請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54732
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳明杰(Ming-Chieh Chen) | |
dc.contributor.author | Jing-Lun Huang | en |
dc.contributor.author | 黃敬倫 | zh_TW |
dc.date.accessioned | 2021-06-16T03:37:27Z | - |
dc.date.available | 2015-11-01 | |
dc.date.copyright | 2015-08-11 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-05-04 | |
dc.identifier.citation | 王亞男、江凱楹、陳子浩、劉興旺(2002)溪頭地區七種林相之地被物與土壤
物理化學性質調查。臺大實驗林研究報告16(1):37-44。 王亞男、林麗貞、張倍誠、黃憶汝、王介鼎(2011)溪頭自然教育園區經營管 理及遊客人數之初探。臺大實驗林研究報告25(3):181-191。 王玉傑(2005)森林植被對水文通量的影響研究綜述。水土保持研究12 (4):183-187。 吳文統(1994)溪頭柳杉人工林降雨截留之研究。國立臺灣大學森林學研究所 碩士論文。42頁。 何鎮平(1977)臺大實驗林溪頭人工林森林土壤性質之分析。國立臺灣大學森 林學研究所碩士論文。145頁。 周恒、江永哲(1964)降雨時不同樹種林分下幹流之測定(第二次報告)。臺灣 省立中興大學及中國農村復興聯合委員會合作試驗報告。 林志偉(2007)鴛鴦湖地區台灣扁柏老齡林及更新林穿落水量之研究。國立東 華大學自然資源管理研究所碩士論文。87頁。 林琚三(1976)台灣天然植生及人工造林之水分收支。中國農村復興聯合委員 會補助計畫。 林青蓉、陳信雄、陳明杰(1991)溪頭試驗集水區降水及溪流水質之研究。臺 大實驗林研究報告5(2):67-93。 林登秋、夏禹九、金恆鑣(1996)臺灣東北部天然闊葉林林內降雨及林冠截留 之研究。臺灣林業科學11(4):393-400。 邱永和(1972)柳杉及臺灣杉林分之降雨截留及其應用。國立臺灣大學森林學 研究所碩士論文。64頁。 金恆鑣、劉瓊霦、夏禹九、黃正良(2003)福山天然闊葉林生態系對降水水化 學的交互作用。臺灣林業科學18(4):363-373。 金佐蒔(2012)合歡山臺灣冷杉林截留作用之研究。臺灣大學森林環境暨資源 學研究所碩士論文。53頁。 徐碧治、林廣台譯(1995)Linsley, R. K., M. A. Kohler, and J. L. H. Paulhus著。水文學。高立圖書公司。583頁。 陳明杰 (1995) 福山森林生態系研究-哈盆溪上游集水區水文模式之?究 (三)。行政院國家科學委員會專題?究計劃成果報告。52頁。 陳子弘(2006)鴛鴦湖地區台灣扁柏森林幹流水量之估算。國立東華大學自然 資源管理研究所碩士論文。65頁。 陳怡妙(2010)溪頭地區柳杉林分塊狀皆伐對土壤養分動態的影響。國立中興 大學森林學系所碩士論文。78頁。 陳財輝、許博行、張峻德(1999)四湖海岸木麻黃林分降水、幹流水及穿落水 之養分含量與輸入。臺灣林業科學14(4):419-435。 陳紫蛾、張石角(1987)溪頭森林遊樂區之地質、地形及其發展史。臺大實驗 林研究報告1(1):63-76。 陳耀德(2003)鴛鴦湖森林生態系大氣養分輸入之探討。國立東華大學自然資 源管理研究所碩士論文。114頁。 許祐昇(2013)溪頭地區柳杉人工林降雨再分佈之研究。國立臺灣大學森林學 研究所碩士論文。80頁。 梁晏綾(2007)台灣中部溪頭地區混沉降與霧化學特性之研究。國立彰化師範 大學地理學研究所碩士論文。55頁。 張仲德、林登秋、薛美莉(2003)彰化市與台中市酸沉降之比較研究。臺大地 理學報33: 77-90。 張振生、王亞男、賴彥任、梁治文、許炳修、魏聰輝(2008)臺大實驗林溪頭 營林區夏季降雨之長期趨勢。臺大實驗林研究報告22(1):9-19。 黃正良、陳明杰、曹崇銘、廖學誠、黃志堅、傅昭憲(2012)蓮華池試驗集水 區杉木人工林及天然闊葉林水化學之比較研究。中華林學季刊45(1): 67-80。 黃昭豪(2007)台灣扁柏森林冠層間之雲霧化學及其沉降量估算。國立東華大 學自然資源管理研究所碩士論文。50頁。 潘家聲(1964)杉木林分對於降雨截留量之關係試驗。臺灣省林業試驗所報告 第94號。15頁。 潘家聲(1974)杉木不同疏伐度林分樹冠對於降雨截留量之關係試驗。臺灣省 林業試驗所試驗報告第255期。12頁。 劉儒淵、鍾年鈞、陳子英(1990)溪頭森林遊樂區之植物資源。林業叢刊67: 269-304。 劉瓊霦、許博行(1999)幹流和穿落水的水量及水質在三種林分的變化。林業 研究季刊21(2):51-59。 臺灣省農林廳林務局(1995)第三次臺灣森林資源及土地利用調查。臺灣省農 林廳林務局。258頁。 臺灣大學生物資源暨農學院實驗林管理處(2008)國立臺灣大學生物資源暨農 學院實驗林經營計畫:民國九十七年七月至民國一?七年六月。行政院農 業委員會林業特刊。206頁。 鄭森松、陳信佑(2009)國立臺灣大學生物資源暨農學院實驗林管理處六十五 年之氣象(1941-2005)。林業特刊第26號。91頁。 賴鴻寬(2002)塔塔加雲杉天然林林內降水之研究。國立臺灣大學森林學研究 所碩士論文。76頁。 賴彥任、魏聰輝、陳信雄、賴鴻寬(2007)塔塔加地區台灣雲杉天然林冠層截 留與林內降雨之研究。中華水土保持學報38(2):135-146。 薛美莉(2009)烏石坑地區18年生台灣杉人工林雨水之質量組成。特有生物研 究11(1):1-19。 謝?惠、簡振和、劉格非、馬家驎(2014)傾斗式雨量計檢校技術研發與系統 性誤差之修正。103年天氣分析與預報研討會。中央氣象局,台北市。 簡意婷(2008)棲蘭山樣區大氣沉降之5年研究。國立東華大學自然資源管理 研究所碩士論文。74頁。 魏聰輝、姚榮鼐、周瑞龍(1995)溪頭地區山谷風特性之研究。臺大實驗林研 究報告9(4):71-95。 魏聰輝(2009)塔塔加地區臺灣鐵杉天然林冠層截留量之研究。中華水土保持 學報40(1):105-111。 魏聰輝、賴彥任、張振生、沈介文、洪志遠、王亞男、陳明杰(2011)溪頭地 區霧分布特性初探。