請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54780
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 余忠仁(Chong-Jen Yu),陳昆鋒(Kuen-Feng Chen) | |
dc.contributor.author | Cheng-Yi Wang | en |
dc.contributor.author | 王誠一 | zh_TW |
dc.date.accessioned | 2021-06-16T03:38:23Z | - |
dc.date.available | 2015-09-25 | |
dc.date.copyright | 2015-09-25 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-03-23 | |
dc.identifier.citation | Adams, D. G., R. L. Coffee, Jr., et al. (2005). 'Positive regulation of Raf1-MEK1/2-ERK1/2 signaling by protein serine/threonine phosphatase 2A holoenzymes.' J Biol Chem 280(52): 42644-42654.
Al-Saleh, K., C. Quinton, et al. (2012). 'Role of pemetrexed in advanced non-small-cell lung cancer: meta-analysis of randomized controlled trials, with histology subgroup analysis.' Curr Oncol 19(1): e9-e15. Baumer, N., A. Maurer, et al. (2007). 'Expression of protein histidine phosphatase in Escherichia coli, purification, and determination of enzyme activity.' Methods Mol Biol 365: 247-260. Becker, A., A. van Wijk, et al. (2010). 'Side-effects of long-term administration of erlotinib in patients with non-small cell lung cancer.' J Thorac Oncol 5(9): 1477-1480. Bendell, J. C., D. S. Hong, et al. (2014). 'Phase 1, open-label, dose-escalation, and pharmacokinetic study of STAT3 inhibitor OPB-31121 in subjects with advanced solid tumors.' Cancer Chemother Pharmacol 74(1): 125-130. Berk, V., M. A. Kaplan, et al. (2013). 'Efficiency and side effects of sorafenib therapy for advanced hepatocellular carcinoma: a retrospective study by the anatolian society of medical oncology.' Asian Pac J Cancer Prev 14(12): 7367-7369. Bielinski, V. A. and M. C. Mumby (2007). 'Functional analysis of the PP2A subfamily of protein phosphatases in regulating Drosophila S6 kinase.' Exp Cell Res 313(14): 3117-3126. Blechacz, B. R., R. L. Smoot, et al. (2009). 'Sorafenib inhibits signal transducer and activator of transcription-3 signaling in cholangiocarcinoma cells by activating the phosphatase shatterproof 2.' Hepatology 50(6): 1861-1870. Blumenschein, G. R., Jr., U. Gatzemeier, et al. (2009). 'Phase II, multicenter, uncontrolled trial of single-agent sorafenib in patients with relapsed or refractory, advanced non-small-cell lung cancer.' J Clin Oncol 27(26): 4274-4280. Bromberg, J. F., M. H. Wrzeszczynska, et al. (1999). 'Stat3 as an oncogene.' Cell 98(3): 295-303. Burdett, S. S., L. A. Stewart, et al. (2007). 'Chemotherapy and surgery versus surgery alone in non-small cell lung cancer.' Cochrane Database Syst Rev 18(3). Camps, M., A. Nichols, et al. (2000). 'Dual specificity phosphatases: a gene family for control of MAP kinase function.' Faseb J 14(1): 6-16. Cappuzzo, F., T. Ciuleanu, et al. (2010). 'Erlotinib as maintenance treatment in advanced non-small-cell lung cancer: a multicentre, randomised, placebo-controlled phase 3 study.' Lancet Oncol 11(6): 521-529. Cersosimo, R. J. (2006). 'Gefitinib: an adverse effects profile.' Expert Opin Drug Saf 5(3): 469-479. Chan, S. K., W. J. Gullick, et al. (2006). 'Mutations of the epidermal growth factor receptor in non-small cell lung cancer -- search and destroy.' Eur J Cancer 42(1): 17-23. Chen, K. F., C. Y. Liu, et al. (2010). 'CIP2A mediates effects of bortezomib on phospho-Akt and apoptosis in hepatocellular carcinoma cells.' Oncogene 29(47): 6257-6266. Chen, K. F., K. C. Pao, et al. (2012). 'Development of erlotinib derivatives as CIP2A-ablating agents independent of EGFR activity.' Bioorg Med Chem 20(20): 6144-6153. Chen, K. F., W. T. Tai, et al. (2012). 'Blockade of STAT3 activation by sorafenib derivatives through enhancing SHP-1 phosphatase activity.' Eur J Med Chem 55: 220-227. Chen, K. F., W. T. Tai, et al. (2011). 'Sorafenib derivatives induce apoptosis through inhibition of STAT3 independent of Raf.' Eur J Med Chem 46(7): 2845-2851. Chen, K. F., P. Y. Yeh, et al. (2009). 