請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54755完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 管永恕(Yuan-Shu Kuan) | |
| dc.contributor.author | Bang-Chi Lin | en |
| dc.contributor.author | 林邦齊 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:37:53Z | - |
| dc.date.available | 2015-08-11 | |
| dc.date.copyright | 2015-08-11 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-04-14 | |
| dc.identifier.citation | Augustin, I., V. Goidts, A. Bongers, G. Kerr, G. Vollert, B. Radlwimmer, C. Hartmann, C. Herold-Mende, G. Reifenberger, A. von Deimling and M. Boutros (2012). 'The Wnt secretion protein Evi/Gpr177 promotes glioma tumourigenesis.' EMBO Mol Med 4(1): 38-51.
Augustin, I., J. Gross, D. Baumann, C. Korn, G. Kerr, T. Grigoryan, C. Mauch, W. Birchmeier and M. Boutros (2013). 'Loss of epidermal Evi/Wls results in a phenotype resembling psoriasiform dermatitis.' J Exp Med 210(9): 1761-1777. Banziger, C., D. Soldini, C. Schutt, P. Zipperlen, G. Hausmann and K. Basler (2006). 'Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells.' Cell 125(3): 509-522. Bartscherer, K., N. Pelte, D. Ingelfinger and M. Boutros (2006). 'Secretion of Wnt ligands requires Evi, a conserved transmembrane protein.' Cell 125(3): 523-533. Belenkaya, T. Y., Y. Wu, X. Tang, B. Zhou, L. Cheng, Y. V. Sharma, D. Yan, E. M. Selva and X. Lin (2008). 'The retromer complex influences Wnt secretion by recycling wntless from endosomes to the trans-Golgi network.' Dev Cell 14(1): 120-131. Blom, N., S. Gammeltoft and S. Brunak (1999). 'Sequence and structure-based prediction of eukaryotic protein phosphorylation sites.' J Mol Biol 294(5): 1351-1362. Bradley, R. S. and A. M. Brown (1990). 'The proto-oncogene int-1 encodes a secreted protein associated with the extracellular matrix.' EMBO J 9(5): 1569-1575. Chen, W., D. ten Berge, J. Brown, S. Ahn, L. A. Hu, W. E. Miller, M. G. Caron, L. S. Barak, R. Nusse and R. J. Lefkowitz (2003). 'Dishevelled 2 recruits beta-arrestin 2 to mediate Wnt5A-stimulated endocytosis of Frizzled 4.' Science 301(5638): 1391-1394. Ching-Hsu, Y. (2011). Investigating the molecular function of Wntless protein in zebrafish embryonic development. Master National Taiwan University. Ching, W., H. C. Hang and R. Nusse (2008). 'Lipid-independent secretion of a Drosophila Wnt protein.' J Biol Chem 283(25): 17092-17098. Ching, W. and R. Nusse (2006). 'A dedicated Wnt secretion factor.' Cell 125(3): 432-433. Clevers, H. and R. Nusse (2012). 'Wnt/beta-catenin signaling and disease.' Cell 149(6): 1192-1205. Coombs, G. S., J. Yu, C. A. Canning, C. A. Veltri, T. M. Covey, J. K. Cheong, V. Utomo, N. Banerjee, Z. H. Zhang, R. C. Jadulco, G. P. Concepcion, T. S. Bugni, M. K. Harper, I. Mihalek, C. M. Jones, C. M. Ireland and D. M. Virshup (2010). 'WLS-dependent secretion of WNT3A requires Ser209 acylation and vacuolar acidification.' J Cell Sci 123(Pt 19): 3357-3367. Coudreuse, D. and H. C. Korswagen (2007). 'The making of Wnt: new insights into Wnt maturation, sorting and secretion.' Development 134(1): 3-12. Coudreuse, D. Y., G. Roel, M. C. Betist, O. Destree and H. C. Korswagen (2006). 