請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54718完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張培仁(Pei-Zen Chang),施文彬(Wen-Pin Shih) | |
| dc.contributor.author | Chien-Chun Chen | en |
| dc.contributor.author | 陳建君 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:37:13Z | - |
| dc.date.available | 2015-08-11 | |
| dc.date.copyright | 2015-08-11 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-05-12 | |
| dc.identifier.citation | [1] S. Ashley, 'Artificial muscles,' Scientific American, vol. 289, pp. 52-59, 2003.
[2] E. Detsi, M. S. Selles, P. R. Onck, and J. T. M. De Hosson, 'Nanoporous silver as electrochemical actuator,' Scripta Materialia, vol. 69, pp. 195-198, 2013. [3] E. Detsi, Z. Chen, W. Vellinga, P. Onck, and J. De Hosson, 'Actuating and sensing properties of nanoporous gold,' Journal of nanoscience and nanotechnology, vol. 12, pp. 4951-4955, 2012. [4] E. Detsi, P. Onck, and J. T. M. De Hosson, 'Metallic muscles at work: high rate actuation in nanoporous gold/polyaniline composites,' ACS nano, vol. 7, pp. 4299-4306, 2013. [5] E. Detsi, P. Onck, and J. T. M. De Hosson, 'Electrochromic artificial muscles based on nanoporous metal-polymer composites,' Applied Physics Letters, vol. 103, p. 193101, 2013. [6] C. S. Haines, M. D. Lima, N. Li, G. M. Spinks, J. Foroughi, J. D. Madden, et al., 'Artificial muscles from fishing line and sewing thread,' science, vol. 343, pp. 868-872, 2014. [7] K. F. Harsh, B. Su, W. Zhang, V. M. Bright, and Y. Lee, 'The realization and design considerations of a flip-chip integrated MEMS tunable capacitor,' Sensors and Actuators A: Physical, vol. 80, pp. 108-118, 2000. [8] D. Yan, A. Khajepour, and R. Mansour, 'Design and modeling of a MEMS bidirectional vertical thermal actuator,' Journal of Micromechanics and Microengineering, vol. 14, p. 841, 2004. [9] M. Kurita, T. Yamazaki, H. Kohira, M. Matsumoto, R. Tsuchiyama, J. Xu, et al., 'An active-head slider with a piezoelectric actuator for controlling flying height,' Magnetics, IEEE Transactions on, vol. 38, pp. 2102-2104, 2002. [10] D. Sasaki, 'Development of pneumatic soft robot hand for a human friendly robot,' J. Robotics and Mechatronics, vol. 15, pp. 534-541, 2003. [11] S.-k. Ahn, R. M. Kasi, S.-C. Kim, N. Sharma, and Y. Zhou, 'Stimuli-responsive polymer gels,' Soft Matter, vol. 4, pp. 1151-1157, 2008. [12] R. Shankar, T. K. Ghosh, and R. J. Spontak, 'Dielectric elastomers as next-generation polymeric actuators,' Soft Matter, vol. 3, pp. 1116-1129, 2007. [13] R. Baughman, 'Conducting polymer artificial muscles,' Synthetic metals, vol. 78, pp. 339-353, 1996. [14] J. W. Paquette and K. J. Kim, 'Ionomeric electroactive polymer artificial muscle for naval applications,' Oceanic Engineering, IEEE Journal of, vol. 29, pp. 729-737, 2004. [15] C. Liu, H. Qin, and P. Mather, 'Review of progress in shape-memory polymers,' Journal of Materials Chemistry, vol. 17, pp. 1543-1558, 2007. [16] R. H. Baughman, C. Cui, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, et al., 'Carbon nanotube actuators,' Science, vol. 284, pp. 1340-1344, 1999. [17] G. Kofod, 'Dielectric elastomer actuators,' The Technical University of Denmark, Ph. D. thesis, 2001. [18] R. E. Pelrine, R. D. Kornbluh, and J. P. Joseph, 'Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation,' Sensors and Actuators A: Physical, vol. 64, pp. 77-85, 1998. [19] Z. Pei, Y. Yang, Q. Chen, E. M. Terentjev, Y. Wei, and Y. Ji, 'Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds,' Nature materials, 2013. [20] M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, 'Fast liquid-crystal elastomer swims into the dark,' Nature materials, vol. 3, pp. 307-310, 2004. [21] S. Hara, T. Zama, W. Takashima, and K. Kaneto, 'Artificial muscles based on polypyrrole actuators with large strain and stress induced electrically,' Polymer journal, vol. 36, pp. 151-161, 2004. [22] M. Shahinpoor, Y. Bar-Cohen, J. Simpson, and J. Smith, 'Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles-a review,' Smart materials and structures, vol. 7, p. R15, 1998. [23] B. Ewen and D. Richter, 'Neutron spin echo investigations on the segmental dynamics of polymers in melts, networks and solutions,' in Neutron Spin Echo Spectroscopy Viscoelasticity Rheology, ed: Springer, 1997, pp. 1-129. [24] S. Hirai, P. Cusin, H. Tanigawa, T. Masui, S. Konishi, and S. Kawamura, 'Qualitative synthesis of deformable cylindrical actuators through constraint topology,' in Intelligent Robots and Systems, 2000.(IROS 2000). Proceedings. 2000 IEEE/RSJ International Conference on, 2000, pp. 197-202. [25] H. Choi, S. Ryew, K. M. Jung, H. Kim, J. W. Jeon, J. Nam, et al., 'Soft actuator for robotic applications based on dielectric elastomer: dynamic analysis and applications,' in Robotics and Automation, 2002. Proceedings. ICRA'02. IEEE International Conference on, 2002, pp. 3218-3223. [26] F. Ilievski, A. D. Mazzeo, R. F. Shepherd, X. Chen, and G. M. Whitesides, 'Soft robotics for chemists,' Angewandte Chemie, vol. 123, pp. 1930-1935, 2011. [27] P. Sommer-Larsen, J. C. Hooker, G. Kofod, K. West, M. Benslimane, and P. Gravesen, 'Response of dielectric elastomer actuators,' in SPIE's 8th Annual International Symposium on Smart Structures and Materials, 2001, pp. 157-163. [28] J. Li, M. P. Brenner, J. H. Lang, A. H. Slocum, and R. Struempler, 'DRIE-fabricated curved-electrode zipping actuators with low pull-in voltage,' in TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, 12th International Conference on, 2003, 2003, pp. 480-483. [29] M. Shikida, K. Sato, and T. Harada, 'Micromachined S-shaped actuator,' in Micro Machine and Human Science, 1995. MHS'95., Proceedings of the Sixth International Symposium on, 1995, pp. 167-172. [30] M. Yamaguchi, S. Kawamura, K. Minami, and M. Esashi, 'Distributed electrostatic micro actuator,' in Micro Electro Mechanical Systems, 1993, MEMS'93, Proceedings An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems. IEEE., 1993, pp. 18-23. [31] R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, 'High-speed electrically actuated elastomers with strain greater than 100%,' Science, vol. 287, pp. 836-839, 2000. [32] H. Choi, S. Ryew, K. M. Jung, H. Kim, J. W. Jeon, J. Nam, et al., 'Soft actuator for robotic applications based on dielectric elastomer: quasi-static analysis,' in Robotics and Automation, 2002. Proceedings. ICRA'02. IEEE International Conference on, 2002, pp. 3212-3217. [33] R. Kornbluh, R. Pelrine, J. Eckerle, and J. Joseph, 'Electrostrictive polymer artificial muscle actuators,' in Robotics and Automation, 1998. Proceedings. 1998 IEEE International Conference on, 1998, pp. 2147-2154. [34] A. Wingert, M. D. Lichter, S. Dubowsky, and M. Hafez, 'Hyper-redundant robot manipulators actuated by optimized binary-dielectric polymers,' in SPIE's 9th Annual International Symposium on Smart Structures and Materials, 2002, pp. 415-423. [35] F. Carpi, C. Salaris, and D. De Rossi, 'Folded dielectric elastomer actuators,' Smart Materials and Structures, vol. 16, p. S300, 2007. [36] P. Brochu and Q. Pei, 'Advances in dielectric elastomers for actuators and artificial muscles,' Macromolecular rapid communications, vol. 31, pp. 10-36, 2010. [37] S.-C. Lin, W.-P. Shih, and P.-Z. Chang, 'Microstructural dielectric elastomer actuator with uniaxial in-plane contraction,' Journal of Intelligent Material Systems and Structures, vol. 24, pp. 347-356, 2013. [38] K. Wise, 'Integrated sensors: interfacing electronics to a non-electronic world,' Sensors and Actuators, vol. 2, pp. 229-237, 1982. [39] R. Johansson and G. Westling, 'Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects,' Experimental Brain Research, vol. 56, pp. 550-564, 1984. [40] L. D. Harmon, 'Automated tactile sensing,' The International Journal of Robotics Research, vol. 1, pp. 3-32, 1982. [41] W. D. Hillis, 'A high-resolution imaging touch sensor,' The International Journal of Robotics Research, vol. 1, pp. 33-44, 1982. [42] M. Raibert, 'An all digital VLSI tactile array sensor,' in Robotics and Automation. Proceedings. 1984 IEEE International Conference on, 1984, pp. 314-319. [43] R. Boie, 'Capacitive impedance readout tactile image sensor,' in Robotics and Automation. Proceedings. 1984 IEEE International Conference on, 1984, pp. 370-378. [44] K. Yamada, M. Nishihara, R. Kanzawa, and R. Kobayashi, 'A piezoresistive integrated pressure sensor,' Sensors and Actuators, vol. 4, pp. 63-69, 1983. [45] Y.-C. Liu, C.-M. Sun, L.-Y. Lin, M.-H. Tsai, and W. Fang, 'Development of a CMOS-based capacitive tactile sensor with adjustable sensing range and sensitivity using polymer fill-in,' Microelectromechanical Systems, Journal of, vol. 20, pp. 119-127, 2011. [46] S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, et al., 'Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,' Nature materials, vol. 9, pp. 859-864, 2010. [47] E. So, H. Zhang, and Y.-s. Guan, 'Sensing contact with analog resistive technology,' in Systems, Man, and Cybernetics, 1999. IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on, 1999, pp. 806-811. [48] M. Shimojo, A. Namiki, M. Ishikawa, R. Makino, and K. Mabuchi, 'A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method,' Sensors Journal, IEEE, vol. 4, pp. 589-596, 2004. [49] B. J. Kane, M. R. Cutkosky, and G. T. Kovacs, 'A traction stress sensor array for use in high-resolution robotic tactile imaging,' Microelectromechanical Systems, Journal of, vol. 9, pp. 425-434, 2000. [50] J. Dargahi, M. Kahrizi, N. P. Rao, and S. Sokhanvar, 'Design and microfabrication of a hybrid piezoelectric-capacitive tactile sensor,' Sensor Review, vol. 26, pp. 186-192, 2006. [51] H.-K. Lee, S.-I. Chang, and E. Yoon, 'A flexible polymer tactile sensor: fabrication and modular expandability for large area deployment,' Microelectromechanical Systems, Journal of, vol. 15, pp. 1681-1686, 2006. [52] J.-M. Huang and K. Wise, 'A monolithic pressure-pH sensor for esophageal studies,' in Electron Devices Meeting, 1982 International, 1982, pp. 316-319. [53] M. Cheng, X. Huang, C. Ma, and Y. Yang, 'A flexible capacitive tactile sensing array with floating electrodes,' Journal of Micromechanics and Microengineering, vol. 19, p. 115001, 2009. [54] G. Kofod, 'Dielectric elastomer actuators,' Chemistry, 2001. [55] J.-T. Feng and Y.-P. Zhao, 'Experimental observation of electrical instability of droplets on dielectric layer,' Journal of Physics D: Applied Physics, vol. 41, p. 052004, 2008. [56] A. Ng, M. L. Parker, A. J. Parr, P. K. Saunders, A. C. Smith, and K. W. Waldron, 'Physicochemical characteristics of onion (Allium cepa L.) tissues,' Journal of agricultural and food chemistry, vol. 48, pp. 5612-5617, 2000. [57] E. Asahina, 'The freezing process of plant cell,' Contributions from the Institute of Low Temperature Science, vol. 10, pp. 83-126, 1956. [58] C. E. Wyman, S. R. Decker, M. E. Himmel, J. W. Brady, C. E. Skopec, and L. Viikari, 'Hydrolysis of cellulose and hemicellulose,' Polysaccharides: Structural diversity and functional versatility, vol. 1, pp. 1023-1062, 2005. [59] S. Kerstens, W. F. Decraemer, and J.-P. Verbelen, 'Cell walls at the plant surface behave mechanically like fiber-reinforced composite materials,' Plant Physiology, vol. 127, pp. 381-385, 2001. [60] A. T. Mankarios, M. A. Hall, M. C. Jarvis, D. R. Threlfall, and J. Friend, 'Cell wall polysaccharides from onions,' Phytochemistry, vol. 19, pp. 1731-1733, 1980. [61] U. Tamburini, 'Alkaline degradation of wood: Effects on Young's modulus,' Wood Science and Technology, vol. 4, pp. 284-291, 1970/12/01 1970. [62] M. Chen, L. Xia, and P. Xue, 'Enzymatic hydrolysis of corncob and ethanol production from cellulosic hydrolysate,' International Biodeterioration & Biodegradation, vol. 59, pp. 85-89, 2007. [63] M. DuBois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, 'Colorimetric Method for Determination of Sugars and Related Substances,' Analytical Chemistry, vol. 28, pp. 350-356, 1956/03/01 1956. [64] M. Dubois, K. A. Gilles, J. K. Hamilton, P. t. Rebers, and F. Smith, 'Colorimetric method for determination of sugars and related substances,' Analytical chemistry, vol. 28, pp. 350-356, 1956. [65] H. Zhao, J. H. Kwak, Z. Conrad Zhang, H. M. Brown, B. W. Arey, and J. E. Holladay, 'Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis,' Carbohydrate Polymers, vol. 68, pp. 235-241, 3/21/ 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54718 | - |
| dc.description.abstract | 在本論文中,我們提出了一種由洋蔥表皮細胞來製作成電驅動的致動器和電容式的觸覺感測器。致動器是一種通過能量轉換成系統動態的機制,如電能轉變為機械變形。大多數的致動器,可以有彎曲與收縮/伸長的功能,如人工肌肉。但是,目前還沒有任何一種致動器可以同時完成彎曲並且收縮/伸長的功能。在這個研究中,我們成功將這樣的新型致動器研發完成。我們發現洋蔥表皮細胞的天然微結構在當作致動器使用時,可以同時有彎曲並且收縮/伸長的功能。在通過電壓大小的調變,就可以使致動器產生致動方向的偏轉和收縮/伸長。
當所施加的電壓在0-50 V時,洋蔥致動器會伸長並且向下彎曲-30 μm;而當所施加的電壓在50-1000 V時,洋蔥致動器會收縮並且向上彎曲1.0 mm。該致動器的應變速率在10-5 s-1到10-3 s-1之間,並且電壓變化速率在每秒50 V超過200個循環周期以上的測試底下,應變率皆沒有任何明顯的改變。電壓變化速率遠遠超過每秒1 V。該致動器在1000 V的驅動電壓下連續6小時,其位移變化亦非常穩定。而在1000 V驅動電壓下最大輸出力為20 μN。最後我們展示了利用兩個洋蔥致動器所組合而成的鑷子,成功的夾取起一個約0.1 mg的小棉球。 而在本文中我們還提出了利用柔軟的洋蔥表皮細胞的天然微結構,來取代傳統的平行板電容式觸覺感測器。洋蔥的表皮細胞可以有效的降低電容式觸覺感測器的複雜結構,而減少的更多的製造流程。單層的洋蔥表皮細胞有良好的機械彈性和高透明度,並且成本低廉方便製作出大面積的觸覺感測器。我們製作了一個5 × 5的觸覺感測器陣列,總面積大小為22 × 22 mm2。單一個觸覺感測器在未施加任何壓力時的初始電容為3 pF。洋蔥觸覺感測器的量測範圍在0-1.8 N (200 kPa),靈敏度為0.02 kPa-1。最後由實驗結果顯示出洋蔥觸覺感測器有著良好的靈敏度與線性度。 本研究中我們成功的利用一種從未使用過的材料,洋蔥表皮細胞來製作新型的致動器與觸覺感測器。洋蔥表皮細胞的天然微結構有著結構簡單,可撓性和環保等優點。所製作出的致動器和觸覺感測器更有著成本低的優勢。因此是非常有潛力可應用於機械人的電子皮膚與人工肌肉等生物醫學裝置之上。 | zh_TW |
| dc.description.abstract | In this dissertation, an onion actuator and tactile sensor was proposed. Actuators functionalize dynamics of mechanisms or systems via an energy conversion, such as the transformation of electricity into mechanical deformation. Most motor-driven actuators and engineered artificial muscles are very capable at either bending or contraction/elongation. However, there are currently no actuators that can accomplish these actions simultaneously. Here we show the successful development of such a device. We found that the simple latticed microstructure of onion epidermal cells allowed itself to simultaneously stretch and bend. By modulating the magnitude of the voltage, the actuator made of onion epidermal cells would deflect in opposing directions while either contracting or elongating.
At voltages of 0 - 50 V, the actuator elongated and had a maximum deflection of -30 μm at voltages of 50 - 1000 V, the actuator contracted and deflected 1.0 mm. The strain rate ranges from 10-5 s-1 to 10-3 s-1 and underwent up to 200 actuation cycles at 50 V/s without any strain degradation. The strain changes were observed in our onion artificial muscle after acid pretreatment at different sweep rates, even much greater than 1 V/s. The artificial muscle has also been statically driven at 1000 V for continuous 6 hours, and the displacement shift was negligible. The maximum force response is 20 μN at 1000 V. We demonstrated the combination of two onion cell actuators to act as tweezers and gripping a small cotton ball of around 0.1 mg in weight. The results show how an artificial muscle can be produced from never used materials. And in this dissertation we also presents and demonstrates the development of flexible tactile sensor utilizing the microstructures of onion epidermal cells, which replace the intermediate dielectric layer in a typical parallel-plate capacitive sensor. The onion epidermal cells can effectively reduce the complexity of the sensor structure and thus simplifies the device fabrication process. The single layer of the onion epidermal cells is robust for high tactile sensitivity, mechanical flexibility and optical transmittance with potentially low-cost sensor manufacturing in a large area. The 5 × 5 tactile sensor array with the total area of 22 × 22 mm2 is demonstrated. A single tactile sensor has the initial capacitance of 3 pF without applying external pressure. The force ranging from 0 N-1.8 N (200 kPa) is applied for sensor characterization. The sensitivity of the sensor is 0.02 kPa-1. The fabricated sensor shows high sensitivity and linearity. We show how a new type of actuator and tactile sensor can be produced from a never used material―onion epidermal cell, in the hope of initiating a new field of fusing plant and mechatronics for the benefits of inducing large deflection measurements in both transverse and longitudinal directions in a ubiquitous and low-cost manner. And the proposed sensor array will be applied in robotic electronic skin and biomedical devices in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:37:13Z (GMT). No. of bitstreams: 1 ntu-104-D98543004-1.pdf: 5765661 bytes, checksum: 95bdc8b2daa5e5fc44af71123cf3d479 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iv CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xv NOMENCLATURE xvi Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Survey 2 1.2.1 Actuator 2 1.2.2 Dielectric Elastomer Actuator 10 1.2.3 Tactile Sensor 13 1.3 Thesis Structure 18 Chapter 2 Concept, Design and Approximation Theory 20 2.1 Concept from the Microstructural Dielectric Elastomer Actuator 20 2.2 Design of the Onion Actuator 23 2.2.1 Operation of the Onion Actuator 23 2.2.2 Architectures of the Onion Actuator 25 2.3 Design of the Onion Tactile Sensor 26 2.4 Approximation Theory 28 2.4.1 Maxwell Stress 28 2.4.2 Analysis Methods of Onion Actuator with Bending Actuation 28 2.4.3 Onion Tactile Sensor Sensing Mechanisms 38 Chapter 3 Microfabrication of Onion Actuator and Tactile Sensor 41 3.1 Onion Epidermal Cell Layer 41 3.2 Freeze-Drying Method 42 3.3 Acid Pretreatment 46 3.4 Coating Electrode Layer 49 3.4.1 Electrode Design of the Onion Actuator 49 3.4.2 Effect of Cell Orientation 50 3.4.3 Electrode Design of the Onion Tactile Sensor 52 Chapter 4 Measurement of Onion Actuator and Tactile Sensor 54 4.1 Measurement of Material Properties 54 4.1.1 Phenol-Sulfuric Method 54 4.1.2 X-Ray Diffractometer (XRD) 56 4.1.3 Young’s Modulus Test 58 4.2 Measurement of Onion Actuation 60 4.3 Measurement of Onion Tactile Sensor 61 Chapter 5 Measured Results and Discussion 62 5.1 Material Properties 62 5.1.1 Phenol-Sulfuric Method 62 5.1.2 X-Ray Diffractometer 65 5.1.3 Young’s Modulus 66 5.2 Actuation of Onion Actuator 68 5.3 Sensing of Onion Tactile Sensor 75 5.4 Brief Summary 79 Chapter 6 Demonstration 81 6.1 Onion Actuator 81 6.2 Onion Tactile Sensor 86 Chapter 7 Conclusion and Future Work 88 7.1 Conclusion 88 7.2 Future Work 90 REFERENCE 91 | |
| dc.language.iso | en | |
| dc.subject | 酸處理 | zh_TW |
| dc.subject | 洋蔥表皮細胞 | zh_TW |
| dc.subject | 天然微結構 | zh_TW |
| dc.subject | 致動器 | zh_TW |
| dc.subject | 觸覺感測器 | zh_TW |
| dc.subject | tactile sensor | en |
| dc.subject | acid pretreatment | en |
| dc.subject | onion epidermal cell | en |
| dc.subject | nature microstructure | en |
| dc.subject | actuator | en |
| dc.title | 以植物表皮細胞製作人工肌肉暨觸覺感測器 | zh_TW |
| dc.title | Artificial Muscles and Tactile Sensor Array Made of Plant Epidermal Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 賴喜美(Hsi-Mei Lai),林啟萬(Chii-Wann Lin),戴慶良(Ching-Liang Dai),胡毓忠(Yuh-Chung Hu) | |
| dc.subject.keyword | 洋蔥表皮細胞,天然微結構,致動器,觸覺感測器,酸處理, | zh_TW |
| dc.subject.keyword | onion epidermal cell,nature microstructure,actuator,tactile sensor,acid pretreatment, | en |
| dc.relation.page | 94 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-05-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 5.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