'Bortezomib overcomes tumor necrosis factor-related apoptosis-inducing ligand resistance in hepatocellular carcinoma cells in part through the inhibition of the phosphatidylinositol 3-kinase/Akt pathway.' J Biol Chem 284(17): 11121-11133. Chen, K. F., P. Y. Yeh, et al. (2008). 'Down-regulation of phospho-Akt is a major molecular determinant of bortezomib-induced apoptosis in hepatocellular carcinoma cells.' Cancer Res 68(16): 6698-6707. Chen, K. F., H. C. Yu, et al. (2011). 'Bortezomib sensitizes HCC cells to CS-1008, an antihuman death receptor 5 antibody, through the inhibition of CIP2A.' Mol Cancer Ther 10(5): 892-901. Chen, K. F., H. C. Yu, et al. (2010). 'Synergistic interactions between sorafenib and bortezomib in hepatocellular carcinoma involve PP2A-dependent Akt inactivation.' J Hepatol 52(1): 88-95. Cheng, H., M. Shcherba, et al. (2014). 'Targeting the PI3K/AKT/mTOR pathway: potential for lung cancer treatment.' Lung Cancer Manag 3(1): 67-75. Cho, U. S. and W. Xu (2007). 'Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme.' Nature 445(7123): 53-57. Ciuleanu, T., L. Stelmakh, et al. (2012). 'Efficacy and safety of erlotinib versus chemotherapy in second-line treatment of patients with advanced, non-small-cell lung cancer with poor prognosis (TITAN): a randomised multicentre, open-label, phase 3 study.' Lancet Oncol 13(3): 300-308. Clegg, A., D. A. Scott, et al. (2002). 'Clinical and cost effectiveness of paclitaxel, docetaxel, gemcitabine, and vinorelbine in non-small cell lung cancer: a systematic review.' Thorax 57(1): 20-28. Come, C., A. Laine, et al. (2009). 'CIP2A is associated with human breast cancer aggressivity.' Clin Cancer Res 15(16): 5092-5100. Cortas, T., R. Eisenberg, et al. (2007). 'Activation state EGFR and STAT-3 as prognostic markers in resected non-small cell lung cancer.' Lung Cancer 55(3): 349-355. Cully, M., H. You, et al. (2006). 'Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis.' Nat Rev Cancer 6(3): 184-192. D'Arcangelo, M. and F. R. Hirsch (2014). 'Clinical and comparative utility of afatinib in non-small cell lung cancer.' Biologics 8: 183-192. Davies, O., P. Mendes, et al. (2012). 'Characterisation of multiple substrate-specific (d)ITP/(d)XTPase and modelling of deaminated purine nucleotide metabolism.' BMB Rep 45(4): 259-264. Dong, Q. Z., Y. Wang, et al. (2011). 'CIP2A is overexpressed in non-small cell lung cancer and correlates with poor prognosis.' Ann Surg Oncol 18(3): 857-865. Dong, S., S. J. Chen, et al. (2003). 'Cross-talk between retinoic acid and STAT3 signaling pathways in acute promyelocytic leukemia.' Leuk Lymphoma 44(12): 2023-2029. Eichhorn, P. J., M. P. Creyghton, et al. (2009). 'Protein phosphatase 2A regulatory subunits and cancer.' Biochim Biophys Acta 1: 1-15. Faller, B. A. and T. N. Pandit (2011). 'Safety and efficacy of vinorelbine in the treatment of non-small cell lung cancer.' Clin Med Insights Oncol 5: 131-144. Fossella, F., J. R. Pereira, et al. (2003). 'Randomized, multinational, phase III study of docetaxel plus platinum combinations versus vinorelbine plus cisplatin for advanced non-small-cell lung cancer: the TAX 326 study group.' J Clin Oncol 21(16): 3016-3024. Gandara, D. R., A. M. Davies, et al. (2007). 'Epidermal growth factor receptor inhibitors plus chemotherapy in non-small-cell lung cancer: biologic rationale for combination strategies.' Clin Lung Cancer 8(2): S61-67. Gao, S. P., K. G. Mark, et al. (2007). 'Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas.' J Clin Invest 117(12): 3846-3856. Gerber, D. E. and J. H. Schiller (2013). 'Maintenance chemotherapy for advanced non-small-cell lung cancer: new life for an old idea.' J Clin Oncol 31(8): 1009-1020. GuidelineTM, N. (2012). NCCN Clinical Practice Guidelines in Oncology (V.2). Huang, C. Y., C. C. Wei, et al. (2012). 'Bortezomib enhances radiation-induced apoptosis in solid tumors by inhibiting CIP2A.' Cancer Lett 317(1): 9-15. Huang, S. F., H. P. Liu, et al. (2004). 