'Wnt gradient formation requires retromer function in Wnt-producing cells.' Science 312(5775): 921-924. Fu, J., M. Jiang, A. J. Mirando, H. M. Yu and W. Hsu (2009). 'Reciprocal regulation of Wnt and Gpr177/mouse Wntless is required for embryonic axis formation.' Proc Natl Acad Sci U S A 106(44): 18598-18603. Goodman, R. M., S. Thombre, Z. Firtina, D. Gray, D. Betts, J. Roebuck, E. P. Spana and E. M. Selva (2006). 'Sprinter: a novel transmembrane protein required for Wg secretion and signaling.' Development 133(24): 4901-4911. Gross, J. C., V. Chaudhary, K. Bartscherer and M. Boutros (2012). 'Active Wnt proteins are secreted on exosomes.' Nat Cell Biol 14(10): 1036-1045. Herr, P. and K. Basler (2012). 'Porcupine-mediated lipidation is required for Wnt recognition by Wls.' Dev Biol 361(2): 392-402. Jin, J., M. Morse, C. Frey, J. Petko and R. Levenson (2010). 'Expression of GPR177 (Wntless/Evi/Sprinter), a highly conserved Wnt-transport protein, in rat tissues, zebrafish embryos, and cultured human cells.' Dev Dyn 239(9): 2426-2434. Kennell, J. A., I. Gerin, O. A. MacDougald and K. M. Cadigan (2008). 'The microRNA miR-8 is a conserved negative regulator of Wnt signaling.' Proc Natl Acad Sci U S A 105(40): 15417-15422. Kikuchi, A., H. Yamamoto, A. Sato and S. Matsumoto (2011). 'New insights into the mechanism of Wnt signaling pathway activation.' Int Rev Cell Mol Biol 291: 21-71. Koles, K. and V. Budnik (2012). 'Exosomes go with the Wnt.' Cell Logist 2(3): 169-173. Komekado, H., H. Yamamoto, T. Chiba and A. Kikuchi (2007). 'Glycosylation and palmitoylation of Wnt-3a are coupled to produce an active form of Wnt-3a.' Genes Cells 12(4): 521-534. Korkut, C., B. Ataman, P. Ramachandran, J. Ashley, R. Barria, N. Gherbesi and V. Budnik (2009). 'Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless.' Cell 139(2): 393-404. Kurayoshi, M., H. Yamamoto, S. Izumi and A. Kikuchi (2007). 'Post-translational palmitoylation and glycosylation of Wnt-5a are necessary for its signalling.' Biochem J 402(3): 515-523. Logan, C. Y. and R. Nusse (2004). 'The Wnt signaling pathway in development and disease.' Annu Rev Cell Dev Biol 20: 781-810. Lorenowicz, M. J. and H. C. Korswagen (2009). 'Sailing with the Wnt: charting the Wnt processing and secretion route.' Exp Cell Res 315(16): 2683-2689. Lorenowicz, M. J., M. Macurkova, M. Harterink, T. C. Middelkoop, R. de Groot, M. C. Betist and H. C. Korswagen (2014). 'Inhibition of late endosomal maturation restores Wnt secretion in Caenorhabditis elegans vps-29 retromer mutants.' Cell Signal 26(1): 19-31. Mackenzie, K. R. (2006). 'Folding and stability of alpha-helical integral membrane proteins.' Chem Rev 106(5): 1931-1977. Mancias, J. D. and J. Goldberg (2005). 'Exiting the endoplasmic reticulum.' Traffic 6(4): 278-285. Martinez Arias, A. (2003). 'Wnts as morphogens? The view from the wing of Drosophila.' Nat Rev Mol Cell Biol 4(4): 321-325. Michaux, G. and R. Le Borgne (2009). '[Sorting, recycling and WNT signaling: Wntless and retromer functions].' Med Sci (Paris) 25(6-7): 617-621. Neumann, C. J. and S. M. Cohen (1997). 'Long-range action of Wingless organizes the dorsal-ventral axis of the Drosophila wing.' Development 124(4): 871-880. Niehrs, C. (2012). 