臺大實驗林研究報告25(2):149-160。 小松 光(2007)日本ソ針葉樹人工林ズれんペ立木密度シ遮断率ソ関係。日本 森林学会誌89(3):217-220。 生原喜久雄、相場芳憲(1982)Зヰ・ёвワ壮齢林小流域ズれんペ養分ソ循環 シガソ収支。日本林學會誌64(1):8-14。 田中延亮、蔵治光一郎、白木克繁、鈴木祐紀、鈴木雅一、太田猛彦、鈴木誠 (2005)袋山沢試験流域ソЗヰ・ёвワ壮齢林ズれんペ樹冠通過雨量、樹 幹流下、樹冠遮断量。東京大学農学部演習林報告113:197-239。 佐藤嘉展、大槻恭一、小川滋(2002)сЪдЁユ林ズれんペ年間樹冠遮断量 ソ推定。九州大学農学部演習林報告83:15-29。 佐藤嘉展、久米篤、大槻恭一、小川滋(2003)樹冠構造ソ違ゆゎ樹冠通過雨 ソ分布特性ズ及ニエ影響:Зヰ林シсЪдЁユ林ズれんペ樹冠通過雨特性 ソ比較。水文・水資源学会誌16(6):605-617。 服部重昭、近嵐弘栄、竹内信治(1982)ёвワ林ズれんペ樹冠遮断量測定シガ ソ微気象学的解析。林業試験場研究報告318:79-102。 塚本良則編(1992)森林水文学,現代ソ林学。文永堂出版株式会社。319 頁。 Aamlid, D. K., T. K. Venn, A. O. Atuanes, S. Solberg, G. Hylen, N.Christophersen and E. Framstad (2000) Change of forest health in Norwegian boreal forests during 15 years. Forest Ecology and Management 127: 103-118. Aboal, J. R., M. S. Jimenez, D. Morales and J. M. Hernandez (1999) Rainfall interception in laurel forest in the Canary Islands. Agricultural and Forest Meteorology 97: 73-86. Aboal, J. R., M. S. Jimenez, D. Morales and P. Gil (2000) Effects of thinning on throughfall in Canary Islands pine forest-the role of fog. Journal of Hydrology 238: 218-130. Aboal, J. R., M. S. Jimenez, D. Morales and J. M. Hernandez (2002) Net below canopy fluxes in Canarian laurel forest canopies. Journal of Hydrology 264: 201-212. Andre, F., M. Jonard and Q. Ponette (2008) Effects of biological and meteorological factors on stemflow chemistry within a temperate mixed oak-beech stand. Science of the Total Environment 393: 72-83. APHA (1995) Standard methods for the examination of water and wastewater, 19th. American Public Health Association. Washington, D.C. Asdak, C., P. G. Jarvis, P. van Gardingen and A. Fraser (1998) Rainfall interception loss in unlogged and logged forest areas of Central Kalimantan, Indonesia. Journal of Hydrology 206(3-4): 237-244. Balestrini, R. and A. Tagliaferri (2001) Atmospheric deposition and canopy exchange processes in alpine forest ecosystems (northern Italy). Atmospheric Environment 35: 6421-6433. Bridges, K. S., T. D. Jickells, T. D. Davies, Z. Zeman and I. Hunova (2002) Aerosol, precipitation and cloud water chemistry observations on the Czech Krusne Hory plateau adjacent to a heavily industrialized valley. Atmospheric Environment 36: 353-360. Chang, S. C., C. F. Yeh, M. J. Wu, Y. J. Hsia and J. T. Wu (2006) Quantifying fog water deposition by in situ exposure experiments in a mountainous coniferous forest in Taiwan. Forest Ecology and Management 224(1-2): 11-18. Crockford, R. H., and D. P. Richardson (1990) Partitioning of rainfall in a eucalypt forest and pine plantation in southeastern Australia: II stemflow and factors affecting stemflow in a dry sclerophyll eucalypt forest and a Pinus radiata plantation. Hydrological Processes 4: 145-155. Cronan, C. S. and W. A. Reiner (1983) Canopy processing of acidic precipitation by coniferous and hardwood forests in New England. Oecologia 59(2-3): 216-223. Deguchi, A., S. Hattori and H. Park (2006) The influence of seasonal changes in canopy structure on interception loss: Application of the revised Gash model. Journal of Hydrology 318(1-4): 80-102. Fenn, M. E. and J. W. Kiefer (1999) Throughfall deposition of nitrogen and sulfur in a Jeffrey pine forest in the San Gabriel Mountains, southern California. Environmental Pollution 104: 179-187. Galloway, J. N., G. E. Likens, W. C. Keene and J. M. Miller (1982) The composition of precipitation in remote areas of the world. Journal of Geophysical Research 87(11): 8771- 8786. Gomez-Peralta, D., S. F. Oberbauer, M. E. McClain and T. E. Philippi (2008) Rainfall and cloud-water interception in tropical montane forests in the eastern Andes of Central Peru. Forest Ecology and Management 255(3-4): 1315-1325. Hall, R. (2003) Interception loss as a function of rainfall and forest types: stochastic modelling for tropical canopies revisited. Journal of Hydrology 280(1-4): 1-12. Hansen, K. (1996) In-canopy throughfall measurements of ion fluxes in Norway spruce. Atmospheric Environment 30: 4065- 4076. Hsiao, H. M., T. C. Lin, J. L. Hwong, C. C. Huang and N. H. Lin (2007) Precipitation chemistry at the Lienhuachi experimental forest in central Taiwan. Taiwan Journal of Forestry Science 22(1): 1-13. Holwerda, F., F. N. Scatena and L. A. Bruijnzeel (2006) Throughfall in a Puerto Rican lower montane rain forest: A comparison of sampling strategies. Journal of Hydrology 327(3-4): 592-602. Horton, R. E. (1919) RAINFALL INTERCEPTION. MWRv 47(9): 603- 623. HouBao, F., H. Wei, M. Zhuang and W. Kosuke (1999) Acidity and chemistry of bulk precipitation, throughfall and stemflow in a Chinese fir plantation in Fujian, China. Forest Ecology and Management 122: 243-248. Igawa, M., T. Kase, K. Satake and H. Okochi (2002) Severe leaching of calcium ions from fir needles caused by acid fog. Environmental Pollution 119: 375-382. Johannes, A. H., Y. L. Chan, K. Dackson and T. Saleski (1986) Modeling of throughfall chemistry and indirect measurement of dry deposition. Water, Air and Soil Pollution 30: 211- 216. Johnson, D. W. (1992) Base cations. Pp. 223-340. In E. D. Johnson D. W. and S. E. Lindberg, eds. Atmospheric deposition and forest nutrient cycling. Springer-Verlag, New York. 609pp. Johnson, M. S., J. Lehmann (2006) Double-funneling of trees: Stemflow and root-induced preferential flow. Ecoscience: 13(3): 324-333. King, H. B., Y. J. Hsia, C. B. Liou, T. C. Lin, L. J. Wang, and J. L. Hwong (1994) Chemistry of Precipitation, Throughfall, Stemflow and Streamwater of Six Forest Sites in Taiwan. Pp. 355-362. In E. D. Peng, C. I. and C. H. Chou, eds. Biodiversity and Terrestrial Ecosystems Institute of Botany. Academia Sinica Monograph Series No. 14. 545pp. Krupa, S. V. (2002) Sampling and physico-chemical analysis of precipitation: a review. Environment Pollution 120: 565- 594. Komatsu, H., Y. Shinohara, T. Kume and K. Otsuki (2008) Relationship between annual rainfall and interception ratio for forests across Japan. Forest Ecology and Management 256(5): 1189-1197. Kuraji, K., Y. Tanaka, N. Tanaka and I. Karakama (2001) Generation of stemflow volume and chemistry in a mature Japanese cypress forest. Hydrological Processes 15: 1967- 1978. Levia, D. F. and E. E. Frost (2003). A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. Journal of Hydrology 274(1-4): 1-29. Levia, D. F., R. F. Keim, D. E. Carlyle-Moses and E. E. Frost (2011) Throughfall and Stemflow in Wooded Ecosystems. Pp. 425-443. In E. D. Levia, D.F., D. Carlyle-Moses and T. Tanaka, eds. Forest Hydrology and Biogeochemistry. Springer Netherlands. 740pp. Lian, Y. and Q. Zhang (1998) Conversion of natural broad- leafed evergreen forest into pure and mixed plantation forests in a subtropical area: Effects on nutrient cycling. Canadian Journal of Forestry Research 28: 1518- 1529. Livesley, S. J., B. Baudinette and D. Glover (2014) Rainfall interception and stem flow by eucalypt street trees - The impacts of canopy density and bark type. Urban Forestry & Urban Greening 13: 192-197. Marin, C. T., W. Bouten and J. Sevink, (2000) Gross rainfall and its partitioning into throughfall, stemflow and evaporation of intercepted water in four forest ecosystems in western Amazonia. Journal of Hydrology 237(1-2): 40-57. McJannet, D., J. Wallace and P. Reddell (2007) Precipitation interception in Australian tropical rainforests: II. Altitudinal gradients of cloud interception, stemflow, throughfall and interception. Hydrological Processes 21(13): 1703-1718. Miller, H. G. (1983) Studies of proton flux in forests and hearths in Scotland. Pp. 172-183. In E. D. Ulrich B. and J. Panksath, eds. Effects of accumulation of air pollutants in forest ecosystem. D. Reidel Publishing Company, USA. 389pp. Munoz-Villers L. E., F. Holwerda, M. Gomez-Cardenas, M. Equihua, H. Asbjornsen, L. A. Bruijnzeel, B. E. Marin- Castro and C. Tobon (2012) Water balances of old-growth and regenerating montane cloud forests in central Veracruz, Mexico. Journal of Hydrology 462-463: 53-66. Nanko, K., Y. Onda, A. Ito and H. Moriwaki (2011) Spatial variability of throughfall under a single tree: E Experimental study of rainfall amount, raindrops, and kinetic energy. Agricultural and Forest Meteorology 151: 1173-1182. Pedersen, L. B., K. Hansen, J. Billehaansen, M. Lober andM. F. Hovmand (1995) Throughfall and canopy buffer in three sitka spruce stands in Denmark. Water, Air and Soil Pollution 85: 1593-1598. Pypker, T. G., B. J. Bond, T. Link, D. Marks and M. Unsworth (2005) The importance of canopy structure in controlling the interception loss of rainfall: Examples from a young and an old-growth Douglas-fir forest. Agricultural and Forest Meteorology 130(1-2): 113-129. Pypker, T. G., M. H. Unsworth and B. J. Bond (2006a) The role of epiphytes in rainfall interception by forests in the Pacific Northwest. I. Laboratory measurements of water storage. Canadian Journal of Forest Research 36(4): 809-818. Pypker, T. G., M. H. Unsworth and B. J. Bond (2006b) The role of epiphytes in rainfall interception by forests in the Pacific Northwest. II. Field measurements at the branch and canopy scale. Canadian Journal of Forest Research 36(4): 819-832. Raper, D. W. and D. S. Lee (1996) Wet deposition at the sub-20 km scale in a rural upland area of England. Atmospheric Environment 30(8): 1193-1207. Reynolds, B., D. Fowler and S. Thomas (1996) Chemistry of cloud water at an upland site in mid-Wales. The Science of The Total Environment 188: 115-125. Rodrigo, A., A. Avila and F. Roda (2003) The chemistry of precipitation, throughfall and stemflow in two holm oak (Quercus ilex L.) forests under a contrasted pollution environment in NE Spain. The Science of Total Environment 305: 195-205. Rutter, A. J., K. A. Kershaw, P. C. Robins and A. J. Morton (1971) A predictive model of rainfall interception in forests, 1. Derivation of the model from observations in a plantation of Corsican pine. Agricultural Meteorology 9(0): 367-384. Schmid, S., R. Burkard, K. F. A. Frumau, C. Tobon, L. A. Bruijnzeel, R. Siegwolf and W. Eugster (2011) Using eddy covariance and stable isotope mass balance techniques to estimate fog water contributions to a Costa Rican cloud forest during the dry season. Hydrological Processes 25(3): 429-437. Seinfeld, J. H. and S. N. Pandis (2006) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley & Sons, New York. 1232pp. Stachurski, A. and K. A. Zimka (2002) Atmospheric deposition and ionic interactions within a beech canopy in the Karkonosze Mountains. Environmental Pollution 118(1): 75- 87. Staelens, J., A. De Schrijver, K. Verheyen and N. E. C. Verhoest (2008) Rainfall partitioning into throughfall, stemflow, and interception within a single beech (Fagus sylvatica L.) canopy: influence of foliation, rain event characteristics, and meteorology. Hydrological Processes 22(1): 33-45. Tanner, R. L. (1990) Sources of acids, bases, and their precursors in the atmosphere. Pp. 1-19. In E. D. Lindberg, S. E., A. L. Page and S. A. Norton, eds. Acidic Precipitation. Springer-Verlag, New York. 346pp. Thalmann, E., R. Burkard, T. Wrzesinsky, W. Eugster and O. Klemm (2002) Ion fluxes from fog and rain to an agricultural and a forest ecosystem in Europe. Atmospheric Research 64: 147-158. Tsao, T. M., Y. M. Chen, M. K. Wang (2011) Origin, separation and identification of environmental nanoparticles: a review. Journal of Environmental Monitoring 13: 1156-1163. Veneklaas, E. J. (1990) Nutrient fluxes in bulk precipitation and throughfall in two montane tropical rain forests, Colombia. Journal of Ecology 78: 974-992. Vuerich, E., C. Monesi, L. G. Lanza, L. Stagi and E. Lanzinger (2009) WMO Field Intercomparison of Rainfall Intensity Gagues. Instruments and Observing Method Report. 290pp. Weathers, K. C. (1999) The importance of cloud and fog in the maintenance of ecosystems. Trends in Ecology & Evolution 14(6): 214-215. Wellburn, A. (1988) Air pollution and acid rain: the biological impact. John Wiley & Sons, New York. 274pp. Zhang, J. E., J. Yu, Y. Ouyang and H. Xu (2014) Impact of Simulated Acid Rain on Trace Metals and Aluminum Leaching in Latosol from Guangdong Province, China. International Journal of Soil and Sediment Contamination 23: 725-735. 中央氣象局颱風資料庫網站:http://rdc11.cwb.gov.tw/TDB/ | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54732 | - |
dc.description.abstract | 本研究於臺灣大學實驗林溪頭營林區柳杉人工林進行穿落水、幹流等林內降雨觀測及推估樹冠截留量,並分析降雨、穿落水和幹流中的離子濃度與估算養分通量,觀測期間自2012年2月至2014年10月,每間隔約15日收集1次資料。扣除截留量小於0之資料,總降雨量為2,270.0 mm,穿落水量、幹流量及樹冠截留量分別為2,022.7 ± 48.0 mm、55.5 ± 1.9 mm、191.8 ± 4.1 mm,穿落水、幹流及樹冠截留百分比各為89.1%、2.5%及8.5%,由於研究對象柳杉林齡高、林分密度低,以及葉面積指數較低使其截留能力低。穿落水量(y)與降雨量(x)的線性迴歸式為y = 0.9664x - 4.0271,r2 = 0.99,顯示穿落水量隨降雨量增加而增加,二者間呈高度正相關,隨著降雨量增加,穿落水百分比大幅增加,當降雨量40 mm時穿落水百分比約80%,降雨量100 mm時穿落水百分比約90%,當降雨量達200 mm時穿落水百分比接近100%;幹流(y)與降雨量(x)的線性迴歸y = 0.0372x - 0.3111, r2 = 0.87。整體而言,幹流量隨降雨量增加而增加,但幹流百分比變動相當大,r2=0.37。發生幹流之降雨量門檻值為1.5 mm,截留飽和點約在3.9 mm左右。
降雨中濃度較高的陽離子使溪頭未有明顯酸雨情形(pH = 5.56), Ca2+為降雨、穿落水和幹流中濃度最高的離子,穿落水中的陽離子除了K+以外,其它陽離子濃度和降雨均無顯著差異;陰離子則都較降雨顯著減少,顯示柳杉樹冠層有緩衝酸性沉降的效果,由於陽離子增多、陰離子減少,使穿落水的pH值較降雨顯著提高(pH = 6.24),雖然幹流的陽、陰離子濃度特徵和穿落水相似,但可能因柳杉釋放其他物質的影響,使柳杉幹流呈偏酸性(pH = 4.29)。本研究中的溪頭柳杉人工林由於樹冠具有緩衝酸性沉降的效果,使林地之酸性沉降量(SO42和NO3-)減少。 | zh_TW |
dc.description.abstract | This study was conducted in the Cryptomeria japonica plantation located at Xitou tract, NTU Experimental Forest. The throughfall and stem flow were observed in the plantation and the canopy interception was calculated. Also, the ion gradients of precipitation, throughfall and stem flow were analyzed and thus calculated ion flux. This observation started from February 2012 to October 2014, data was collected about twice a month. The effective total rainfall was 2,270 ± 48.0 mm, throughfall was 2,022.7 ± 45.7 mm, stemflow was 55.5 ± 1.9 mm and interception was 191.8 ± 4.1 mm. The percentage of throughfall was 89.1%, stemflow was 2.5% and interception was 8.5%. The capacity of interception was low due to the low stem density of old stand and low LAI in study area. The linear regression equation between throughfall (y) and rainfall (x) was y = 0.9664x - 4.0271, r2 = 0.99, which indicated the amount of throughfall was highly positively related to rainfall. The percentage of throughfall also increased as rainfall increased, it was about 80% when the rainfall was 40 mm, 90% when the rainfall was 100 mm and close to 100% as the rainfall was 200 mm. The linear regression equation between stemflow (y) and rainfall (x) was y = 0.0372x - 0.3111, r2 = 0.87. The percentage of stemflow was also positively related to rainfall, however, the correlation was weaker (r2 = 0.37). The threshold of stemflow was 1.5 mm, and the saturation point of interception was about 3.9 mm.
Higher gradient of cation led to no events of acidic rain in Xitou (pH = 5.56). Ca2+ was the most ion gradient in throughfall, stemflow and rainfall, and there were no significant difference in gradient of cation between throughfall and rainfall except K+. The gradient of anion in throughfall was significantly lower than that in rainfall, showing the effect on canopy of Cryptomeria japonica to buffer acid deposition. Because of more cation and less anion, the pH of throughfall was significantly higher than rainfall (pH = 6.24). Although the characters of ion gradient was similar to throughfall, the pH of stemflow was lower (pH = 4.29), which may be affected by other substance released from tree. Because of the canopy of Cryptomeria japonica in this study had capacity to buffer acid deposition, the acidic depositions (SO42- and NO3-) was fewer. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T03:37:27Z (GMT). No. of bitstreams: 1 ntu-104-R01625025-1.pdf: 2739989 bytes, checksum: 8c21b3b80fbab8a146569cea92887c20 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 中文摘要 I
ABSTRACT II 目錄 III 圖目錄 V 表目錄 VI 第一章 前言 1 第二章 文獻回顧 3 第一節 林內降雨與截留 3 第二節 降水化學 10 第三章 研究材料與方法 14 第一節 研究區域概況 14 第二節 樣區設置 16 第三節 資料收集與分析 22 一、林外降雨 22 二、穿落水 22 三、幹流 25 四、樹冠截留量 27 五、水樣分析 27 六、離子濃度及養分通量計算 28 第四章 結果與討論 30 第一節 林內外降雨量 30 一、降雨量 30 二、穿落水量 33 三、幹流量 37 四、樹冠截留量 43 第二節 水化學 49 一、離子濃度 49 二、養分通量 57 第五章 結論 61 參考文獻 63 附錄 72 | |
dc.language.iso | zh-TW | |
dc.title | 溪頭地區柳杉人工林林內降雨及其水化學之研究 | zh_TW |
dc.title | Rainfall Interception and its Chemical Composition in a Cryptomeria japonica Plantation at Xitou area | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林登秋(Teng-Chiu Lin),王立志(Lih-Jih Wang),廖學誠(Shyue-Cherng Liaw) | |
dc.subject.keyword | 柳杉人工林,樹冠截留,穿落水,幹流,陽離子,離子通量, | zh_TW |
dc.subject.keyword | Canopy interception,Cation,Cryptomaria japonica plantation,Ion flux,Stem flow,Throughfall, | en |
dc.relation.page | 74 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-05-05 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
顯示於系所單位: | 森林環境暨資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 2.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。