'High frequency of epidermal growth factor receptor mutations with complex patterns in non-small cell lung cancers related to gefitinib responsiveness in Taiwan.' Clin Cancer Res 10(24): 8195-8203. Janssens, V. and J. Goris (2001). 'Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling.' Biochem J 353(Pt 3): 417-439. Jemal, A., M. J. Thun, et al. (2008). 'Annual report to the nation on the status of cancer, 1975-2005, featuring trends in lung cancer, tobacco use, and tobacco control.' J Natl Cancer Inst 100(23): 1672-1694. Jiang, R., Z. Jin, et al. (2011). 'Correlation of activated STAT3 expression with clinicopathologic features in lung adenocarcinoma and squamous cell carcinoma.' Mol Diagn Ther 15(6): 347-352. Junttila, M. R., P. Puustinen, et al. (2007). 'CIP2A inhibits PP2A in human malignancies.' Cell 130(1): 51-62. Kato, H., Y. Ichinose, et al. (2004). 'A randomized trial of adjuvant chemotherapy with uracil-tegafur for adenocarcinoma of the lung.' N Engl J Med 350(17): 1713-1721. Katz, J., A. Jakymiw, et al. (2010). 'CIP2A expression and localization in oral carcinoma and dysplasia.' Cancer Biol Ther 10(7): 694-699. Keating, G. M. (2014). 'Afatinib: a review of its use in the treatment of advanced non-small cell lung cancer.' Drugs 74(2): 207-221. Kelly, K., J. Crowley, et al. (2001). 'Randomized phase III trial of paclitaxel plus carboplatin versus vinorelbine plus cisplatin in the treatment of patients with advanced non--small-cell lung cancer: a Southwest Oncology Group trial.' J Clin Oncol 19(13): 3210-3218. Khanna, A., C. Bockelman, et al. (2009). 'MYC-dependent regulation and prognostic role of CIP2A in gastric cancer.' J Natl Cancer Inst 101(11): 793-805. Khanna, A., J. Okkeri, et al. (2011). 'ETS1 mediates MEK1/2-dependent overexpression of cancerous inhibitor of protein phosphatase 2A (CIP2A) in human cancer cells.' PLoS One 6(3): 0017979. King, T. E., Jr., A. Pardo, et al. (2011). 'Idiopathic pulmonary fibrosis.' Lancet 378(9807): 1949-1961. Kortylewski, M., M. Kujawski, et al. (2005). 'Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity.' Nat Med 11(12): 1314-1321. Kurup, A. and N. H. Hanna (2004). 'Treatment of small cell lung cancer.' Crit Rev Oncol Hematol 52(2): 117-126. Ladbury, J. E. (2007). 'Measurement of the formation of complexes in tyrosine kinase-mediated signal transduction.' Acta Crystallogr D Biol Crystallogr 63(Pt 1): 26-31. Lazo, J. S. and P. Wipf (2009). 'Phosphatases as targets for cancer treatment.' Curr Opin Investig Drugs 10(12): 1297-1304. Li, L., D. J. Schaid, et al. (2012). 'Gemcitabine metabolic pathway genetic polymorphisms and response in patients with non-small cell lung cancer.' Pharmacogenet Genomics 22(2): 105-116. Li, Y. Y., S. K. Lam, et al. (2013). 'Erlotinib-induced autophagy in epidermal growth factor receptor mutated non-small cell lung cancer.' Lung Cancer 81(3): 354-361. Lin, Q., R. Lai, et al. (2005). 'Constitutive activation of JAK3/STAT3 in colon carcinoma tumors and cell lines: inhibition of JAK3/STAT3 signaling induces apoptosis and cell cycle arrest of colon carcinoma cells.' Am J Pathol 167(4): 969-980. Lin, Y. C., K. C. Chen, et al. (2012). 'CIP2A-mediated Akt activation plays a role in bortezomib-induced apoptosis in head and neck squamous cell carcinoma cells.' Oral Oncol 48(7): 585-593. Lin, Y. C., M. H. Wu, et al. (2012). 'Degradation of epidermal growth factor receptor mediates dasatinib-induced apoptosis in head and neck squamous cell carcinoma cells.' Neoplasia 14(6): 463-475. Liu, C. Y., C. W. Shiau, et al. (2013). 'Cancerous inhibitor of protein phosphatase 2A determines bortezomib-induced apoptosis in leukemia cells.' Haematologica 98(5): 729-738. Lynch, T. J., D. W. Bell, et al. (2004). 'Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib.' N Engl J Med 350(21): 2129-2139. Ma, L., Z. S. Wen, et al. (2011). 