'The complex world of WNT receptor signalling.' Nat Rev Mol Cell Biol 13(12): 767-779. Nufer, O., S. Guldbrandsen, M. Degen, F. Kappeler, J. P. Paccaud, K. Tani and H. P. Hauri (2002). 'Role of cytoplasmic C-terminal amino acids of membrane proteins in ER export.' J Cell Sci 115(Pt 3): 619-628. Pan, C. L., P. D. Baum, M. Gu, E. M. Jorgensen, S. G. Clark and G. Garriga (2008). 'C. elegans AP-2 and retromer control Wnt signaling by regulating mig-14/Wntless.' Dev Cell 14(1): 132-139. Port, F., M. Kuster, P. Herr, E. Furger, C. Banziger, G. Hausmann and K. Basler (2008). 'Wingless secretion promotes and requires retromer-dependent cycling of Wntless.' Nat Cell Biol 10(2): 178-185. Schier, A. F. and W. S. Talbot (2005). 'Molecular genetics of axis formation in zebrafish.' Annu Rev Genet 39: 561-613. Takada, R., Y. Satomi, T. Kurata, N. Ueno, S. Norioka, H. Kondoh, T. Takao and S. Takada (2006). 'Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion.' Dev Cell 11(6): 791-801. Thevenin, D. and T. Lazarova (2008). 'Stable interactions between the transmembrane domains of the adenosine A2A receptor.' Protein Sci 17(7): 1188-1199. Willert, K., J. D. Brown, E. Danenberg, A. W. Duncan, I. L. Weissman, T. Reya, J. R. Yates, 3rd and R. Nusse (2003). 'Wnt proteins are lipid-modified and can act as stem cell growth factors.' Nature 423(6938): 448-452. Willert, K. and R. Nusse (2012). 'Wnt proteins.' Cold Spring Harb Perspect Biol 4(9): a007864. Yang, P. T., M. J. Lorenowicz, M. Silhankova, D. Y. Coudreuse, M. C. Betist and H. C. Korswagen (2008). 'Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells.' Dev Cell 14(1): 140-147. Yu, J., J. Chia, C. A. Canning, C. M. Jones, F. A. Bard and D. M. Virshup (2014). 'WLS retrograde transport to the endoplasmic reticulum during Wnt secretion.' Dev Cell 29(3): 277-291. Zecca, M., K. Basler and G. Struhl (1996). 'Direct and long-range action of a wingless morphogen gradient.' Cell 87(5): 833-844. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54755 | - |
| dc.description.abstract | Wnt ligand是一個在多細胞生物中被廣泛使用之蛋白質訊息分子。Wnt所誘發的訊息傳遞路徑被廣泛使用在眾多生物現象之中,包含胚胎早期發育、幹細胞多型性維持和細胞癌化。對於Wnt訊息所引發之反應已有廣泛的研究,但關於Wnt如何被製造和如何自細胞釋放等的詳細資訊仍有所不足。Wntless蛋白被報導負責將Wnt由高基氏體運送至細胞膜的攜帶蛋白質,Wntless存在與否對於多數Wnt之分泌皆有重大影響。透過研究Wntless,我們即可從側面探索Wnt如何在細胞中被輸送和釋放。儘管數個Wntless的功能性區段已被報導,但Wntless羧基端區段在斑馬魚中所扮演之功能仍然尚未釐清。在本實驗室先前研究中推測Wntless的羧基端150個胺基酸殘基對於其功能扮演重要角色。而在本研究中,我進一步針對Wntless最末端49個胺基酸區塊設計切除版本,並且將受部分切除的mRNAs以顯微注射的方式使其表現在Wntless突變的斑馬魚胚胎中。實驗組中,表現末端缺乏的Wntless和單獨只有最末端兩種版本皆無法拯救wls突變之斑馬魚胚胎,據此我推測Wntless羧基端為其生物功能必須之區段。此外,我使用特定辨識羧基端之抗體來進行免疫螢光染色,發現單獨只剩羧基端的切除版本和切除中間第221至420胺基酸區段的Wntless之細胞內分布與全長的Wntless不同。據此我推測這兩個切除版本的切除區段皆為Wntless在細胞之中被正確運送所必須。 | zh_TW |
| dc.description.abstract | Wnt is a secreted ligand and involved in numerous cell-cell signaling processes, especially in embryo development and tissue homeostasis. Comparing to the understanding of the responding signaling in Wnt-receiving cells, the sorting and secretion of Wnt in Wnt-producing cell is less clear. Wntless (Wls, also known as Gpr177 in mammal) plays a crucial role in carrying Wnts from Golgi to plasma membrane. Although several important functional motifs of Wls have been identified, whether the carboxyl-terminal domain of Wls is functional in zebrafish embryonic