請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54770
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭真祥(Jen-Shiang Kouh) | |
dc.contributor.author | Tsung-Yueh Lin | en |
dc.contributor.author | 林宗岳 | zh_TW |
dc.date.accessioned | 2021-06-16T03:38:11Z | - |
dc.date.available | 2016-06-14 | |
dc.date.copyright | 2015-06-14 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-03-31 | |
dc.identifier.citation | 1. ITTC. Report of Resistance Committee, p.64, 23rd International Towing Tank Conference, Venice, 2002.
2. ITTC Recommended Procedure. 1978 Performance Prediction Method, Procedure Number 7.5-02-03-01.4, 2002. 3. NPL. BTTP 1965 standard procedure for the prediction of Ship performance from model experiments, NPL Ship TM 82. March 1965. 4. ITTC Report of the specialist committee on wake fields. Proceedings of 25th ITTC, Vol. II, Fukuoka, 2008. 5. Bugalski T, Hoffmann P (2011), Numerical simulation of the self-propulsion model tests, Second International Symposium on Marine Propulsors, smp’11 6. Yusuke Tahara, Robert V. Wilson, Pablo M. Carrica, Frederick Stern (2006) RANS simulation of a container ship using a single-phase level-set method with overset grids and the prognosis for extension to a self-propulsion simulator, Journal of Marine Science and Technology, Vol. 11, pp.209-228 7. Anthony F. Molland, Stephen R. Turnock, Dominic A. Hudson (2011) Ship Resistance and Propulsion (1st edn). Cambridge University Press 8. Hughes, G. Friction and form resistance in turbulent flow and a proposed formulation for use in model and ship correlation. Transactions of the Royal Institution of Naval Architects, Vol. 96, 1954, pp. 314-376 9. Dawson C W (1977) A practical computer method for solving ship-wave problems, Proceedings of the 2nd International Conference on Numerical Ship Hydrodynamics, 30-38 10. H.C. Raven, A. van der Ploeg, A.R. Starke (2008) Towards a CFD-based prediction of ship performance – Progress in predicting full-scale resistance and scale effects, Int J Marit Eng, RINA Trans, 150 11. Kim Y (1992) Thrust deduction prediction for high speed combatant ship, David Taylor Research Center, Bethesda, Maryland 20084-5000 12. Herrmann Schlichting, Klaus Gersten (2000) Boundary Layer Theory (8th edn). Springer-Verlag Berlin Heidelberg 13. Robert W. Fox, Alan T. McDonald, Philip J. Pritchard (2003) Introduction to FLUID MECHANICS (6th edn). John Wiley & Sons, Inc. 14. Fred Stern, Robert V. Wilson, Hugh W. Coleman, Eric G. Paterson (1999) Verification and Validation of CFD Simulations, IIHR Report No. 407 15. Kume K, Ukon Y, Fujisawa J, Hori T, Tsukada T, Haruya T (2000) Uncertainty analysis for the KCS model tests in the SRI 400m towing tank, Ship Performance Division Report, No. 00-008-1 16. Fujisawa J, Ukon Y, Kume K, Haruya T (2000) Local Velocity Field Measurements around the KCS Model in the SRI 400m towing tank, Ship Performance Division Report, No. 00-003-2 17. A. Garcı́a-Gómez (2000) On the form factor scale effect, Ocean Engineering, Vol. 27, Issue 1, Jan. 2000, pp.97-109 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54770 | - |
dc.description.abstract | 船舶推進的流場中,船殼與螺槳的互動可視為勢流現象。本研究發展一帶有環流分佈的邊界元素法求解拉普拉斯方程,以計算船殼在螺槳作動下的阻力增量。根據Lagally定律可推導推減係數的尺度效應,是由於在模型和實船的跡流場速度不一樣所造成。推減係數的修正必需與文中所提出的平衡型自推試驗流程搭配,方可在不使用船殼摩擦修正項之下得到自推點。本文第二部分建立一套船舶推進試驗的數值模擬系統,結合計算流體力學、邊界元素法、以及船殼-螺槳互動求解模組,達成迅速且精確的模擬。此系統更進一步採用升力線理論及最佳環流分佈假設,使得在船型初步設計階段即能算得其推進性能。在此模擬系統架構下進行船型推進效率優化。文中以參數化方法建立等排水量的三階貝茲斷面積曲線,在保證達成曲線的平順度之下,以模式搜尋演算法找到五種斷面積的設計型態,並透過Lackenby船型變形方法及線性組合法研究參數與水動力之關係。在模擬30個船型後,導出最優效率前緣,並在此前緣上發現影響船殼效率的關鍵因子,以供未來在修改艉部線形的參考。在搭配重新設計的螺槳後,最優秀船型-螺槳組合的傳遞馬力可下降17.3%,但以拖曳阻力上升3.2%作為代價。此一結論顯示船艉線形設計必需在阻力以及效率之間做取捨。 | zh_TW |
dc.description.abstract | Based on the flow characteristics in ship propulsion, the interaction between ship hull and propeller is assumed to be inviscid in nature. A boundary element method (BEM) with circulation present is employed to solve the Laplace equation for the augmented resistance of the hull. The governing equation for wake interaction is built upon the stream surface contraction caused by the propeller’s induced velocity. According to the Lagally theorem, thrust deduction scaling originates from the scaling of the effective wake. The former is a potential-based interaction, while the latter is based on a viscous boundary layer basis. The scale correction of the thrust deduction factor works with the proposed balanced self-propulsion test procedure without using a skin friction corrector. An implementation of the self-propulsion framework integrates computational fluid dynamics method (CFD) and BEM methods but decouples the hull-propeller interaction solvers from them. This approach drastically reduces computation time, such that a propulsion simulation may be completed within minutes. The framework is validated for a moderate speed containership, and further extended by the lifting line method for faster hull performance analysis.
On the hull form design aspect, challenges of high efficiency ship designs have attracted much attention due to the requirement for reduction in NOx emission. Optimizations for the propulsive efficiency are feasible by utilizing the decoupled approach of propulsion simulation, and many combinatorial options from hull forms and propellers are accomplished without suffering long simulation times in CFD. A parametric hull form transformation model, based on the cubic Bezier curve formulation to keep displacement constant, is proposed. Thirty hull forms of five sectional area curve patterns are studied and an optimal set is found. Compromises between resistance, hull efficiency, and propeller efficiency exist along the optimal frontier, on which a design principle is derived. According to this principle, a successful modification of the tanker brings a reduction in delivered horse power by 17.3% due to a 23.7% decrease in thrust deduction, but with paying a price of a 3.2% increase in its towed resistance. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T03:38:11Z (GMT). No. of bitstreams: 1 ntu-104-F96525033-1.pdf: 4633609 bytes, checksum: 8f09843b52f0e1754eb0df5fcd1015b7 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 口試委員會審定書 ………….……………………….... I
中文摘要 ………………….…………………………... II 英文摘要 …………………………………………... III 目錄 …………………………...…………………...…. IV 圖目錄 ………………………..……………………... VII 表目錄 …………………………..…………….……… XI 符號表 ……………………………….……………… XII Chapter 1 Introduction …………………………..…………… 1 1.1 Background and Motivation ………………….………… 2 1.2 Review and Comment ……………………..…………… 2 1.2.1 Numerical Simulation ……………………….…… 2 1.2.2 Hull Form Optimization ………………..………… 3 1.2.3 Comments ………………………………...……… 5 1.3 Scope and Structure ……………………………….…… 7 Chapter 2 Theory ……………………………...……………… 9 2.1 Viscous Flow Formulation ……………………...……… 9 2.1.1 Components of Resistance ……………………… 10 2.1.2 Reynolds-averaged Navier-Stokes Equations ...… 13 2.1.3 Free-surface and Turbulence Treatments ……..… 15 2.2 Potential Flow Formulation ………………………….... 15 2.2.1 Hydrodynamics of Propeller …………………..... 15 2.2.2 Boundary Element Method ……………………... 16 2.2.3 Lifting Line Method …………………………….. 22 2.3 Hull-propeller Interaction …………………...………… 24 2.3.1 Effective Wake ………………………………..… 24 2.3.2 Thrust Deduction ………………………...……… 26 2.4 Summary …………………………………………….... 31 Chapter 3 Self-propulsion Test ………………...…………… 33 3.1 Balanced Propulsion Procedure ………………………. 33 3.2 Characteristics of Propulsive Factors …………………. 36 3.3 Thrust Deduction Scaling …………………………...… 40 Chapter 4 Implementation ………………..………………… 44 4.1 Numerical Propulsion Simulation …………………….. 44 4.2 Validation on Containership ………………………...… 48 4.3 Propulsive Efficiency of Tanker ………………………. 59 4.3.1 Standard Propulsion Test ………………………... 60 4.3.2 Full Ship Extrapolation …………………………. 66 4.3.3 Revisit Hull Efficiency ………………………….. 67 Chapter 5 Optimization …………………………………...… 73 5.1 Hull Form Transformation ……………………………. 73 5.2 Object Functions and Algorithm ……………………… 80 5.3 Parameter Study ………………………………………. 85 5.4 Optimal Designs ………………………………………. 97 Chapter 6 Conclusion ……………………………………..... 108 6.1 Conclusions ………………………………………….. 108 6.2 Future Works ……………………………………….... 110 Reference ………………………………………………….… 112 Appendix ………………………………………………….… 114 | |
dc.language.iso | en | |
dc.title | 大型船舶推減係數之精算及推進效率優化之研究 | zh_TW |
dc.title | Numerical Simulation of Thrust Deduction Factor and Hull Form Optimization for Propulsive Efficiency of Large Containership and Bulk Carrier | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 蔡進發(Jing-Fa Tsai),趙修武(Shiu-Wu Chau),辛敬業(Ching-Yeh Hsin),陳建宏(Jiahn-Horng Chen),邵揮洲(Heiu-Jou Shaw) | |
dc.subject.keyword | 推減係數,船殼效率,推進模擬,船型最佳化,計算流體力學, | zh_TW |
dc.subject.keyword | Thrust Deduction,Hull Efficiency,Propulsion Simulation,Hull Form Optimization,CFD, | en |
dc.relation.page | 121 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-03-31 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 4.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。