'Overexpression and small molecule-triggered downregulation of CIP2A in lung cancer.' PLoS One 6(5): 31. Maehama, T., F. Okahara, et al. (2004). 'The tumour suppressor PTEN: involvement of a tumour suppressor candidate protein in PTEN turnover.' Biochem Soc Trans 32(Pt 2): 343-347. Martin, S. S. and A. E. Senior (1980). 'Membrane adenosine triphosphatase activities in rat pancreas.' Biochim Biophys Acta 602(2): 401-418. Mumby, M. (2007). 'PP2A: unveiling a reluctant tumor suppressor.' Cell 130(1): 21-24. Mumby, M. C. and G. Walter (1993). 'Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth.' Physiol Rev 73(4): 673-699. Paez, J. G., P. A. Janne, et al. (2004). 'EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy.' Science 304(5676): 1497-1500. Pallai, R., A. Bhaskar, et al. (2012). 'Ets1 and Elk1 transcription factors regulate cancerous inhibitor of protein phosphatase 2A expression in cervical and endometrial carcinoma cells.' Transcription 3(6): 323-335. Pao, W., V. Miller, et al. (2004). 'EGF receptor gene mutations are common in lung cancers from 'never smokers' and are associated with sensitivity of tumors to gefitinib and erlotinib.' Proc Natl Acad Sci U S A 101(36): 13306-13311. Passaro, A., A. Palazzo, et al. (2012). 'Molecular and clinical analysis of predictive biomarkers in non-small-cell lung cancer.' Curr Med Chem 19(22): 3689-3700. Pignon, J. P., H. Tribodet, et al. (2008). 'Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative Group.' J Clin Oncol 26(21): 3552-3559. Prele, C. M., E. Yao, et al. (2012). 'STAT3: a central mediator of pulmonary fibrosis?' Proc Am Thorac Soc 9(3): 177-182. Puglisi, M., P. Thavasu, et al. (2014). 'AKT inhibition synergistically enhances growth-inhibitory effects of gefitinib and increases apoptosis in non-small cell lung cancer cell lines.' Lung Cancer 85(2): 141-146. Qiu, Z. X., K. Zhang, et al. (2013). 'The prognostic value of phosphorylated AKT expression in non-small cell lung cancer: a meta-analysis.' PLoS One 8(12). Redell, M. S. and D. J. Tweardy (2005). 'Targeting transcription factors for cancer therapy.' Curr Pharm Des 11(22): 2873-2887. Riley, M. V. and M. I. Peters (1981). 'The localization of the anion-sensitive ATPase activity in corneal endothelium.' Biochim Biophys Acta 644(2): 251-256. Roberts, K. G., A. M. Smith, et al. (2010). 'Essential requirement for PP2A inhibition by the oncogenic receptor c-KIT suggests PP2A reactivation as a strategy to treat c-KIT+ cancers.' Cancer Res 70(13): 5438-5447. Sahin, F., C. B. Avci, et al. (2010). 'Gossypol exerts its cytotoxic effect on HL-60 leukemic cell line via decreasing activity of protein phosphatase 2A and interacting with human telomerase reverse transcriptase activity.' Hematology 15(3): 144-150. Sahu, A., K. Prabhash, et al. (2013). 'Crizotinib: A comprehensive review.' South Asian J Cancer 2(2): 91-97. Sanchez-Ceja, S. G., E. Reyes-Maldonado, et al. (2006). 'Differential expression of STAT5 and Bcl-xL, and high expression of Neu and STAT3 in non-small-cell lung carcinoma.' Lung Cancer 54(2): 163-168. Sarris, E. G., M. W. Saif, et al. (2012). 'The Biological Role of PI3K Pathway in Lung Cancer.' Pharmaceuticals 5(11): 1236-1264. Scagliotti, G. V., F. De Marinis, et al. (2002). 'Phase III randomized trial comparing three platinum-based doublets in advanced non-small-cell lung cancer.' J Clin Oncol 20(21): 4285-4291. Seger, R. and E. G. Krebs (1995). 'The MAPK signaling cascade.' Faseb J 9(9): 726-735. Sequist, L. V., R. G. Martins, et al. (2008). 'First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations.' J Clin Oncol 26(15): 2442-2449. Shi, Y. (2009). 'Serine/threonine phosphatases: mechanism through structure.' Cell 139(3): 468-484. Shigematsu, H., L. Lin, et al. (2005). 'Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers.' J Natl Cancer Inst 97(5): 339-346. Soo Hoo, L., J. Y. Zhang, et al. (2002). 'Cloning and characterization of a novel 90 kDa 'companion' auto-antigen of p62 overexpressed in cancer.' Oncogene 21(32): 5006-5015. Spigel, D. R., H. A. Burris, 3rd, et al. (2011). 'Randomized, double-blind, placebo-controlled, phase II trial of sorafenib and erlotinib or erlotinib alone in previously treated advanced non-small-cell lung cancer.' J Clin Oncol 29(18): 2582-2589. Stoker, A. W. (2005). 'Protein tyrosine phosphatases and signalling.' J Endocrinol 185(1): 19-33. Strauss, G. M., J. E. Herndon, 2nd, et al. (2008). 'Adjuvant paclitaxel plus carboplatin compared with observation in stage IB non-small-cell lung cancer: CALGB 9633 with the Cancer and Leukemia Group B, Radiation Therapy Oncology Group, and North Central Cancer Treatment Group Study Groups.' J Clin Oncol 26(31): 5043-5051. Su, C., S. Zhou, et al. (2011). 'ERCC1, RRM1 and BRCA1 mRNA expression levels and clinical outcome of advanced non-small cell lung cancer.' Med Oncol 28(4): 1411-1417. Sui, X., N. Kong, et al. Cotargeting EGFR and autophagy signaling: A novel therapeutic strategy for non-small-cell lung cancer, Mol Clin Oncol. 2014 Jan;2(1):8-12. Epub 2013 Sep 18. Tai, W. T., A. L. Cheng, et al. (2011). 'Signal transducer and activator of transcription 3 is a major kinase-independent target of sorafenib in hepatocellular carcinoma.' J Hepatol 55(5): 1041-1048. Tai, W. T., P. Y. Chu, et al. (2014). 'STAT3 mediates regorafenib-induced apoptosis in hepatocellular carcinoma.' Clin Cancer Res 20(22): 5768-5776. Tai, W. T., C. W. Shiau, et al. (2014). 'Nintedanib (BIBF-1120) inhibits hepatocellular carcinoma growth independent of angiokinase activity.' J Hepatol 61(1): 89-97. Tonks, N. K. (2006). 'Protein tyrosine phosphatases: from genes, to function, to disease.' Nat Rev Mol Cell Biol 7(11): 833-846. Tsatsanis, C. and D. A. Spandidos (2000). 'The role of oncogenic kinases in human cancer (Review).' Int J Mol Med 5(6): 583-590. Tseng, L. M., C. Y. Liu, et al. (2012). 'CIP2A is a target of bortezomib in human triple negative breast cancer cells.' Breast Cancer Res 14(2). Turkson, J. and R. Jove (2000). 'STAT proteins: novel molecular targets for cancer drug discovery.' Oncogene 19(56): 6613-6626. Vaarala, M. H., M. R. Vaisanen, et al. (2010). 'CIP2A expression is increased in prostate cancer.' J Exp Clin Cancer Res 29(136): 1756-9966. Vijayalakshmi, R. and A. Krishnamurthy (2011). 'Targetable 'driver' mutations in non small cell lung cancer.' Indian J Surg Oncol 2(3): 178-188. Vokes, E. E., R. Salgia, et al. (2013). Evidence-based role of bevacizumab in non-small cell lung cancer, Ann Oncol. Wang, C. T., C. S. Lin, et al. (2013). 'SC-1, a sorafenib derivative, shows anti-tumor effects in osteogenic sarcoma cells.' J Orthop Res 31(2): 335-342. Wu, C., M. Sun, et al. (2003). 'The function of the protein tyrosine phosphatase SHP-1 in cancer.' Gene 306: 1-12. Wu, J. Y., S. G. Wu, et al. (2011). 'Comparison of gefitinib and erlotinib in advanced NSCLC and the effect of EGFR mutations.' Lung Cancer 72(2): 205-212. Wu, Y. and B. P. Zhou (2010). 'Snail: More than EMT.' Cell Adh Migr 4(2): 199-203. Xu, P., X. L. Xu, et al. (2012). 'CIP2A with survivin protein expressions in human non-small-cell lung cancer correlates with prognosis.' Med Oncol 29(3): 1643-1647. Xu, Y., Y. Xing, et al. (2006). 'Structure of the protein phosphatase 2A holoenzyme.' Cell 127(6): 1239-1251. Yang, F., C. Brown, et al. (2010). 'Sorafenib induces growth arrest and apoptosis of human glioblastoma cells through the dephosphorylation of signal transducers and activators of transcription 3.' Mol Cancer Ther 9(4): 953-962. Yu, H. C., H. J. Chen, et al. (2013). 'Inhibition of CIP2A determines erlotinib-induced apoptosis in hepatocellular carcinoma.' Biochem Pharmacol 85(3): 356-366. Yu, H. C., D. R. Hou, et al. (2013). 'Cancerous inhibitor of protein phosphatase 2A mediates bortezomib-induced autophagy in hepatocellular carcinoma independent of proteasome.' PLoS One 8(2): 1. Yue, P. and J. Turkson (2009). 'Targeting STAT3 in cancer: how successful are we?' Expert Opin Investig Drugs 18(1): 45-56. Zhang, Z. Y. (2002). 'Protein tyrosine phosphatases: structure and function, substrate specificity, and inhibitor development.' Annu Rev Pharmacol Toxicol 42: 209-234. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54780 | - |
dc.description.abstract | 蛋白激酶在很多細胞基礎功能例如細胞增殖、細胞周期、代謝、存活、細胞凋亡等都扮演關鍵的調節角色。一些蛋白激酶例如轉錄訊號傳導子和激活子3 (signal transducers and activators of transcription 3, STAT3), c-Src, c-Abl, mitogen activated protein kinase, phosphotidylinositol-3-kinase/Akt, and epidermal growth factor receptor在癌細胞經常是過度活化,而這些重要的致癌蛋白訊息路徑也常是新的抗癌藥物的重要標靶。這些致癌蛋白激酶活性以及它的上游或下游激酶常常是受到磷酸酶的去磷酸化的負調控。磷酸酶的重要角色主要是因很多細胞重要的功能及訊息皆受到磷酸化及去磷酸化的調控,這使得磷酸酶可能可以作為新的抗癌標的。一些已知的磷酸酶例如protein phosphatase 2A (PP2A), Src homology 2-domain containing tyrosine phosphatase (SHP)等功能被認為是腫瘤抑制者。在此提出兩個假說模型支持以增強磷酸酶活性為方針的抗癌策略的可行性。
第一個假說模型顯示以erlotinib藉由抑制cancerous inhibitor of PP2A (CIP2A)蛋白來增強PP2A活性作為新的抗非小細胞肺癌(non-small cell lung cancer,NSCLC)策略。我們以erlotinib治療4株表皮生長因子受體(EGFR)野生型非小細胞肺癌細胞株(H358、H441、H460和A549),以測定這些細胞株對erlotinib所誘發之細胞死亡和細胞凋亡的感受性。試驗中分析了CIP2A, PP2A及下游AKT的表現狀況。我們在具有感受性和具有抗藥性的細胞中分別使CIP2A過度表現及剔除CIP2A基因表現,藉此確認PP2A對erlotinib誘發之細胞凋亡所造成的影響。另外也在裸鼠中測定erlotinib對H358異種移植腫瘤的體內療效。結果erlotinib在H358和H441細胞中誘發出顯著的細胞死亡和細胞凋亡(證據為caspase 3活性上升,且pro-caspase 9和PARP的裂解作用上升),但在H460或A549細胞則無此效果。Erlotinib在具有感受性之H358細胞中引起的細胞凋亡作用,會伴隨CIP2A的負向調節、PP2A活性的上升,以及AKT磷酸化作用的下降。CIP2A和AKT的過度表現可使具有感受性之H358細胞免於發生erlotinib誘發之細胞凋亡。在與具有感受性之H358細胞類似、但具有抗藥性的H460細胞中,以siRNA剔除CIP2A基因表現的做法可增強erlotinib誘發之細胞凋亡。Erlotinib亦可抑制裸鼠體內H358腫瘤的生長。藉由抑制CIP2A來增強PP2A活性促成了erlotinib在體內和體內,對不帶有EGFR突變之NSCLC細胞所造成的腫瘤消滅效果。在往後的藥物發展上,PP2A可能可以作為對抗EGFR野生型NSCLC的一項新型分子標的。 第二個假說模型呈現在EGFR野生型NSCLC以sorafenib及其結構衍生物顯示增強SHP-1活性來抑制p-STAT3訊息路徑為可行的抗癌方針。STAT3在EGFR野生型NSCLC中經常持續受到活化。試驗的目的為判定sorafenib及其衍生物是否可藉由去活化STAT3抑制EGFR野生型NSCLC。本試驗讓EGFR野生型NSCLC細胞株(A549、H292、H322、H358和H460)接受sorafenib或SC-1(一種sorafenib的衍生物,結構上與sorafenib十分近似但缺少激酶抑制活性)的治療,接著分析細胞凋亡(apoptosis)和訊號傳導作用。體內療效則是在植入H460和A549異體移植物的裸鼠身上測定。在所有受測的EGFR野生型NSCLC細胞株中,SC-1對於生長抑制和細胞凋亡的影響均優於sorafenib。在所有受測的EGFR野生型NSCLC細胞株中,SC-1均可降低705號酪胺酸上發生的STAT3磷酸化作用。STAT3所驅動之基因(包含cyclin D1和survivin)的表現程度也受到SC-1壓抑。STAT3在H460細胞中的異位性表現,消除了SC-1治療組細胞中的細胞凋亡作用。Sorafenib和SC-1增強了SHP-1的活性,而以小干擾RNA剔除SHP-1時可降低SC-1所誘發之細胞凋亡(但剔除SHP-2或PTP-1B時則無此效果)。在體內環境中,SC-1可透過SHP-1/STAT3路徑顯著減弱H460和A549腫瘤的生長。SC-1提供了證據,證明以STAT3傳訊路徑作為作用標的,有機會成為EGFR野生型NSCLC的一項新療法。未來應可應用增強磷酸酶活性為方針來研發新的抗癌藥物。 | zh_TW |
dc.description.abstract | Protein kinases play key roles in regulating many essential cellular functions, such as proliferation, cell cycle, cell metabolism, survival, apoptosis, and etc. Kinases such as signal transducers and activators of transcription 3 (STAT3); c-Src, c-Abl, mitogen activated protein kinase, phosphotidylinositol-3-kinase/Akt, and epidermal growth factor receptor are commonly activated in cancer cells, and these important oncogenic pathways have been hot targets of novel targeted anti-cancer agents. The activities of protein kinases and their upstream or down-stream kinases are negatively regulated by protein phosphatase, which are responsible for the dephosphorylation of these kinases. This role of protein phosphatases is extremely important since protein phosphorylation and dephosphorylation is required for the regulation of a large number of cellular activities. The important role of protein phosphatases in regulating oncokinase implicates that phosphatase may be a potential promising novel target in anti-cancer strategy. Several known protein phosphatases such as protein phosphatase 2A (PP2A) and Src homology 2-domain containing tyrosine phosphatase (SHP) have been shown to function as tumor suppressors. Here 2 proof-of-concept models are provided to support that targeting oncoprotein kinase through enhancing phosphatase activity can be a novel anti-cancer strategy for developing novel anti-cancer agents.
The first model demonstrates that enhancing PP2A activity by inhibiting cancerous inhibitor of PP2A (CIP2A) by erlotinib is a potential anti-lung-cancer strategy. Four EGFR wild type NSCLC cell lines (H358 H441 H460 and A549) were treated with erlotinib to determine their sensitivity to erlotinib-induced cell death and apoptosis, Expression of CIP2A, PP2A and the downstream AKT were analyzed. The effects of PP2A on erlotinib-induced apoptosis were confirmed by overexpression of CIP2A and knockdown of CIP2A gene expression in the sensitive cells and resistant cells respectively. In vivo efficacy of erlotinib against H358 xenograft tumor was also determined in nude mice. Erlotinib induced significant cell death and apoptosis in H358 and H441 cells, as evidenced by increased caspase 3 activity and cleavage of pro-caspase 9 and PARP, but not in H460 or A549 cells. The apoptotic effect of erlotinib in the sensitive H358 cells was associated with downregulation of CIP2A, increase in PP2A activity and further decrease in AKT phosphorylation. Overexpression of CIP2A and AKT protected the sensitive H358 cells from erlotinib-induced apoptosis. Knockdown of CIP2A gene expression by siRNA enhanced the erlotinib-induced apoptotic in the resistant H460 cells that resembled the sensitive H358 cells. Erlotinib also inhibited the growth of H358 tumors in nude mice. The CIP2A/PP2A-dependent pathway mediates the tumoricidal effects of erlotinib on NSCLC cells without EGFR mutations in vitro and in vivo. PP2A may be a novel molecular target against NSCLC for future drug development. The second model shows that targeting phosphorylated STAT3 by enhancing SHP-1 activity by sorafenib and its analogue is another attractive anti-cancer strategy for EGFR wild type NSCLC. STAT3 is often persistently activated in EGFR wild-type non-small cell lung cancer (NSCLC). The aim of this model was to determine whether sorafenib and its derivative can inhibit EGFR wild-type NSCLC via STAT3 nactivation. EGFR wild-type NSCLC cell lines (A549 H292 H322 H358 and H460) were treated with sorafenib or SC-1, a sorafenib derivative that closely resembled sorafenib structurally but devoid of kinase inhibitory activity. Apoptosis and signal transduction were analyzed. In vivo efficacy was determined in nude mice with H460 and A549 xenograft. SC-1 had better effects than sorafenib on growth inhibition and apoptosis in all tested EGFR wild-type NSCLC lines. SC-1 reduced STAT3 phosphorylation at tyrosine 705 in all tested EGFR wild-type NSCLC cells. The expression of STAT3-driven genes, including cylcin D1 and survivin, was also repressed by SC-1. Ectopic expression of STAT3 in H460 cells abolished apoptosis in SC-1-treated cells. Sorafenib and SC-1 enhaced SHP-1 activity, while knockdown of SHP-1, but not SHP-2 or PTP-1B, by small interference RNA reduced SC-1-induced apoptosis. SC-1 significantly reduced H460 and A549 tumor growth in vivo through SHP-1/STAT3 pathway. SC-1 provides proof that targeting STAT3 signaling pathway may be a novel approach for the treatment of EGFR wild-type NSCLC. It is promising and feasible to develop novel anti-cancer agents by enhancing phosphatase activity in the future. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T03:38:23Z (GMT). No. of bitstreams: 1 ntu-104-D98421016-1.pdf: 3242630 bytes, checksum: a9924c5652a5038d2baf473a8ace6a40 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 目錄……………………………………………………………………………………..ii
圖目錄………………………………………………………………………………….vi 表目錄…………………………………………………………………………………vii 中文摘要……………………………………………..………………………………viii Abstract……………………………………………….………………………………..x 縮寫對照表…………………………………………….…………………………….xiii 第一章 緒論………………………………………….……….………………………1 第一部份 非小細胞肺癌現狀…………………………….…………………………...1 第一節 非小細胞肺癌現狀和未滿足的需求…………………………………………1 第二節 肺癌治療原則…………………………………………………………………2 第三節 肺癌傳統化學治療藥物………………………………………………………8 第四節 標靶治療……………………………………………………………………..11 第二部份 以磷酸酶作為一種可能的抗癌策略……………………………………..14 第一節 磷酸酶………………………………………………………………………..14 第二節 蛋白激酶和蛋白磷酸酶……………………………………………………..15 第三節 PP2A-AKT 路徑…………………………………………………………….16 第四節 PP2A癌性抑制因子(Canceerous Inhibitor of PP2A, CIP2A)…………..16 第五節 轉錄訊號傳導子和激活子3(STAT3)…………………………………….17 第六節 加強磷酸酶作為一種可能的抗癌策略……………………………………..18 第七節 研究目的與假說……………………………………………………………..21 第二章 研究方法及材料……………………………………………………………..23 第一部份 以erlotinib增強PP2A活性作為新的抗非小細胞肺癌策略……………23 第一節 細胞株與培養方法………………………………………………...………...23 第二節 試劑與抗體…………………………………………………………………..23 第三節 細胞存活率檢測與細胞凋亡分析…………………………………………..23 第四節 CIP2A的過度表現…………………………………………………………..24 第五節 PP2A磷酸酶活性……………………………………………………………24 第六節 以siRNA及細胞轉染(cell transfection)進行基因剔除…………………24 第七節 CIP2A基因表現的定量……………………………………………………..25 第八節 雙冷光酶報告基因檢測(Dual-luciferase reporter assay)………………...25 第九節 異種移植腫瘤生長狀況…………………………………………………..…26 第十節 統計分析……………………………………………………………………...26 第二部分 以sorafenib及其結構衍生物顯示增強SHP-1活性來抑制p-STAT3訊息路徑為可行的抗癌方針……………………………………………………………….27 第一節 細胞株與培養方法…………………………………………………………...27 第二節 試劑與抗體…………………………………………………………………...27 第三節 細胞存活率檢測與細胞凋亡分析…………………………………………...27 第四節用以定位STAT3的免疫細胞化學染色………………………………………28 第五節 STAT3的異位性表現………………………………………………………...28 第六節 SHP-1和Raf-1活性檢測……………………………………………………29 第七節 以siRNA進行基因剔除……………………………………………….…….29 第八節 異種移植腫瘤生長狀況……………………………………………………...29 第九節 免疫組織化學染色…………………………………………………………...29 第十節 統計分析……………………………………………………………………...30 第三章 研究結果…………………………………………………………..………….31 第一部份 以erlotinib增強PP2A活性作為新的抗非小細胞肺癌策略……..……..31 第一節 在不帶有EGFR突變的NSCLC細胞中,erlotinib對存活率和細胞凋亡之影響的差異……………………………………………………………………………….31 第二節 CIP2A的負向調節,決定了不帶有EGFR突變的NSCLC細胞中,erlotinib所誘發的p-AKT抑制和細胞凋亡作用……………………………………………….31 第三節 CIP2A-PP2A-AKT路徑的驗證……………………………………………...32 第四節 在不帶有EGFR突變的NSCLC細胞中,erlotinib可負向調節CIP2A的轉錄……………………………………………………………………………………….32 第五節 評估erlotinib對帶有H358之小鼠所產生的治療效果…………………….33 第二部分 以sorafenib及其結構衍生物顯示增強SHP-1活性來抑制p-STAT3訊息路徑為可行的抗癌方針……………………………………………………………….34 第一節 SC-1在EGFR野生型NSCLC細胞株中具有促成細胞死亡的效果……..34 第二節 關於sorafenib和SC-1於EGFR野生型NSCLC細胞株中產生的作用,STAT3是一項重要的潛在媒介物質…………………………………………………………34 第三節 SC-1對STAT3活化的抑制作用牽涉到一種蛋白酪胺酸磷酸酶…………35 第四節 SC-1和sorafenib對帶有H460或A549之小鼠的療效評估……………..36 第五節 在EGFR野生型NSCLC臨床組織檢體中,以免疫組織化學染色法檢視STAT3和p-STAT3的表現……………………………………………………………36 第四章 討論 (Discussion)…………………………………………………………….37 第一部份 以erlotinib增強PP2A活性作為新的抗非小細胞肺癌策略……………37 第一節 主要發現……………………………………………………………………...37 第二節 實驗涵義……………………………………………………………………...37 第三節 和先前臨床試驗的比較……………………………………………………...40 第四節 此研究侷限和進一步發展…………………………………………………...41 第五節 未來應用……………………………………………………………………...49 第二部份 以sorafenib及其結構衍生物顯示增強SHP-1活性來抑制p-STAT3訊息路徑為可行的抗癌方針………………………………………………………………51 第一節 主要發現……………………………………………………………………...51 第二節 實驗涵義……………………………………………………………………...51 第三節 和先前臨床試驗的比較……………………………………………………...53 第四節 此研究侷限和進一步發展…………………………………………………...54 第五節 未來應用……………………………………………………………………...58 第五章 未來展望 (Perspectives)及應用 (Application)……………………………...59 第六章 論文英文簡述………………………………………………………………...68 第七章 參考文獻……………………………………………………………………...98 第八章 圖表………………………………………………………………………….107 第九章 附錄………………………………………………………………………….131 | |
dc.language.iso | zh-TW | |
dc.title | 肺癌治療之嶄新方法:以磷酸酶為標的 | zh_TW |
dc.title | Targeting phosphatases as novel approach to anti-lung-cancer therapy | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 蕭崇瑋(Chung-Wai Shiau),劉俊人(Chun-Jen Liu),林恆毅(Hen-I Lin) | |
dc.subject.keyword | 肺癌,磷酸?, | zh_TW |
dc.subject.keyword | lung cancer,phosphatase,CIP2A,PP2A,AKT,SHP-1,STAT3, | en |
dc.relation.page | 131 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-03-24 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
顯示於系所單位: | 臨床醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 3.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。