development is unknown. I have evaluated the abilities of different truncated Wls proteins in rescuing the inner ear and jaw cartilage defects of wls mutants. I found that neither the carboxyl-terminal 49 amino acids deleted form nor the form containing only the carboxyl-terminal 49 a.a rescue the defects of wls mutants. These data indicate that the carboxyl terminal 49 amino acids are important for Wls function in modulating Wls-mediated development in zebrafish embryo. In addition, utilizing antibody against Wls carboxyl-terminal 49 amino acids, I found the subcellular location of the truncated Wls containing only the carboxyl-terminal 49 a.a or carrying a.a. 221-420 deletion is distinct from endogenous Wls. I suggest these deleted region are both required for Wls subcellular sorting. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:37:53Z (GMT). No. of bitstreams: 1 ntu-104-R01b46023-1.pdf: 2160890 bytes, checksum: 05d036ff3d9bef1d0dc10d5ee6f0a64c (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 中文摘要 vii
Abstract viii Chapter 1 Introduction 1 1.1 Wnt and Wnt signal pathway 1 1.2 Intracellular trafficking of Wnt and Wntless 2 1.3 Regulation of Wls 4 1.4 The C-terminal domain of Wls is important for its biological function in rescuing jaw cartilage and ear development 5 Chapter 2 Material and Methods 7 2.1 Primers design and PCR 7 2.2 Wls mutant fish 8 2.3 Jaw cartilage alcian blue staining 8 2.4 Quantification of Phenotypes 9 2.4.1 Jaw cartilage and fish standard length 9 2.4.2 Inner ear area 9 2.5 Capped mRNA in vitro transcription 10 2.6 Microinjection of fish egg 10 2.7 Yeast two-hybrid 11 2.8 Whole mount Immunohistochemistry of fish embryos 11 Chapter 3 Result 13 3.1 Inner ear size and jaw cartilage is chosen as a mutant phenotype indicator 13 3.2 Carboxyl-terminal domain deleted Wls failed to rescue loss-of-Wls phenotype. 14 3.3 Expression of truncated Wls is confirmed by anti-Wls antibody immunostaining 15 3.4 Interaction partner of Wls C-terminal domain is still waiting for further research 17 Chapter 4 Discussion 18 4.1 The carboxyl-terminal 49 amino acids are required for Wls function 18 4.2 The subcellular location of Wls 20 4.3 The reasons of failure in finding interaction protein in yeast two-hybrid screening 22 References 24 Table & Figures 29 | |
| dc.language.iso | en | |
| dc.subject | Wnt signaling | zh_TW |
| dc.subject | 斑馬魚 | zh_TW |
| dc.subject | Wntless | zh_TW |
| dc.subject | Wnt | zh_TW |
| dc.subject | Wntless | en |
| dc.subject | Zebrafish | en |
| dc.subject | Retromer | en |
| dc.subject | Wnt | en |
| dc.subject | Wnt signaling pathway | en |
| dc.title | Wntless蛋白之羧基端功能在斑馬魚胚胎發育扮演角色之探討 | zh_TW |
| dc.title | Investigating the in vivo role of Carboxyl-terminal Domain of Wntless protein in Zebrafish embryonic development | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡清華(Chin-Hwa Hu),黃銓珍(Chang-Jen Huang),黃聲蘋(Sheng-ping Hwang) | |
| dc.subject.keyword | 斑馬魚,Wntless,Wnt,Wnt signaling, | zh_TW |
| dc.subject.keyword | Wnt,Wnt signaling pathway,Wntless,Retromer,Zebrafish, | en |
| dc.relation.page | 42 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-04-14 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
