Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54707
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊烽正
dc.contributor.authorYu-Hong Lin 林育宏en
dc.contributor.author林育宏zh_TW
dc.date.accessioned2021-06-16T03:37:02Z-
dc.date.available2017-08-11
dc.date.copyright2015-08-11
dc.date.issued2015
dc.date.submitted2015-05-22
dc.identifier.citationAskarzadeh, A., & Rezazadeh, A. (2013). Artificial neural network training using a new efficient optimization algorithm. Applied Soft Computing, 13(2), 1206-1213.
Box, G. E., & Muller, M. E. (1958). A note on the generation of random normal deviates. The annals of mathematical statistics(29), 610-611.
Chao, M.-H. (2012). Water Flow-like Algorithm for Solving Capacitated Vehicle Routing Problems. (Master Thesis), National Taiwan University, College of Engineering.
Chou, S.-T. (2012). Water Flow-like Algorithm for Multi-objective Continuous Optimization Problems. (Master Thesis), National Taiwan University, College of Engineering.
Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. Evolutionary Computation, IEEE Transactions on, 6(1), 58-73.
Eberhart, R. C., & Kennedy, J. (1995). A new optimizer using particle swarm theory. Paper presented at the Proceedings of the sixth international symposium on micro machine and human science.
Garcia-Pedrajas, N., Ortiz-Boyer, D., & Hervas-Martinez, C. (2006). An alternative approach for neural network evolution with a genetic algorithm: Crossover by combinatorial optimization. Neural Networks, 19(4), 514-528.
Goldberg, D. E., & Deb, K. (1991). A comparative analysis of selection schemes used in genetic algorithms. Foundations of genetic algorithms, 1, 69-93.
Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence: U Michigan Press.
Jamil, M., & Yang, X.-S. (2013). A literature survey of benchmark functions for global optimisation problems. International Journal of Mathematical Modelling and Numerical Optimisation, 4(2), 150-194.
Jang, J.-S. R., Sun, C.-T., & Mizutani, E. (1997). Neuro-Fuzzy and Soft Computing: Prentice-Hall International.
Karlik, B., & Olgac, A. V. (2011). Performance analysis of various activation functions in generalized MLP architectures of neural networks. Int. J. Artificial Intell. Expert Syst, 1(4), 111-122.
Komorowski, J., & Zytkow, J. (1997). Principles of Data Mining and Knowledge Discovery: First European Symposium, PKDD'97, Trondheim, Norway, June 24-27, 1997 Proceedings (Vol. 1): Springer Science & Business Media.
Larranaga, P., Kuijpers, C. M. H., Murga, R. H., Inza, I., & Dizdarevic, S. (1999). Genetic algorithms for the travelling salesman problem: A review of representations and operators. Artificial Intelligence Review, 13(2), 129-170.
Leung, F. H.-F., Lam, H.-K., Ling, S.-H., & Tam, P. K.-S. (2003). Tuning of the structure and parameters of a neural network using an improved genetic algorithm. Neural Networks, IEEE Transactions on, 14(1), 79-88.
Montana, D. J., & Davis, L. (1989). Training Feedforward Neural Networks Using Genetic Algorithms. Paper presented at the IJCAI.
Polak, E. (1971). Computational methods in optimization: a unified approach (Vol. 77): Academic press.
Powell, M. J. D. (1977). Restart procedures for the conjugate gradient method. Mathematical programming, 12(1), 241-254.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations by error propagation: DTIC Document.
Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. Paper presented at the Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on.
van den Bergh, F., & Engelbrecht, A. (2002). A new locally convergent particle swarm optimizer. Paper presented at the Proceedings of the IEEE international conference on systems, man, and cybernetics.
Wang, Y.-P. (2006). Water Flow-like Algorithm for Object Grouping Problems. (Master Thesis), National Taiwan University, College of Engineering.
Whitley, D., Starkweather, T., & Bogart, C. (1990). Genetic algorithms and neural networks: Optimizing connections and connectivity. Parallel computing, 14(3), 347-361.
Yang, F.-C., & Wang, Y.-P. (2007). Water Flow-like Algorithm for Object Grouping Problems. Journal of the Chinese Institute of Industrial Engineerings, 24(6), 475-488.
Yao, X., Liu, Y., & Lin, G. (1999). Evolutionary programming made faster. Evolutionary Computation, IEEE Transactions on, 3(2), 82-102.
Yen, G., & Lu, H. (2002). Hierarchical genetic algorithm for near-optimal feedforward neural network design. International journal of neural systems, 12(01), 31-43.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54707-
dc.description.abstract本研究展示以母水流流域及子水流代理人架構的新式仿水流演算法 (Probability Distributioin-Guided Water Flow-like Algorithm,PWFA)。PWFA的主要特色是利用連續型機率分配仿傚水流分流、匯流、及降水,使水流代理人的解朝優演化。效能驗證的求解對象是單一目標的連續型優化問題及前饋式類神經網路的權重參數優化問題,共有29個標竿優化函數及五個UCI資料集。實例測試時,比較本法與倒傳遞演算法、共軛梯度法、兩種仿水流演算法、三種遺傳演算法、及四種粒子群演算法的求解效能。數值結果顯示PWFA求解僅具單一全域最佳解的單峰型及多峰型優化函數的效能優於其他優化演算法;而求解具多個全域最佳解的多峰型函數時,PWFA與三種粒子群演算法在不同函數下各有優勢。此外,前饋式類神經網路參數優化問題的實測結果顯示,PWFA與粒子群演算法的優化效能皆屬最佳者。zh_TW
dc.description.abstractWater flow-like algorithm (WFA) is inspired by the nature of water flow during circulating in the physical space. Initailly, WFA was developed to be a heuristic algorithm for combinatorial optimization. Thanks to WFA’s underlying ideal, this work propose a novel version of WFA for continuous optimization, called probability distribution-guided water flow-like algorithm (PWFA). In PWFA, basins are conceptualized as subspaces in the solution space, which help subflows to stochastically move toward the lowest position (the global optimum). To imitate the behavior of water flow heuristically, the flows perform spltting and moving, merging and precipitation operation to traverse in the space. Moreover, for evaluating PWFA’s performance, a large set of benchmark test functions and other basic optimization techiques from the literature are adopted for numerical test. In addition, the application to the training of feed-forward neural network (FNN) for pattern classification is also present as a test case for this algorithm. For the reason, a system prototype for solving continuous optimization problem and FNN parameter optimization is implemented by this work. The results show, first, that PWFA has a better performance than other optimization methods on uni-modal functions and multi-modal functions with single one optimum, and second, that this algorithm represents a competitive performance to other basic methods as solving multi-modal functions with many optimums. Additionally, the results of the application show PWFA is comparable to several optimization techniques included as well.en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:37:02Z (GMT). No. of bitstreams: 1
ntu-104-R01546027-1.pdf: 7268486 bytes, checksum: 29548aa61458583c18f350227957797d (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iv
Abstract v
表目錄 ix
圖目錄 xii
第一章 緒論 1
  1.1 研究背景 1
  1.2 研究目的 2
  1.3 研究方法 3
  1.4 章節概述 5
第二章 文獻探討 6
  2.1 仿水流演算法 6
  2.2 粒子群演算法 8
  2.3 遺傳演算法 10
第三章 機率分配導引式仿水流演算法 12
  3.1 機率分配導引式仿水流的演化概念 12
    3.1.1 分流移步 12
    3.1.2 匯流 17
    3.1.3 降水 18
  3.2 演算程序使用的資料結構 21
  3.3 機率分配導引式仿水流演算法的演算程序 22
    3.3.1 整體演算流程 22
    3.3.2 初始化 23
    3.3.3 分流移步作業 27
    3.3.4 匯流作業 29
    3.3.5 降水作業 35
  3.4 小結 38
第四章 連續型優化問題求解 40
  4.1 連續型優化問題 40
  4.2 連續型優化問題的數學模型 40
  4.3 連續型優化問題的標竿範例及求解法 42
    4.3.1 29個標竿優化函數的介紹 42
    4.3.2 七個優化求解法及參數設定 46
  4.4 連續型優化問題的效能評量指標 48
  4.5 連續型優化問題的求解系統 50
  4.6 範例測試及求解效能比較 57
    4.6.1 範例測試的實驗設定 57
    4.6.2 七個優化求解法求解29個標竿優化函數的效能比較 57
  4.7 小結 72
第五章 前饋式類神經網路參數優化問題求解 74
  5.1 前饋式類神經網路參數優化問題 74
  5.2 前饋式類神經網路參數優化問題的數學模型 75
  5.3 前饋式類神經網路參數優化問題的標竿範例及求解法 83
    5.3.1 五個標竿分類問題的介紹 83
    5.3.2 11個求解法及參數設定 84
  5.4 前饋式類神經網路參數優化問題的效能評量指標 87
  5.5 前饋式類神經網路參數優化問題的求解系統 90
  5.6 範例測試及求解效能比較 97
    5.6.1 範例測試的實驗設定 97
    5.6.2 11個優化求解法求解五個標竿分類問題的效能比較 98
  5.7 小結 114
第六章 結論 116
  6.1 總結 116
  6.2 未來研究建議 117
參考文獻 119
附錄A 121
附錄B 150
附錄C 158
dc.language.isozh-TW
dc.title機率分配導引式仿水流演算法:應用於類神經網路之參數訓練zh_TW
dc.titleProbability Distribution-Guided Water Flow-like Algorithm for Continuous Optimization: Application to Feed-forward Neural Network Trainingen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃奎隆,胡黃德,羅士哲
dc.subject.keyword仿水流演算法,前饋式類神經網路,連續型優化問題,zh_TW
dc.subject.keywordWater Flow-like Algorithm,Feed-forward Neural Network,Continuous Optimization Problem,en
dc.relation.page159
dc.rights.note有償授權
dc.date.accepted2015-05-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工業工程學研究所zh_TW
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
7.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved