Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54710
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅立成
dc.contributor.authorChengyin Liuen
dc.contributor.author柳成蔭zh_TW
dc.date.accessioned2021-06-16T03:37:06Z-
dc.date.available2018-08-20
dc.date.copyright2015-08-20
dc.date.issued2015
dc.date.submitted2015-05-20
dc.identifier.citation[1] V. I. Pavlovic, R. Sharma, and T. S. Huang, 'Visual interpretation of hand gestures for human-computer interaction: A review,' Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 19, pp. 677-695, 1997.
[2] T. Baudel and M. Beaudouin-Lafon, 'Charade: remote control of objects using free-hand gestures,' Communications of the ACM, vol. 36, pp. 28-35, 1993.
[3] D. J. Sturman and D. Zeltzer, 'A survey of glove-based input,' Computer Graphics and Applications, IEEE, vol. 14, pp. 30-39, 1994.
[4] Z. Ren, J. Yuan, and Z. Zhang, 'Robust hand gesture recognition based on finger-earth mover's distance with a commodity depth camera,' in Proceedings of the 19th ACM international conference on Multimedia, 2011, pp. 1093-1096.
[5] M. Elmezain, A. Al-Hamadi, J. Appenrodt, and B. Michaelis, 'A hidden markov model-based continuous gesture recognition system for hand motion trajectory,' in International Conference on Pattern Recognition, 2008, pp. 1-4.
[6] R. Shrivastava, 'A hidden Markov model based dynamic hand gesture recognition system using OpenCV,' in IEEE 3rd International Advance Computing Conference, 2013, pp. 947-950.
[7] P. Viola and M. J. Jones, 'Robust real-time face detection,' International journal of computer vision, vol. 57, pp. 137-154, 2004.
[8] C. Huang, H. Ai, Y. Li, and S. Lao, 'High-performance rotation invariant multiview face detection,' Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 29, pp. 671-686, 2007.
[9] W. Zhang, S. Shan, W. Gao, X. Chen, and H. Zhang, 'Local gabor binary pattern histogram sequence (lgbphs): A novel non-statistical model for face representation and recognition,' in Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, 2005, pp. 786-791.
[10] A. Mittal, A. Zisserman, and P. H. Torr, 'Hand detection using multiple proposals,' in BMVC, 2011, pp. 1-11.
[11] Y.-R. Wang, W.-H. Lin, and L. Yang, 'A novel real time hand detection based on skin-color,' in Consumer Electronics (ISCE), 2013 IEEE 17th International Symposium on, 2013, pp. 141-142.
[12] C. Keskin, F. Kırac, Y. E. Kara, and L. Akarun, 'Real time hand pose estimation using depth sensors,' in Consumer Depth Cameras for Computer Vision, ed: Springer, 2013, pp. 119-137.
[13] M. de La Gorce, D. J. Fleet, and N. Paragios, 'Model-based 3d hand pose estimation from monocular video,' Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 33, pp. 1793-1805, 2011.
[14] J. Suarez and R. R. Murphy, 'Hand gesture recognition with depth images: A review,' in IEEE RO-MAN, 2012, pp. 411-417.
[15] Z. Ren, J. Yuan, J. Meng, and Z. Zhang, 'Robust part-based hand gesture recognition using kinect sensor,' IEEE Transactions on Multimedia, vol. 15, pp. 1110-1120, 2013.
[16] J. Shukla and A. Dwivedi, 'A Method for Hand Gesture Recognition,' in International Conference on Communication Systems and Network Technologies, 2014, pp. 919-923.
[17] A. Kulshreshth, C. Zorn, and J. J. LaViola, 'Poster: Real-time markerless kinect based finger tracking and hand gesture recognition for HCI,' in IEEE Symposium on 3D User Interfaces, 2013, pp. 187-188.
[18] S. Qin, X. Zhu, H. Yu, S. Ge, Y. Yang, and Y. Jiang, 'Real-time markerless hand gesture recognition with depth camera,' in Advances in Multimedia Information Processing–PCM 2012, ed: Springer, 2012, pp. 186-197.
[19] C. Keskin, F. Kirac, Y. E. Kara, and L. Akarun, 'Randomized decision forests for static and dynamic hand shape classification,' in IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2012, pp. 31-36.
[20] X. Yang, C. Zhang, and Y. Tian, 'Recognizing actions using depth motion maps-based histograms of oriented gradients,' in Proceedings of the 20th ACM international conference on Multimedia, 2012, pp. 1057-1060.
[21] D. Huang, C. Shan, M. Ardabilian, Y. Wang, and L. Chen, 'Local binary patterns and its application to facial image analysis: a survey,' Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, vol. 41, pp. 765-781, 2011.
[22] Y. Ke and R. Sukthankar, 'PCA-SIFT: A more distinctive representation for local image descriptors,' in Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on, 2004, pp. II-506-II-513 Vol. 2.
[23] P. Viola and M. Jones, 'Rapid object detection using a boosted cascade of simple features,' in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001, pp. I-511-I-518 vol. 1.
[24] Q. Chen, N. D. Georganas, and E. M. Petriu, 'Real-time vision-based hand gesture recognition using haar-like features,' in IEEE Instrumentation and Measurement Technology Conference Proceedings, 2007, pp. 1-6.
[25] Q. Chen, N. D. Georganas, and E. M. Petriu, 'Hand gesture recognition using Haar-like features and a stochastic context-free grammar,' IEEE Transactions on Instrumentation and Measurement, vol. 57, pp. 1562-1571, 2008.
[26] M. Van den Bergh, E. Koller-Meier, F. Bosche, and L. Van Gool, 'Haarlet-based hand gesture recognition for 3D interaction,' in Workshop on Applications of Computer Vision, 2009, pp. 1-8.
[27] X. Cui, Y. Liu, S. Shan, X. Chen, and W. Gao, '3d haar-like features for pedestrian detection,' in IEEE International Conference on Multimedia and Expo, 2007, pp. 1263-1266.
[28] E. Tapia, 'A note on the computation of high-dimensional integral images,' Pattern Recognition Letters, vol. 32, pp. 197-201, 2011.
[29] M. Van den Bergh, E. Koller-Meier, and L. Van Gool, 'Real-time body pose recognition using 2D or 3D haarlets,' International journal of computer vision, vol. 83, pp. 72-84, 2009.
[30] M. Van den Bergh, E. Koller-Meier, and L. Van Gool, 'Fast body posture estimation using volumetric features,' in IEEE Workshop on Motion and video Computing, 2008, pp. 1-8.
[31] G. Pang and U. Neumann, 'Training-Based Object Recognition in Cluttered 3D Point Clouds,' in International Conference on 3D Vision, 2013 2013, pp. 87-94.
[32] Y. Freund and R. E. Schapire, 'A decision-theoretic generalization of on-line learning and an application to boosting,' Journal of computer and system sciences, vol. 55, pp. 119-139, 1997.
[33] Y. Ke, R. Sukthankar, and M. Hebert, 'Efficient visual event detection using volumetric features,' in Tenth IEEE International Conference on Computer Vision, 2005, pp. 166-173.
[34] L. Wang, 'Feature selection with kernel class separability,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, pp. 1534-1546, 2008.
[35] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, 'Online dictionary learning for sparse coding,' in Proceedings of the 26th Annual International Conference on Machine Learning, 2009, pp. 689-696.
[36] K. R. Konda, A. Konigs, H. Schulz, and D. Schulz, 'Real time interaction with mobile robots using hand gestures,' in Proceedings of the seventh annual ACM/IEEE international conference on Human-Robot Interaction, 2012, pp. 177-178.
[37] K. Biswas and S. K. Basu, 'Gesture Recognition using Microsoft KinectR,' in Automation, Robotics and Applications (ICARA), 2011 5th International Conference on, 2011, pp. 100-103.
[38] M. Tang, 'Recognizing hand gestures with Microsoft’s kinect,' Palo Alto: Department of Electrical Engineering of Stanford University:[sn], 2011.
[39] Z. Li and R. Jarvis, 'Real time hand gesture recognition using a range camera,' in Australasian Conference on Robotics and Automation, 2009, pp. 21-27.
[40] X. Liu and K. Fujimura, 'Hand gesture recognition using depth data,' in Automatic Face and Gesture Recognition, 2004. Proceedings. Sixth IEEE International Conference on, 2004, pp. 529-534.
[41] A. Ramey, V. Gonzalez-Pacheco, and M. A. Salichs, 'Integration of a low-cost RGB-D sensor in a social robot for gesture recognition,' in Proceedings of the 6th international conference on Human-robot interaction, 2011, pp. 229-230.
[42] S. Malassiotis, N. Aifanti, and M. G. Strintzis, 'A gesture recognition system using 3D data,' in 3D Data Processing Visualization and Transmission, 2002. Proceedings. First International Symposium on, 2002, pp. 190-193.
[43] M. Van den Bergh, D. Carton, R. De Nijs, N. Mitsou, C. Landsiedel, K. Kuehnlenz, et al., 'Real-time 3D hand gesture interaction with a robot for understanding directions from humans,' in RO-MAN, 2011 IEEE, 2011, pp. 357-362.
[44] M. Van den Bergh and L. Van Gool, 'Combining RGB and ToF cameras for real-time 3D hand gesture interaction,' in Applications of Computer Vision (WACV), 2011 IEEE Workshop on, 2011, pp. 66-72.
[45] R. Feris, M. Turk, R. Raskar, K.-H. Tan, and G. Ohashi, 'Recognition of isolated fingerspelling gestures using depth edges,' in Real-Time Vision for Human-Computer Interaction, ed: Springer, 2005, pp. 43-56.
[46] M. Stamp, 'A revealing introduction to hidden Markov models,' Department of Computer Science San Jose State University, 2004.
[47] D. Xu, X. Wu, Y.-L. Chen, and Y. Xu, 'Online Dynamic Gesture Recognition for Human Robot Interaction,' Journal of Intelligent & Robotic Systems, pp. 1-14, 2014.
[48] L. Wang and K. L. Chan, 'Learning kernel parameters by using class separability measure,' presented at the 6th kernel machines workshop, in conjunction with Neural Information Processing Systems (NIPS), 2002.
[49] J. P. Wachs, M. Kolsch, H. Stern, and Y. Edan, 'Vision-based hand-gesture applications,' Communications of the ACM, vol. 54, pp. 60-71, 2011.
[50] C. P. Papageorgiou, M. Oren, and T. Poggio, 'A general framework for object detection,' in Computer vision, 1998. sixth international conference on, 1998, pp. 555-562.
[51] H. Greenspan, S. Belongie, R. Goodman, P. Perona, S. Rakshit, and C. H. Anderson, 'Overcomplete steerable pyramid filters and rotation invariance,' in Computer Vision and Pattern Recognition, 1994. Proceedings CVPR'94., 1994 IEEE Computer Society Conference on, 1994, pp. 222-228.
[52] M. Elad and M. Aharon, 'Image denoising via sparse and redundant representations over learned dictionaries,' Image Processing, IEEE Transactions on, vol. 15, pp. 3736-3745, 2006.
[53] J. Mairal, J. Ponce, G. Sapiro, A. Zisserman, and F. R. Bach, 'Supervised dictionary learning,' in Advances in neural information processing systems, 2009, pp. 1033-1040.
[54] S. S. Chen, D. L. Donoho, and M. A. Saunders, 'Atomic decomposition by basis pursuit,' SIAM journal on scientific computing, vol. 20, pp. 33-61, 1998.
[55] S. Mallat, A wavelet tour of signal processing: the sparse way: Academic press, 2008.
[56] B. A. Olshausen and D. J. Field, 'Sparse coding with an overcomplete basis set: A strategy employed by V1?,' Vision research, vol. 37, pp. 3311-3325, 1997.
[57] M. Aharon, M. Elad, and A. Bruckstein, 'K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation,' IEEE TRANSACTIONS ON SIGNAL PROCESSING, vol. 54, p. 4311, 2006.
[58] H. Lee, A. Battle, R. Raina, and A. Y. Ng, 'Efficient sparse coding algorithms,' in Advances in neural information processing systems, 2006, pp. 801-808.
[59] http://www.softkinetic.com/Support/Download.
[60] P. A. Viola and M. J. Jones, 'Detecting pedestrians using patterns of motion and appearance in videos,' ed: Google Patents, 2007.
[61] http://www.di.ens.fr/willow/SPAMS/.
[62] http://research.microsoft.com/en-us/um/people/zliu/actionrecorsrc/.
[63] A. Kurakin, Z. Zhang, and Z. Liu, 'A real time system for dynamic hand gesture recognition with a depth sensor,' in Proceedings of the 20th European Signal Processing Conference, 2012, pp. 1975-1979.
[64] S. Ji, W. Xu, M. Yang, and K. Yu, '3D convolutional neural networks for human action recognition,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, pp. 221-231, 2013.
[65] J. Wang, Z. Liu, J. Chorowski, Z. Chen, and Y. Wu, 'Robust 3d action recognition with random occupancy patterns,' in ECCV, 2012, pp. 872-885.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54710-
dc.description.abstract手勢是一種有效而自然的人機交互方式。為了使計算機系統能夠以最貼近人類,最自然的方式來解讀手部的動作,我們採取以視覺為基礎來設計系統。最新的深度感知技術為手勢識別方法的發展提供的很好的機會。因此,在本篇論文中,我們提出了一種使用彩色及深度攝影機的強健動態連續手勢辨識系統。
現實的彩色和深度影像中,通常會存在雜訊和遮蔽的問題。為了從中自動識別出動態的手勢,我們提取了立體空間的類哈爾特徵來強健地表達手部複雜的空間訊息。利用類別分離度衡量方式,我們採用了一種新的特徵選擇方式來找出最具區分性的類哈爾特徵。接著我們還使用了稀疏表達的方式來對這些特徵進行編碼,藉此使系統更為準確穩定,尤其是在訓練資料相對有限的情況下。
稀疏的立體空間類哈爾特徵不但具有強健於雜訊和遮蔽的優點,而且可以通過使用自填充的積分體積來高效率地計算特徵值。這些關鍵的特徵顯著地提高了手勢分類和辨識的性能。在一個公共和一個自建的動態手勢資料庫上,我們都進行了實驗來評估我們的系統。相較於其他動態手勢識別方法,本篇論文的方法在準確性和穩定性上都表現出了優越性。
zh_TW
dc.description.abstractHand gesture is an effective and natural way for human-robot interaction (HRI) and human-computer interaction (HCI). Vision-based system is chosen so that computer can understand hand activities naturally. Recent advances in depth sensing provide opportunities for development of approaches for hand gesture understanding. Therefore, in this thesis, we presents a robust dynamic hand gesture recognition system with an RGB-D sensor.
In order to automatically recognize hand gesture from color and depth image sequences, where noise and occlusion are common problems, we extract steric Haar-like features to robustly represent the complicated spatial information of the hand. A novel feature selection approach, which takes the advantage of class separability measure, is employed to effectively ferret out the most discriminative features. We also use sparse coding method to encode these features so that it is less prone to over-fitting even when only limited amount of training data are available.
Generally speaking, Sparse Steric Haar-like (SSH) features are efficient to compute by using the self-padding integral volume, in addition to the advantage of robustness to noise and occlusion. These crucial features significantly improve the performance of tracking and classification. Experiments with a public dynamic hand gesture dataset and a self-built hand gesture dataset show the superiority of the proposed system compared with the state-of-the-art approaches.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:37:06Z (GMT). No. of bitstreams: 1
ntu-104-R01944040-1.pdf: 1696373 bytes, checksum: 256e5837d4a40b2d11a243a037d952d8 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents誌謝 i
摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xi
Chapter 1 Introduction 1
1.1 Motivation 2
1.2 Challenges 3
1.3 Related Work 6
1.3.1 Researches Using Haar-like Feature 6
1.3.2 Hand Gesture Recognition 8
1.4 System Overview 10
1.5 Thesis Organization 12
Chapter 2 Preliminaries 14
2.1 Features 14
2.1.1 Haar-like Feature 15
2.1.2 Integral Image 17
2.2 Sparse Representation 19
2.2.1 Problem Statement 19
2.2.2 Dictionary Learning 21
2.3 Hidden Markov Model 22
2.3.1 Observation Likelihood Estimation 25
2.3.2 Hidden States Decoding 26
2.3.3 Hidden Markov Model Learning 29
Chapter 3 Hand Gesture Recognition with Sparse Steric Haar-like Feature 30
3.1 Preprocessing 31
3.2 Steric Haar-like Feature Extraction 34
3.2.1 Steric Haar-like Feature 35
3.2.2 Self-padding Integral Volume 37
3.3 Feature Selection with Class Separability 39
3.3.1 Class Separability 40
3.3.2 Steric Haar-like Feature Selection 41
3.4 Sparse Representation for Steric Haar-like Feature 42
3.5 Dynamic Hand Gesture Classification 43
3.5.1 Hand Gesture Model Training 44
3.5.2 Gesture Classification using HMMs 45
Chapter 4 Experiments 47
4.1 Experimental Setting 48
4.2 Datasets 49
4.2.1 MSR Gesture3D Dataset 50
4.2.2 Interactive Hand Gesture Dataset 51
4.3 Experimental Results 53
4.3.1 Recognition Performance on MSR Gesture3D Dataset 53
4.3.2 Recognition Performance on Interactive Hand Gesture Dataset 56
Chapter 5 Conclusion and Future Work 59
REFERENCE 61
dc.language.isoen
dc.subject稀疏表達zh_TW
dc.subject動態手勢識別zh_TW
dc.subject立體空間類哈爾特徵zh_TW
dc.subject類別分離度zh_TW
dc.subjectGesture Recognitionen
dc.subjectSparse Representationen
dc.subjectClass Separabilityen
dc.subjectSteric Haar-like Featureen
dc.title使用稀疏立體空間類哈爾特徵之強健動態手勢識別系統zh_TW
dc.titleRobust Dynamic Hand Gesture Recognition System with Sparse Steric Haar-like Featureen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇木春,陳祝嵩,洪一平,莊永裕
dc.subject.keyword動態手勢識別,立體空間類哈爾特徵,類別分離度,稀疏表達,zh_TW
dc.subject.keywordGesture Recognition,Steric Haar-like Feature,Class Separability,Sparse Representation,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2015-05-21
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊網路與多媒體研究所zh_TW
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
1.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved