll SB. 2009. Rapid evolution of sex pheromone-producing enzyme expression in Drosophila. PLoS Biol. 7: e1000168.
St. Pierre SE, Ponting L, Stefancsik R, McQuilton P, and the FlyBase Consortium 2014. FlyBase 102 - advanced approaches to interrogating FlyBase. Nucleic Acids Res. 42: D780-788.
Symonds MRE, Wertheim B. 2005. The mode of evolution of aggregation pheromones in Drosophila species. J Evolution Biol. 18: 1253-1263.
Szafer-Glusman E, Giansanti MG, Nishihama R, Bolival B, Pringle J, Gatti M, Fuller MT. 2008. A role for very-long-chain fatty acids in furrow ingression during cytokinesis in Drosophila spermatocytes. Curr Biol. 18: 1426-1431.
Tamura K, Subramanian S, Kumar S. 2004. Temporal patterns of fruit fly (Drosophila) evolution revealed by mutation clocks. Mol Biol Evol. 21: 36-44.
Thistle R, Cameron P, Ghorayshi A, Dennison L, Scottz K. 2012. Contact chemoreceptors mediate male-male repulsion and male-female attraction during Drosophila courtship. Cell 149: 1140-1151.
Toke DA. Martin CE. 1996 Isolation and characterization of a gene affecting fatty acid elongation in Saccharomyces cerevisiae. J Biol Chem. 271: 18413-18422.
Tripathy S, Jump DB. 2013. Elovl5 regulates the mTORC2-Akt-FOXO1 pathway by controlling hepatic cis-vaccenic acid synthesis in diet-induced obese mice. J Lipid Res. 54: 71-84.
Vasireddy V, Uchida Y, Salem N, Kim SY, Mandal MNA, Reddy GPB, Bodepudi R, Alderson NL, Brown JC, Hama H, Dlugosz A, Elias PE, Holleran WM, Ayyagari R. 2007. Loss of functional ELOVL4 depletes very long-chain fatty acids ≥ C28 and the unique ω-O-acylceramides in skin leading to neonatal death. Hum Mol Genet. 16: 471-482.
Vasireddy V, Wong P, Ayyagari R. 2010. Genetics and molecular pathology of Stargardt-like macular degeneration. Prog Retin Eye Res. 29: 191-207.
Wang L, Anderson J. 2010. Identification of an aggression-promoting pheromone and its receptor neurons in Drosophila. Nature 463: 227-231.
Wang W, Kidd J, Carroll B, Yoder JH. 2011. Sexually dimorphic regulation of the Wingless morphogen controls sex-specific segment number in Drosophila. Proc Natl Acad Sci USA. 108: 11139-11144.
Westerberg R, Tvrdik P, Undén AB, Månsson JE, Norlén L, Jakobsson A, Holleran WH, Elias PM, Asadi A, Flodby P, Toftgård R, Capecchi MRA, Jacobsson A. 2004. Role for ELOVL3 and fatty acid chain length in development of hair and skin function. J Biol Chem. 279: 5621-5629.
Westerberg R, Månsson JE, Golozoubova V, Shabalina IG, Backlund EC, Tvrdik P, Retterstøl K, Capecchi MR, Jacobsson A. 2006. ELOVL3 is an important component for early onset of lipid recruitment in brown adipose tissue. J Biol Chem. 281: 4958-4968.
Williams TM, Selegue JE, Werner T, Gompel N, Kopp A, Carroll SB. 2008. The regulation and evolution of a genetic switch controlling sexually dimorphic traits in Drosophila. Cell 134: 610-623.
Williams TM, Carroll SB. 2009. Genetic and molecular insights into the development and evolution of sexual dimorphism. Nat Rev Genet. 10: 797-804.
Wyman MJ, Cutter AD, Rowe L. 2012. Gene duplication in the evolution of sexual dimorphism. Evolution 66: 1556-1566.
Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol. Evol. 24: 1586-1591.
Yew JY, Dreisewerd K, Luftmann, H, Müthing, J, Pohlentz, G, Kravitz, E. A. 2009. A new male sex pheromone and novel cuticular cues for chemical communication in Drosophila. Curr Biol. 19: 1245-1254.
Yu M, Benham A, Logan S, Brush RS, Mandal MNA, Anderson RE, Agbaga MP. 2012. ELOVL4 protein preferentially elongates 20: 5n3 to very long chain PUFAs over 20: 4n6 and 22: 6n3. J Lipid Res. 53: 494-504.
Zadravec D, Tvrdik P, Guillou H, Haslam R, Kobayashi T, Napier JA, Jacobsson A. 2011. ELOVL2 controls the level of n-6 28: 5 and 30: 5 fatty acids in testis, a prerequisite for male fertility and sperm maturation in mice. J Lipid Res. 52: 245-255.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54804-
dc.description.abstract果蠅的脂肪酸延長酶(fatty acid elongase)基因家族擁有許多重要功能,例如維持脂質恆定、雄性生殖與費洛蒙生合成。在黃果蠅(Drosophila melanogaster)的20個延長酶基因當中,4個是雄性專一表現,1個是雌性專一;4個雄性專一的延長酶皆表現於生殖系統,另外有2個兩性都會表現的延長酶對精子形成不可或缺;而1個雄性專一與1個雌性專一的延長酶參與費洛蒙生合成,因此和性別與物種辨識有關。然而,延長酶基因家族的演化,與其對於演化的創新貢獻仍不清楚。為了回答以上問題,我首先系統性的尋找20種果蠅中的延長酶同源基因(homolog),然後在成蟲期測試10種果蠅的基因,是否於兩性中表現。我發現各種果蠅的延長酶數量介於14到21個,許多演化支系經歷多次基因複製與喪失。成蟲期時,大部分延長酶同源基因皆表現於兩性,少數則是性別專一或兩性皆不表現;大部分性別專一表現的延長酶基因在各個親緣關係接近的直系同源基因(ortholog)中,性別表現形態並不一致,意謂調控改變可能對兩性雙型性(sexual dimorphism)的演化非常重要。接著進一步分析各個延長酶直系同源基因的同義取代/異義取代率,以及測試某些密碼子是否受到正向選汰(positive selection)。大部分延長酶基因的同義取代/異義取代率都小於1,意謂淨化選汰(purifying selection)可能為延長酶演化的主要影響力;然而有些延長酶基因上的密碼子,也許受到正向選汰影響。總之,本研究認為果蠅延長酶的基因複製與調控改變,皆可能對於果蠅演化有創新貢獻。zh_TW
dc.description.abstractFatty acid elongase gene family in Drosophila plays several important roles such as lipid homeostasis, male reproduction, and pheromone biosynthesis. Among 20 fatty acid elongase members in D. melanogaster, four and one have been reported to be male-specific and female-specific, respectively. All of four male-specific elongases are expressed in the reproductive system. In addition, two bisexually- expressed elongases are essential for spermatogenesis. One male-specific and one female-specific elongases are involved in the biosynthesis of pheromones that associated with the sex and species recognition. However, the evolution and contributions of evolutionary novelty of elongase gene family in Drosophila are unclear. To address these questions, I first conducted a systematic search of elongase homologs in 20 Drosophila species, and then surveyed the gene expression of adult flies in 10 species. I found the number of elongase genes in each species range from 14 to 21, and multiple gene gains and losses events occurred in several lineages. Most elongase homologs were bisexually expressed, and few homologs were sex-specific or not expressed in adult flies. Most of the sex-specific elongase homologs displayed distinct sexual expression patterns between closely related species, suggesting that regulatory changes played an important role on the evolution of sexual dimorphism. The free-ratio analysis was further performed to evaluate the dN/dS ratio of each lineage in elongase orthologs, and NSsites analysis was used to reveal whether certain codons of each elongase ortholog were under positive selection. The dN/dS values of most lineages were less than one, suggesting that most elongase genes were under purifying selection. Nevertheless, some codons of several orthologs might be under positive selection. In summary, both gene duplication and regulatory changes may contribute to the evolutionary novelty of the elongase genes in Drosophila.en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:38:51Z (GMT). No. of bitstreams: 1
ntu-104-R98b41025-1.pdf: 8882249 bytes, checksum: 6d863bf29a20cd8eb62bc7059b322390 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents誌謝 i
中文摘要 v
Abstract vii
Contents ix
List of Figures xi
List of Tables xv
Introduction 1
Materials and Methods 11
Results 15
Discussion 49
References 59
Appendix 73
dc.language.isoen
dc.subject基因複製zh_TW
dc.subject延長?zh_TW
dc.subject演化創新zh_TW
dc.subject兩性雙型性zh_TW
dc.subject費洛蒙zh_TW
dc.subjectelongaseen
dc.subjectsexual dimorphismen
dc.subjectpheromoneen
dc.subjectgene duplicationen
dc.subjectevolutionary noveltyen
dc.title果蠅脂肪酸延長酶基因之分子演化與表現zh_TW
dc.titleMolecular evolution and expression of fatty acid elongases in
Drosophila
en
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee方淑(Shu Fang),胡哲明(Jer-Ming Hu),王弘毅(Hurng-Yi Wang),李壽先(Shou-Hsien Li)
dc.subject.keyword延長?,演化創新,基因複製,費洛蒙,兩性雙型性,zh_TW
dc.subject.keywordelongase,evolutionary novelty,gene duplication,pheromone,sexual dimorphism,en
dc.relation.page124
dc.rights.note有償授權
dc.date.accepted2015-02-25
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
8.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved