請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54767完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳君泰 | |
| dc.contributor.author | Wei-Yu Chen | en |
| dc.contributor.author | 陳薇聿 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:38:07Z | - |
| dc.date.available | 2020-04-01 | |
| dc.date.copyright | 2015-09-25 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-03-31 | |
| dc.identifier.citation | 1. Muller, P., et al., Identification of JAK/STAT signalling components by genome-wide RNA interference. Nature, 2005. 436(7052): p. 871-5. 2. Angers, S., et al., Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature, 2006. 443(7111): p. 590-3. 3. Jin, J., et al., A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol Cell, 2006. 23(5): p. 709-21. 4. Ozturk, N., et al., Ramshackle (Brwd3) promotes light-induced ubiquitylation of Drosophila Cryptochrome by DDB1-CUL4-ROC1 E3 ligase complex. Proc Natl Acad Sci U S A, 2013. 110(13): p. 4980-5. 5. Dhalluin, C., et al., Structure and ligand of a histone acetyltransferase bromodomain. Nature, 1999. 399(6735): p. 491-6. 6. D'Costa, A., et al., The Drosophila ramshackle gene encodes a chromatin-associated protein required for cell morphology in the developing eye. Mech Dev, 2006. 123(8): p. 591-604. 7. Kalla, C., et al., Translocation t(X;11)(q13;q23) in B-cell chronic lymphocytic leukemia disrupts two novel genes. Genes Chromosomes Cancer, 2005. 42(2): p. 128-43. 8. Field, M., et al., Mutations in the BRWD3 gene cause X-linked mental retardation associated with macrocephaly. Am J Hum Genet, 2007. 81(2): p. 367-74. 9. Tarpey, P.S., et al., Mutations in CUL4B, which encodes a ubiquitin E3 ligase subunit, cause an X-linked mental retardation syndrome associated with aggressive outbursts, seizures, relative macrocephaly, central obesity, hypogonadism, pes cavus, and tremor. Am J Hum Genet, 2007. 80(2): p. 345-52. 10. Leonard, H. and X. Wen, The epidemiology of mental retardation: challenges and opportunities in the new millennium. Ment Retard Dev Disabil Res Rev, 2002. 8(3): p. 117-34. 11. Patel, D.R., et al., Developmental disabilities across the lifespan. Dis Mon, 2010. 56(6): p. 304-97. 12. Gmitrowicz, A. and A. Kucharska, [Developmental disorders in the fourth edition of the American classification: diagnostic and statistical manual of mental disorders (DSM IV -- optional book)]. Psychiatr Pol, 1994. 28(5): p. 509-21. 13. Hou, J.W., T.R. Wang, and S.M. Chuang, An epidemiological and aetiological study of children with intellectual disability in Taiwan. J Intellect Disabil Res, 1998. 42 ( Pt 2): p. 137-43. 14. McLaren, J. and S.E. Bryson, Review of recent epidemiological studies of mental retardation: prevalence, associated disorders, and etiology. Am J Ment Retard, 1987. 92(3): p. 243-54. 15. Rauch, A., et al., Diagnostic yield of various genetic approaches in patients with unexplained developmental delay or mental retardation. Am J Med Genet A, 2006. 140(19): p. 2063-74. 16. Ropers, H.H. and B.C. Hamel, X-linked mental retardation. Nat Rev Genet, 2005. 6(1): p. 46-57. 17. Centers for Disease, C. and Prevention, Economic costs associated with mental retardation, cerebral palsy, hearing loss, and vision impairment--United States, 2003. MMWR Morb Mortal Wkly Rep, 2004. 53(3): p. 57-9. 18. Miller, D.T., et al., Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet, 2010. 86(5): p. 749-64. 19. Ren, H., et al., BAC-based PCR fragment microarray: high-resolution detection of chromosomal deletion and duplication breakpoints. Hum Mutat, 2005. 25(5): p. 476-82. 20. Cooper, G.M., et al., A copy number variation morbidity map of developmental delay. Nat Genet, 2011. 43(9): p. 838-46. 21. Vissers, L.E., et al., A de novo paradigm for mental retardation. Nat Genet, 2010. 42(12): p. 1109-12. 22. Willemsen, M.H., et al., Mutations in DYNC1H1 cause severe intellectual disability with neuronal migration defects. J Med Genet, 2012. 49(3): p. 179-83. 23. Gilissen, C., et al., Genome sequencing identifies major causes of severe intellectual disability. Nature, 2014. 511(7509): p. 344-7. 24. Verkerk, A.J., et al., Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell, 1991. 65(5): p. 905-14. 25. Christodoulou, J. and G. Ho, MECP2-Related Disorders, in GeneReviews(R), R.A. Pagon, et al., Editors. 1993: Seattle (WA). 26. Lubs, H.A., R.E. Stevenson, and C.E. Schwartz, Fragile X and X-linked intellectual disability: four decades of discovery. Am J Hum Genet, 2012. 90(4): p. 579-90. 27. Bolduc, F.V. and T. Tully, Fruit flies and intellectual disability. Fly (Austin), 2009. 3(1): p. 91-104. 28. Najmabadi, H., et al., Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature, 2011. 478(7367): p. 57-63. 29. Yuskaitis, C.J., E. Beurel, and R.S. Jope, Evidence of reactive astrocytes but not peripheral immune system activation in a mouse model of Fragile X syndrome. Biochim Biophys Acta, 2010. 1802(11): p. 1006-12. 30. Kleefstra, T., et al., The genetics of cognitive epigenetics. Neuropharmacology, 2014. 80: p. 83-94. 31. Bernstein, B.E., A. Meissner, and E.S. Lander, The mammalian epigenome. Cell, 2007. 128(4): p. 669-81. 32. Klein, C.J., et al., Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. Nat Genet, 2011. 43(6): p. 595-600. 33. Winkelmann, J., et al., Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy. Hum Mol Genet, 2012. 21(10): p. 2205-10. 34. Xu, G.L., et al., Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature, 1999. 402(6758): p. 187-91. 35. Kleefstra, T., et al., Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype. J Med Genet, 2009. 46(9): p. 598-606. 36. Kleefstra, T., et al., Disruption of an EHMT1-associated chromatin-modification module causes intellectual disability. Am J Hum Genet, 2012. 91(1): p. 73-82. 37. Gibson, W.T., et al., Mutations in EZH2 cause Weaver syndrome. Am J Hum Genet, 2012. 90(1): p. 110-8. 38. Kurotaki, N., et al., Haploinsufficiency of NSD1 causes Sotos syndrome. Nat Genet, 2002. 30(4): p. 365-6. 39. Petrij, F., et al., Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature, 1995. 376(6538): p. 348-51. 40. Voss, A.K. and T. Thomas, MYST family histone acetyltransferases take center stage in stem cells and development. Bioessays, 2009. 31(10): p. 1050-61. 41. Campeau, P.M., et al., The KAT6B-related disorders genitopatellar syndrome and Ohdo/SBBYS syndrome have distinct clinical features reflecting distinct molecular mechanisms. Hum Mutat, 2012. 33(11): p. 1520-5. 42. Williams, S.R., et al., Haploinsufficiency of HDAC4 causes brachydactyly mental retardation syndrome, with brachydactyly type E, developmental delays, and behavioral problems. Am J Hum Genet, 2010. 87(2): p. 219-28. 43. Tsurusaki, Y., et al., Mutations affecting components of the SWI/SNF complex cause Coffin-Siris syndrome. Nat Genet, 2012. 44(4): p. 376-8. 44. Vissers, L.E., et al., Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet, 2004. 36(9): p. 955-7. 45. Riviere, J.B., et al., De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome. Nat Genet, 2012. 44(4): p. 440-4, S1-2. 46. Hashimoto, S., et al., MED23 mutation links intellectual disability to dysregulation of immediate early gene expression. Science, 2011. 333(6046): p. 1161-3. 47. Deardorff, M.A., et al., RAD21 mutations cause a human cohesinopathy. Am J Hum Genet, 2012. 90(6): p. 1014-27. 48. Ye, X., et al., Defective S phase chromatin assembly causes DNA damage, activation of the S phase checkpoint, and S phase arrest. Mol Cell, 2003. 11(2): p. 341-51. 49. Myung, K., et al., Saccharomyces cerevisiae chromatin-assembly factors that act during DNA replication function in the maintenance of genome stability. Proc Natl Acad Sci U S A, 2003. 100(11): p. 6640-5. 50. Sanematsu, F., et al., Asf1 is required for viability and chromatin assembly during DNA replication in vertebrate cells. J Biol Chem, 2006. 281(19): p. 13817-27. 51. Groth, A., et al., Chromatin challenges during DNA replication and repair. Cell, 2007. 128(4): p. 721-33. 52. De Koning, L., et al., Histone chaperones: an escort network regulating histone traffic. Nat Struct Mol Biol, 2007. 14(11): p. 997-1007. 53. English, C.M., et al., Structural basis for the histone chaperone activity of Asf1. Cell, 2006. 127(3): p. 495-508. 54. Tyler, J.K., et al., The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature, 1999. 402(6761): p. 555-60. 55. Ray-Gallet, D., et al., Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity. Mol Cell, 2011. 44(6): p. 928-41. 56. Shibahara, K. and B. Stillman, Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell, 1999. 96(4): p. 575-585. 57. Sobel, R.E., et al., Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc Natl Acad Sci U S A, 1995. 92(4): p. 1237-41. 58. Li, Q., et al., Acetylation of histone H3 lysine 56 regulates replication-coupled nucleosome assembly. Cell, 2008. 134(2): p. 244-55. 59. Batta, K., et al., Genome-wide function of H2B ubiquitylation in promoter and genic regions. Genes Dev, 2011. 25(21): p. 2254-65. 60. Loyola, A., et al., The HP1alpha-CAF1-SetDB1-containing complex provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin. EMBO Rep, 2009. 10(7): p. 769-75. 61. Chuang, L.S., et al., Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science, 1997. 277(5334): p. 1996-2000. 62. Petesch, S.J. and J.T. Lis, Overcoming the nucleosome barrier during transcript elongation. Trends Genet, 2012. 28(6): p. 285-94. 63. Li, G., et al., Rapid spontaneous accessibility of nucleosomal DNA. Nat Struct Mol Biol, 2005. 12(1): p. 46-53. 64. Kulaeva, O.I., et al., Mechanism of transcription through a nucleosome by RNA polymerase II. Biochim Biophys Acta, 2013. 1829(1): p. 76-83. 65. Teves, S.S., C.M. Weber, and S. Henikoff, Transcribing through the nucleosome. Trends Biochem Sci, 2014. 39(12): p. 577-86. 66. Weber, C.M., S. Ramachandran, and S. Henikoff, Nucleosomes are context-specific, H2A.Z-modulated barriers to RNA polymerase. Mol Cell, 2014. 53(5): p. 819-30. 67. Lee, J.S., et al., Codependency of H2B monoubiquitination and nucleosome reassembly on Chd1. Genes Dev, 2012. 26(9): p. 914-9. 68. Zheng, S., et al., A highly conserved region within H2B is important for FACT to act on nucleosomes. Mol Cell Biol, 2014. 34(3): p. 303-14. 69. Schwartz, B.E. and K. Ahmad, Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes Dev, 2005. 19(7): p. 804-14. 70. Adam, S., S.E. Polo, and G. Almouzni, Transcription recovery after DNA damage requires chromatin priming by the H3.3 histone chaperone HIRA. Cell, 2013. 155(1): p. 94-106. 71. Sarai, N., et al., WHSC1 links transcription elongation to HIRA-mediated histone H3.3 deposition. EMBO J, 2013. 32(17): p. 2392-406. 72. Yen, K., V. Vinayachandran, and B.F. Pugh, SWR-C and INO80 chromatin remodelers recognize nucleosome-free regions near +1 nucleosomes. Cell, 2013. 154(6): p. 1246-56. 73. Wood, A., et al., The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p. J Biol Chem, 2003. 278(37): p. 34739-42. 74. Kim, J., M. Guermah, and R.G. Roeder, The human PAF1 complex acts in chromatin transcription elongation both independently and cooperatively with SII/TFIIS. Cell, 2010. 140(4): p. 491-503. 75. Green, C.M. and G. Almouzni, When repair meets chromatin. First in series on chromatin dynamics. EMBO Rep, 2002. 3(1): p. 28-33. 76. Xu, Y., et al., The p400 ATPase regulates nucleosome stability and chromatin ubiquitination during DNA repair. J Cell Biol, 2010. 191(1): p. 31-43. 77. Ruhl, D.D., et al., Purification of a human SRCAP complex that remodels chromatin by incorporating the histone variant H2A.Z into nucleosomes. Biochemistry, 2006. 45(17): p. 5671-7. 78. Papamichos-Chronakis, M., J.E. Krebs, and C.L. Peterson, Interplay between Ino80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage. Genes Dev, 2006. 20(17): p. 2437-49. 79. Kalocsay, M., N.J. Hiller, and S. Jentsch, Chromosome-wide Rad51 spreading and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break. Mol Cell, 2009. 33(3): p. 335-43. 80. Xu, Y., et al., Histone H2A.Z controls a critical chromatin remodeling step required for DNA double-strand break repair. Mol Cell, 2012. 48(5): p. 723-33. 81. Neumann, F.R., et al., Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination. Genes Dev, 2012. 26(4): p. 369-83. 82. Sinha, M., et al., Recombinational repair within heterochromatin requires ATP-dependent chromatin remodeling. Cell, 2009. 138(6): p. 1109-21. 83. Shroff, R., et al., Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. Curr Biol, 2004. 14(19): p. 1703-11. 84. Stucki, M., et al., MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell, 2005. 123(7): p. 1213-26. 85. Doil, C., et al., RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell, 2009. 136(3): p. 435-46. 86. Pei, H., et al., MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites. Nature, 2011. 470(7332): p. 124-8. 87. Heo, K., et al., FACT-mediated exchange of histone variant H2AX regulated by phosphorylation of H2AX and ADP-ribosylation of Spt16. Mol Cell, 2008. 30(1): p. 86-97. 88. Polo, S.E., D. Roche, and G. Almouzni, New histone incorporation marks sites of UV repair in human cells. Cell, 2006. 127(3): p. 481-93. 89. Kato, T., et al., Activation of Holliday junction recognizing protein involved in the chromosomal stability and immortality of cancer cells. Cancer Res, 2007. 67(18): p. 8544-53. 90. Maze, I., et al., Every amino acid matters: essential contributions of histone variants to mammalian development and disease. Nat Rev Genet, 2014. 15(4): p. 259-71. 91. Tagami, H., et al., Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell, 2004. 116(1): p. 51-61. 92. Hake, S.B. and C.D. Allis, Histone H3 variants and their potential role in indexing mammalian genomes: the 'H3 barcode hypothesis'. Proc Natl Acad Sci U S A, 2006. 103(17): p. 6428-35. 93. Ng, R.K. and J.B. Gurdon, Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription. Nat Cell Biol, 2008. 10(1): p. 102-9. 94. Banaszynski, L.A., et al., Hira-dependent histone H3.3 deposition facilitates PRC2 recruitment at developmental loci in ES cells. Cell, 2013. 155(1): p. 107-20. 95. Goldberg, A.D., et al., Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell, 2010. 140(5): p. 678-91. 96. Rai, T.S., et al., Human CABIN1 is a functional member of the human HIRA/UBN1/ASF1a histone H3.3 chaperone complex. Mol Cell Biol, 2011. 31(19): p. 4107-18. 97. Orsi, G.A., et al., Drosophila Yemanuclein and HIRA cooperate for de novo assembly of H3.3-containing nucleosomes in the male pronucleus. PLoS Genet, 2013. 9(2): p. e1003285. 98. Drane, P., et al., The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev, 2010. 24(12): p. 1253-65. 99. Sawatsubashi, S., et al., A histone chaperone, DEK, transcriptionally coactivates a nuclear receptor. Genes Dev, 2010. 24(2): p. 159-70. 100. Ahmad, K. and S. Henikoff, The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell, 2002. 9(6): p. 1191-200. 101. McKittrick, E., et al., Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc Natl Acad Sci U S A, 2004. 101(6): p. 1525-30. 102. Placek, B.J., et al., The histone variant H3.3 regulates gene expression during lytic infection with herpes simplex virus type 1. J Virol, 2009. 83(3): p. 1416-21. 103. Tamura, T., et al., Inducible deposition of the histone variant H3.3 in interferon-stimulated genes. J Biol Chem, 2009. 284(18): p. 12217-25. 104. Yang, J.H., et al., Myogenic transcriptional activation of MyoD mediated by replication-independent histone deposition. Proc Natl Acad Sci U S A, 2011. 108(1): p. 85-90. 105. Michod, D., et al., Calcium-dependent dephosphorylation of the histone chaperone DAXX regulates H3.3 loading and transcription upon neuronal activation. Neuron, 2012. 74(1): p. 122-35. 106. Cui, B., Y. Liu, and M.A. Gorovsky, Deposition and function of histone H3 variants in Tetrahymena thermophila. Mol Cell Biol, 2006. 26(20): p. 7719-30. 107. Sakai, A., et al., Transcriptional and developmental functions of the H3.3 histone variant in Drosophila. Curr Biol, 2009. 19(21): p. 1816-20. 108. Santenard, A., et al., Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat Cell Biol, 2010. 12(9): p. 853-62. 109. Frey, A., et al., Histone H3.3 is required to maintain replication fork progression after UV damage. Curr Biol, 2014. 24(18): p. 2195-201. 110. Lin, C.J., et al., Hira-mediated H3.3 incorporation is required for DNA replication and ribosomal RNA transcription in the mouse zygote. Dev Cell, 2014. 30(3): p. 268-79. 111. Jacob, Y., et al., Selective methylation of histone H3 variant H3.1 regulates heterochromatin replication. Science, 2014. 343(6176): p. 1249-53. 112. Wang, H., et al., Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol Cell, 2006. 22(3): p. 383-94. 113. Weissman, A.M., Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol, 2001. 2(3): p. 169-78. 114. Kravtsova-Ivantsiv, Y., T. Sommer, and A. Ciechanover, The lysine48-based polyubiquitin chain proteasomal signal: not a single child anymore. Angew Chem Int Ed Engl, 2013. 52(1): p. 192-8. 115. Wolf, D.H. and W. Hilt, The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. Biochim Biophys Acta, 2004. 1695(1-3): p. 19-31. 116. Soucy, T.A., et al., An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature, 2009. 458(7239): p. 732-6. 117. Deshaies, R.J. and C.A. Joazeiro, RING domain E3 ubiquitin ligases. Annu Rev Biochem, 2009. 78: p. 399-434. 118. Petroski, M.D. and R.J. Deshaies, Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol, 2005. 6(1): p. 9-20. 119. Liu, L., et al., CUL4A abrogation augments DNA damage response and protection against skin carcinogenesis. Mol Cell, 2009. 34(4): p. 451-60. 120. Ohtake, F., et al., Dioxin receptor is a ligand-dependent E3 ubiquitin ligase. Nature, 2007. 446(7135): p. 562-6. 121. Zou, Y., et al., Mutation in CUL4B, which encodes a member of cullin-RING ubiquitin ligase complex, causes X-linked mental retardation. Am J Hum Genet, 2007. 80(3): p. 561-6. 122. Liu, L., et al., Essential role of the CUL4B ubiquitin ligase in extra-embryonic tissue development during mouse embryogenesis. Cell Res, 2012. 22(8): p. 1258-69. 123. Nakagawa, T. and Y. Xiong, X-linked mental retardation gene CUL4B targets ubiquitylation of H3K4 methyltransferase component WDR5 and regulates neuronal gene expression. Mol Cell, 2011. 43(3): p. 381-91. 124. Kapetanaki, M.G., et al., The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites. Proc Natl Acad Sci U S A, 2006. 103(8): p. 2588-93. 125. Higa, L.A., et al., Involvement of CUL4 ubiquitin E3 ligases in regulating CDK inhibitors Dacapo/p27Kip1 and cyclin E degradation. Cell Cycle, 2006. 5(1): p. 71-7. 126. Bennett, E.J., et al., Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell, 2010. 143(6): p. 951-65. 127. Scrima, A., et al., Detecting UV-lesions in the genome: The modular CRL4 ubiquitin ligase does it best! FEBS Lett, 2011. 585(18): p. 2818-25. 128. Li, T., et al., Structure of DDB1 in complex with a paramyxovirus V protein: viral hijack of a propeller cluster in ubiquitin ligase. Cell, 2006. 124(1): p. 105-17. 129. Fischer, E.S., et al., The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation. Cell, 2011. 147(5): p. 1024-39. 130. Centore, R.C., et al., CRL4(Cdt2)-mediated destruction of the histone methyltransferase Set8 prevents premature chromatin compaction in S phase. Mol Cell, 2010. 40(1): p. 22-33. 131. Abbas, T., et al., CRL4(Cdt2) regulates cell proliferation and histone gene expression by targeting PR-Set7/Set8 for degradation. Mol Cell, 2010. 40(1): p. 9-21. 132. Badura-Stronka, M., et al., A novel nonsense mutation in CUL4B gene in three brothers with X-linked mental retardation syndrome. Clin Genet, 2010. 77(2): p. 141-4. 133. Isidor, B., et al., Deletion of the CUL4B gene in a boy with mental retardation, minor facial anomalies, short stature, hypogonadism, and ataxia. Am J Med Genet A, 2010. 152A(1): p. 175-80. 134. Davis, O.S., et al., A three-stage genome-wide association study of general cognitive ability: hunting the small effects. Behav Genet, 2010. 40(6): p. 759-67. 135. Han, J., et al., A Cul4 E3 ubiquitin ligase regulates histone hand-off during nucleosome assembly. Cell, 2013. 155(4): p. 817-29. 136. Blair, S.S., Engrailed expression in the anterior lineage compartment of the developing wing blade of Drosophila. Development, 1992. 115(1): p. 21-33. 137. Wang, W., et al., Knockdown of regulator of cullins-1 (ROC1) expression induces bladder cancer cell cycle arrest at the G2 phase and senescence. PLoS One, 2013. 8(5): p. e62734. 138. Lee, J. and P. Zhou, Cullins and cancer. Genes Cancer, 2010. 1(7): p. 690-9. 139. Sarikas, A., T. Hartmann, and Z.Q. Pan, The cullin protein family. Genome Biol, 2011. 12(4): p. 220. 140. Jackson, S. and Y. Xiong, CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem Sci, 2009. 34(11): p. 562-70. 141. Lee, J. and P. Zhou, DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol Cell, 2007. 26(6): p. 775-80. 142. Lin, H.C., et al., Cul4 and DDB1 regulate Orc2 localization, BrdU incorporation and Dup stability during gene amplification in Drosophila follicle cells. J Cell Sci, 2009. 122(Pt 14): p. 2393-401. 143. Phillips, R.G. and J.R. Whittle, wingless expression mediates determination of peripheral nervous system elements in late stages of Drosophila wing disc development. Development, 1993. 118(2): p. 427-38. 144. Diaz-Benjumea, F.J. and S.M. Cohen, Serrate signals through Notch to establish a Wingless-dependent organizer at the dorsal/ventral compartment boundary of the Drosophila wing. Development, 1995. 121(12): p. 4215-25. 145. Couso, J.P., S.A. Bishop, and A. Martinez Arias, The wingless signalling pathway and the patterning of the wing margin in Drosophila. Development, 1994. 120(3): p. 621-36. 146. Neumann, C.J. and S.M. Cohen, A hierarchy of cross-regulation involving Notch, wingless, vestigial and cut organizes the dorsal/ventral axis of the Drosophila wing. Development, 1996. 122(11): p. 3477-85. 147. Coulehan, J., Ramshackle lopsided research. Pharos Alpha Omega Alpha Honor Med Soc, 2006. 69(4): p. 24-9. 148. Baker, N.E., Molecular cloning of sequences from wingless, a segment polarity gene in Drosophila: the spatial distribution of a transcript in embryos. EMBO J, 1987. 6(6): p. 1765-73. 149. Freeman, M. and M. Bienz, EGF receptor/Rolled MAP kinase signalling protects cells against activated Armadillo in the Drosophila eye. EMBO Rep, 2001. 2(2): p. 157-62. 150. Nolo, R., L.A. Abbott, and H.J. Bellen, Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila. Cell, 2000. 102(3): p. 349-62. 151. Gorfinkiel, N., G. Morata, and I. Guerrero, The homeobox gene Distal-less induces ventral appendage development in Drosophila. Genes Dev, 1997. 11(17): p. 2259-71. 152. Baker, N.E., Transcription of the segment-polarity gene wingless in the imaginal discs of Drosophila, and the phenotype of a pupal-lethal wg mutation. Development, 1988. 102(3): p. 489-97. 153. He, Y.J., et al., DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases. Genes Dev, 2006. 20(21): p. 2949-54. 154. Higa, L.A., et al., CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat Cell Biol, 2006. 8(11): p. 1277-83. 155. Dai, Q. and H. Wang, 'Cullin 4 makes its mark on chromatin'. Cell Div, 2006. 1: p. 14. 156. Lu, G., et al., The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science, 2014. 343(6168): p. 305-9. 157. Raftery, L.A., et al., The relationship of decapentaplegic and engrailed expression in Drosophila imaginal disks: do these genes mark the anterior-posterior compartment boundary? Development, 1991. 113(1): p. 27-33. 158. Wang, L., et al., Hierarchical recruitment of polycomb group silencing complexes. Mol Cell, 2004. 14(5): p. 637-46. 159. Mujtaba, S., et al., Epigenetic transcriptional repression of cellular genes by a viral SET protein. Nat Cell Biol, 2008. 10(9): p. 1114-22. 160. Jin, Q., et al., Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J, 2011. 30(2): p. 249-62. 161. Blackman, R.K., et al., An extensive 3' cis-regulatory region directs the imaginal disk expression of decapentaplegic, a member of the TGF-beta family in Drosophila. Development, 1991. 111(3): p. 657-66. 162. Muller, H.J. and E. Altenburg, The Frequency of Translocations Produced by X-Rays in Drosophila. Genetics, 1930. 15(4): p. 283-311. 163. Jiang, J. and G. Struhl, Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature, 1998. 391(6666): p. 493-6. 164. Sahasrabuddhe, A.A., et al., Oncogenic Y641 mutations in EZH2 prevent Jak2/beta-TrCP-mediated degradation. Oncogene, 2014. 165. Schotta, G., et al., Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J, 2002. 21(5): p. 1121-31. 166. Lee, T. and L. Luo, Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci, 2001. 24(5): p. 251-4. 167. Kauffmann, R.C., et al., Ras1 signaling and transcriptional competence in the R7 cell of Drosophila. Genes Dev, 1996. 10(17): p. 2167-78. 168. Wolff, T. and D.F. Ready, The beginning of pattern formation in the Drosophila compound eye: the morphogenetic furrow and the second mitotic wave. Development, 1991. 113(3): p. 841-50. 169. Pappu, K.S. and G. Mardon, Genetic control of retinal specification and determination in Drosophila. Int J Dev Biol, 2004. 48(8-9): p. 913-24. 170. Mardon, G., N.M. Solomon, and G.M. Rubin, dachshund encodes a nuclear protein required for normal eye and leg development in Drosophila. Development, 1994. 120(12): p. 3473-86. 171. Bessa, J., et al., Combinatorial control of Drosophila eye development by eyeless, homothorax, and teashirt. Genes Dev, 2002. 16(18): p. 2415-27. 172. Kaufmann, W.E. and H.W. Moser, Dendritic anomalies in disorders associated with mental retardation. Cereb Cortex, 2000. 10(10): p. 981-91. 173. Hodl, M. and K. Basler, Transcription in the absence of histone H3.3. Curr Biol, 2009. 19(14): p. 1221-6. 174. Lewis, P.W., et al., Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci U S A, 2010. 107(32): p. 14075-80. 175. Bassett, A.R., et al., The chromatin remodelling factor dATRX is involved in heterochromatin formation. PLoS One, 2008. 3(5): p. e2099. 176. Mistry, H., et al., Cullin-3 regulates pattern formation, external sensory organ development and cell survival during Drosophila development. Mech Dev, 2004. 121(12): p. 1495-507. 177. Voigt, J. and N. Papalopulu, A dominant-negative form of the E3 ubiquitin ligase Cullin-1 disrupts the correct allocation of cell fate in the neural crest lineage. Development, 2006. 133(3): p. 559-68. 178. Hart, M., et al., The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Curr Biol, 1999. 9(4): p. 207-10. 179. Kimbrel, E.A. and A.L. Kung, The F-box protein beta-TrCp1/Fbw1a interacts with p300 to enhance beta-catenin transcriptional activity. J Biol Chem, 2009. 284(19): p. 13033-44. 180. Tucci, V., et al., Dominant beta-catenin mutations cause intellectual disability with recognizable syndromic features. J Clin Invest, 2014. 124(4): p. 1468-82. 181. Okerlund, N.D. and B.N. Cheyette, Synaptic Wnt signaling-a contributor to major psychiatric disorders? J Neurodev Disord, 2011. 3(2): p. 162-74. 182. Kuechler, A., et al., De novo mutations in beta-catenin (CTNNB1) appear to be a frequent cause of intellectual disability: expanding the mutational and clinical spectrum. Hum Genet, 2015. 134(1): p. 97-109. 183. Zhou, P. and P.M. Howley, Ubiquitination and degradation of the substrate recognition subunits of SCF ubiquitin-protein ligases. Mol Cell, 1998. 2(5): p. 571-80. 184. Wilkins, A., Q. Ping, and C.L. Carpenter, RhoBTB2 is a substrate of the mammalian Cul3 ubiquitin ligase complex. Genes Dev, 2004. 18(8): p. 856-61. 185. Fahrner, J.A. and H.T. Bjornsson, Mendelian disorders of the epigenetic machinery: tipping the balance of chromatin states. Annu Rev Genomics Hum Genet, 2014. 15: p. 269-93. 186. Alarcon, J.M., et al., Chromatin acetylation, memory, and LTP are impaired in CBP+/- mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron, 2004. 42(6): p. 947-59. 187. Gibbons, R.J., et al., Mutations in a putative global transcriptional regulator cause X-linked mental retardation with alpha-thalassemia (ATR-X syndrome). Cell, 1995. 80(6): p. 837-45. 188. Konev, A.Y., et al., CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science, 2007. 317(5841): p. 1087-90. 189. Loyola, A., et al., PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. Mol Cell, 2006. 24(2): p. 309-16. 190. Hake, S.B., et al., Expression patterns and post-translational modifications associated with mammalian histone H3 variants. J Biol Chem, 2006. 281(1): p. 559-68. 191. Jin, C., et al., H3.3/H2A.Z double variant-containing nucleosomes mark 'nucleosome-free regions' of active promoters and other regulatory regions. Nat Genet, 2009. 41(8): p. 941-5. 192. Chen, P., et al., H3.3 actively marks enhancers and primes gene transcription via opening higher-ordered chromatin. Genes Dev, 2013. 27(19): p. 2109-24. 193. Guo, R., et al., BS69/ZMYND11 reads and connects histone H3.3 lysine 36 trimethylation-decorated chromatin to regulated pre-mRNA processing. Mol Cell, 2014. 56(2): p. 298-310. 194. Wen, H., et al., ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression. Nature, 2014. 508(7495): p. 263-8. 195. Pina, B. and P. Suau, Changes in histones H2A and H3 variant composition in differentiating and mature rat brain cortical neurons. Dev Biol, 1987. 123(1): p. 51-8. 196. Schneiderman, J.I., et al., Nucleosome-depleted chromatin gaps recruit assembly factors for the H3.3 histone variant. Proc Natl Acad Sci U S A, 2012. 109(48): p. 19721-6. 197. Bush, K.M., et al., Endogenous mammalian histone H3.3 exhibits chromatin-related functions during development. Epigenetics Chromatin, 2013. 6(1): p. 7. 198. Kim, K., et al., Linker Histone H1.2 cooperates with Cul4A and PAF1 to drive H4K31 ubiquitylation-mediated transactivation. Cell Rep, 2013. 5(6) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54767 | - |
| dc.description.abstract | CRL4 E3 泛素連接酶參與許多不同的細胞行為,例如細胞週期、DNA修復反應、 染色體重建和細胞訊號傳導。但對其在神經系統的角色的了解仍很少。我們利用果蠅遺傳學篩選發現了CRL4泛素連接酶的受質接受者,dBRWD3,是人類造成智能障礙的致病基因BRWD3 的同源基因,與CRL4一同正向調控Wg signaling。基因剔除dBRWD3在基因學上會使顯性負向作用的Cullin4所造成Wg 缺失的翅膀邊緣缺角的表型更嚴重。Wg signaling 下游目標蛋白,Senseless 和 Distalless的表現需要dBRWD3。我們證明了與抑制轉錄有關的組蛋白修飾,像是H3K9 或H3K27甲基化的表現是需要dBRWD3。更進一步地,與促進轉錄有關的組蛋白修飾,像是H3K9、H3K27或 H3K56乙醯化的表現量,在dBRWD3 突變時會累積,表示dBRWD3 對轉錄可能是負向調控的角色。 透過遺傳學篩選找出和dBRWD3有關的調控者,我們找到組蛋白H3的變異型,組蛋白H3.3,和其分子伴侶HIRA/Yemanuclein (YEM) 複合體,都可以抑制dBRWD3 缺失所導致的rough eye 表型。在dBRWD3 突變時,累積的組蛋白H3.3 破壞基因表現、樹突形態和感覺器官的分化。將yem 或組蛋白 H3.3去活性後能顯著地抑制dBRWD3 突變所造成整體轉錄組的改變和許多發育上的缺陷。HIRA/ YEM複合體所負責的非依賴DNA複製能使組蛋白H3.3加入染色質的過程是一個 核小體替換的機制,對已不複製的神經細胞而言尤其重要。我們的發現指出dBRWD3負責調控轉錄背後的分子機制是透過抑制將組蛋白H3.3加入染色質的 HIRA/ YEM複合體。我們的資料暗示失控的組蛋白H3.3加入染色質會影響基因轉錄,意指dBRWD3 促進Wg signaling可能是透過負向調控組蛋白H3.3加入Wg signaling下游的目標基因上。 我們的工作建立了一個前所未知的對組蛋白H3.3負向調控的機制,此機制對基因表現是重要的,同時也進一步拓展了我們的對dBRWD3缺失所造成的智能障礙的認識。 | zh_TW |
| dc.description.abstract | Cullin RING E3 ligase 4 (CRL4) involves in different cellular processes such as cell cycle, DNA damage response, chromatin remodeling and signaling. Yet little is known about its neurological role. We use a Drosophila genetic screen to identify a substrate receptor of CRL4, dBRWD3, the Drosophila ortholog of the intellectual disability gene Bromodomain and WD40-repeat containing protein 3 (BRWD3), as a positive regulator for Wingless (Wg) signaling. Knockdown of dBRWD3 enhanced Wg-related wing margin notches caused by dominant negative Cullin4. dBRWD3 is required for expression of Wg downstream target, Senseless and Distalless. We identify dBRWD3 is essential for the levels of histone marks associated with transcriptional repressions such as H3K9 methylation or H3K27 methylaiton. Furthermore, the level of histone marks associated with transcriptional activation such as acetylation on H3K9, H3K27 or H3K56 are accumulated in dBRWD3 mutants, indicating dBRWD3 may be a negative regulator of transcription. Through a genetic screen searching for dBRWD3 modifier, we find histone H3 variant, histone H3.3, and its chaperone, HIRA/Yemanuclein (YEM) complex are suppressors in dBRWD3 depletion-induced rough eye phenotype. In dBRWD3 mutants, the increased H3.3 disrupts gene expression, dendritic morphogenesis, and sensory organ differentiation. Inactivation of yem or H3.3 remarkably suppresses the global transcriptome changes and various developmental defects caused by dBRWD3 mutations. Replication-independent deposition of histone H3.3 variant by the HIRA/YEM complex is a prominent nucleosome replacement mechanism affecting gene transcription, especially in postmitotic neurons. Our findings thus indicate that restricting histone H3.3 deposition through HIRA/YEM complex is the mechanism underlying dBRWD3-mediated transcription regulation. Our data suggest that uncontrolled deposition of H3.3 negatively affects gene transcription, implying that dBRWD3 promotes Wg signaling via negatively regulating the amount of histone H3.3 on Wg signaling target loci. Our work thus establishes a previously unknown negative regulation on H3.3 that is essential for gene expression and advances our understanding of BRWD3-dependent intellectual disability. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:38:07Z (GMT). No. of bitstreams: 1 ntu-104-D97448009-1.pdf: 15954306 bytes, checksum: f18e177b645285a7af87f2dbffd247e2 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | TABLE OF CONTENTS 口試委員審定書................................................................................................................i 誌謝...................................................................................................................................ii 中文摘要..........................................................................................................................iii 英文摘要..........................................................................................................................iv CHAPTER 1 INTRODUCTION 1.1 dBRWD3 and intellectual disability............................................................................1 1.1.1 Intellectual disability – an overview.....................................................................2 1.1.2 Intellectual disability – genetic analysis...............................................................4 1.1.3 Intellectual disability related to the epigenome....................................................6 1.2 The structure of chromatin...........................................................................................8 1.2.1 nucleosome and histone code theory....................................................................8 1.2.2 nucleosome in replication...................................................................................10 1.2.3 nucleosome in transcription................................................................................11 1.2.4 nucleosome in DNA repair..................................................................................13 1.3 The histone variant, the H3.3.....................................................................................16 1.3.1 The deposition of H3.3.......................................................................................16 1.3.2 H3.3 in transcription...........................................................................................17 1.3.3 H3.3 in replication..............................................................................................18 1.3.4 H3.3 in DNA repair.............................................................................................19 1.4 Ubiquitin proteasome system – an overview.............................................................19 1.4.1 Cullin Ring E3 ligases – an overview.................................................................20 1.4.2 Cullin 4 organized E3 CRL4..............................................................................21 1.4.3 DCAFs, substrate receptors for CRL4................................................................22 1.4.4 CRL4 and epigenetic regulation.........................................................................23 CHAPTER 2 RESULTS 2.1 Expression of dominant negative mutant of Cul4 in wing/eye discs........................25 2.2 Genetic screening for potential substrate receptors of Cul4 in wing/eye development....................................................................................................................27 2.3 The Wingless/Notch downstream targets genes are affected by knockdown of substrate receptors...........................................................................................................28 2.4 The histone tail modifications are changed in dBRWD3 mutants.............................31 2.5 Genetic screening for chromatin proteins related to dBRWD3 in eye......................32 2.6 Characterizations of dBRWD3 in photoreceptor differentiation...............................36 2.7 The transcriptome analyses of dBRWD3 mutant brains............................................38 2.8 Identification of H3.3 as a suppressor of dBRWD3...................................................39 2.9 dBRWD3 negatively regulates HIRA/YEM–mediated H3.3 deposition..................42 2.10 Inactivation of YEM suppresses lethality and aberrant gene expression caused by dBRWD3 mutation...........................................................................................................43 CHAPTER 3 DISCUSSION AND CONCLUSION....................................................46 MATERIALS AND METHODS..................................................................................57 FIGURES AND TABLES.............................................................................................63 Figure 1. The CRL4 is required for Wg signaling...........................................................63 Figure 2. The expression of Wg downstream targets are affected in dominant negative Cul4-expressing wing discs.............................................................................................65 Figure 3. dBRWD3 is a putative DCAF for Cul4-mediated regulation of Wg signaling.67 Figure 4. Knockdown of two enhancer DCAFs or one suppressor DCAF from genetic screen for Cul4-KR-notched wings does not affect the expression of Sens....................69 Figure 5. Knockdown of dBRWD3 but not other DCAFs such as CG9945, CG3909 or CG8440 affects the expression of Sens...........................................................................71 Figure 6. The reporter activity of Dll-lacZ, Wg downstream target, was not affected in knockdown of two DCAFs, CG3909 or CG9945...........................................................73 Figure 7. The reporter activity of Notch downstream target, E(spl)m8-lacZ, was slightly decreased but another Notch downstream target, Cut, was not altered in dominant negative Cul4-expressing wing discs...............................................................................75 Figure 8. The expression of Notch and Wg signaling downstream targets requires dBRWD3..........................................................................................................................77 Figure 9. dBRWD3 may regulate Wg signaling at the level downstream to Armadillo..79 Figure 10. dBRWD3 is required for expression levels of H3K9 di-, tri-methylation and H3K27 di-, tri-methylation..............................................................................................81 Figure 11. dBRWD3 is required for expression levels of H3K9, H3K27, H3K56, pan-H3 and pan-H4 acetylation....................................................................................................83 Figure 12. Genetic modifiers for dBRWD3-RNAi induced rough eye phenotype...........85 Figure 13. Slimb negatively regulates the levels of H3K9me3 via controlling the protein level of H3K9 methyltransferase, Su(var)3-9..................................................................87 Figure 14. dBRWD3 regulates the levels of H3K9me3 does not through controlling the protein level of slimb or Su(var)3-9................................................................................89 Figure 15. dBRWD3 is required for expressions of neuronal genes...............................91 Figure 16. dBRWD3 is required for the differentiation of photoreceptors......................93 Figure 17. slimb acts a suppressor for dBRWD3 in expression of neuronal genes..........95 Figure 18. Binding to DDB1 in CRL4 complex is essential for dBRWD3 in regulation of gene expression...........................................................................................................97 Figure 19. Dendritic morphogenesis and arista development in dBRWD3 depleted animals.............................................................................................................................99 Figure 20. dBRWD3 negatively regulates the amount of H3.3......................................101 Figure 21. dBRWD3 negatively regulates the chromatin-bound H3.3...........................103 Figure 22. dBRWD3 regulates gene expression by limiting H3.3 level on selective regions of chromatin......................................................................................................105 Figure 23. dBRWD3 regulates the development of nervous system through controlling H3.3 levels.....................................................................................................................107 Figure 24. HIRA/YEM rather than Dlp/XNP complex contributes to phenotypes in dBRWD3 knockdown eyes.............................................................................................109 Figure 25. dBRWD3 regulates H3.3 level in a HIRA/YEM dependent mechanism and dBRWD3 does not regulate protein levels of HIRA or YEM........................................111 Figure 26. dBRWD3 regulates neuronal genes through HIRA/YEM............................113 Figure 27. yem mutation suppresses nuclear migration and cytoskeleton defects in dBRWD3 mutant............................................................................................................115 REFERENCES............................................................................................................123 APPENDIX...................................................................................................................134 | |
| dc.language.iso | en | |
| dc.subject | 智能障礙 | zh_TW |
| dc.subject | 組蛋白 | zh_TW |
| dc.subject | BRWD3 | en |
| dc.subject | YEM | en |
| dc.subject | Intellectual Disability | en |
| dc.subject | Histone H3.3 | en |
| dc.subject | HIRA | en |
| dc.title | dBRWD3在果蠅發育上的分子機制 | zh_TW |
| dc.title | Molecular mechanism of dBRWD3 in Drosophila development | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 阮麗蓉,皮海薇,譚賢明,李秀香,潘俊良 | |
| dc.subject.keyword | 組蛋白,智能障礙, | zh_TW |
| dc.subject.keyword | BRWD3,HIRA,Histone H3.3,Intellectual Disability,YEM, | en |
| dc.relation.page | 141 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-03-31 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 15.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
