Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54706
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭龍磻(Lung-Pan Cheng)
dc.contributor.authorYu-Zhen Chanen
dc.contributor.author詹郁珍zh_TW
dc.date.accessioned2021-06-16T03:37:02Z-
dc.date.available2020-08-21
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-09
dc.identifier.citation[1] Greyworld. http://greyworld.org/?p=31, 2004.
[2] B. Araujo, R. Jota, V. Perumal, J. X. Yao, K. Singh, and D. Wigdor. Snake charmer: Physically enabling virtual objects. In Proceedings of the TEI’16: Tenth Interna- tional Conference on Tangible, Embedded, and Embodied Interaction, pages 218– 226, 2016.
[3] B. Araujo, R. Jota, V. Perumal, J. X. Yao, K. Singh, and D. Wigdor. Snake charmer: Physically enabling virtual objects. In Proceedings of the TEI ’16: Tenth Inter- national Conference on Tangible, Embedded, and Embodied Interaction, TEI ’16, pages 218–226, New York, NY, USA, 2016. ACM.
[4] O.Bau,I.Poupyrev,A.Israr,andC.Harrison.Teslatouch:Electrovibrationfortouch surfaces. In Proceedings of the 23nd Annual ACM Symposium on User Interface Software and Technology, UIST ’10, page 283–292, New York, NY, USA, 2010. Association for Computing Machinery.
[5] H. Benko, C. Holz, M. Sinclair, and E. Ofek. Normaltouch and texturetouch: High- fidelity 3d haptic shape rendering on handheld virtual reality controllers. In Pro- ceedings of the 29th Annual Symposium on User Interface Software and Technology, UIST ’16, page 717–728, New York, NY, USA, 2016. Association for Computing Machinery.
[6] M. Biet, F. Giraud, and B. Lemaire-Semail. Implementation of tactile feedback by modifying the perceived friction. The European Physical Journal - Applied Physics, 43(1):123–135, 2008.
[7] V. G. Chouvardas, A. N. Miliou, and M. K. Hatalis. Tactile displays: Overview and recent advances. Displays, 29(3):185–194, 2008.
[8] G. W. Fitzmaurice, H. Ishii, and W. A. S. Buxton. Bricks: Laying the foundations for graspable user interfaces. In Proceedings of the SIGCHI Conference on Hu- man Factors in Computing Systems, CHI ’95, page 442–449, USA, 1995. ACM Press/Addison-Wesley Publishing Co.
[9] S. Follmer, D. Leithinger, A. Olwal, A. Hogge, and H. Ishii. inform: Dynamic phys- ical affordances and constraints through shape and object actuation. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, UIST ’13, pages 417–426, New York, NY, USA, 2013. ACM.
[10] J. Funaki. Tactile display device and touch panel apparatus with tactile display func- tion using electrorheological fluid, Sept. 15 2009. US Patent 7,589,714.
[11] H. D. Garner. Method and device for producing a tactile display using an electrorhe- ological fluid, Mar. 5 1996. US Patent 5,496,174.
[12] M. Goulthorpe, M. Burry, and G. Dunlop. Aegis hyposurface©: the bordering of university and practice. 2001.
[13] C.HarrisonandS.E.Hudson.Texturedisplays:Apassiveapproachtotactilepresen- tation. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’09, page 2261–2264, New York, NY, USA, 2009. Association for Computing Machinery.
[14] S. Heo, C. Chung, G. Lee, and D. Wigdor. Thor’s hammer: An ungrounded force feedback device utilizing propeller-induced propulsive force. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, pages 525:1–525:11, New York, NY, USA, 2018. ACM.
[15] Y. Ikei, M. Yamada, and S. Fukuda. A new design of haptic texture display-texture display2-and its preliminary evaluation. In Proceedings IEEE Virtual Reality 2001, pages 21–28. IEEE, 2001.
[16] K. A. Kaczmarek, J. G. Webster, P. Bach-y-Rita, and W. J. Tompkins. Electrotactile and vibrotactile displays for sensory substitution systems. IEEE Transactions on Biomedical Engineering, 38(1):1–16, 1991.
[17] H. Kajimoto, N. Kawakami, T. Maeda, and S. Tachi. Electro-tactile display with tactile primary color approach. Graduate School of Information and Technology, The University of Tokyo, 2004.
[18] H. Kajimoto, N. Kawakami, S. Tachi, and M. Inami. Smarttouch: electric skin to touch the untouchable. IEEE Computer Graphics and Applications, 24(1):36–43, 2004.
[19] G. L. Kenaley and M. R. Cutkosky. Electrorheological fluid-based robotic fingers with tactile sensing. In ICRA, pages 132–136, 1989.
[20] S. Kodama. Dynamic ferrofluid sculpture: Organic shape-changing art forms. Com- mun. ACM, 51(6):79–81, June 2008.
[21] K. Kyung, S. Kim, and D. Kwon. Texture display mouse: Vibrotactile pattern and roughness display. IEEE/ASME Transactions on Mechatronics, 12(3):356–360, 2007.
[22] M. Peruzzini, M. Germani, and M. Mengoni. Electro-tactile device for texture sim- ulation. In Proceedings of 2012 IEEE/ASME 8th IEEE/ASME International Con- ference on Mechatronic and Embedded Systems and Applications, pages 178–183, 2012.
[23] I. Poupyrev, T. Nashida, S. Maruyama, J. Rekimoto, and Y. Yamaji. Lumen: In- teractive visual and shape display for calm computing. In ACM SIGGRAPH 2004 Emerging Technologies, SIGGRAPH ’04, page 17, New York, NY, USA, 2004. Association for Computing Machinery.
[24] I. Poupyrev, T. Nashida, and M. Okabe. Actuation and tangible user interfaces: the vaucanson duck, robots, and shape displays. In Proceedings of the 1st international conference on Tangible and embedded interaction, pages 205–212, 2007.
[25] S. Saga and R. Raskar. Simultaneous geometry and texture display based on lateral force for touchscreen. In 2013 World Haptics Conference (WHC), pages 437–442, 2013.
[26] A. F. Siu, E. J. Gonzalez, S. Yuan, J. B. Ginsberg, and S. Follmer. shapeshift: 2d spatial manipulation and self-actuation of tabletop shape displays for tangible and haptic interaction. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, pages 291:1–291:13, New York, NY, USA, 2018. ACM.
[27] R.Sodhi,I.Poupyrev,M.Glisson,andA.Israr.Aireal:interactivetactileexperiences in free air. ACM Transactions on Graphics (TOG), 32(4):1–10, 2013.
[28] P. Strohmeier and K. Hornbæk. Generating haptic textures with a vibrotactile actu- ator. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17, pages 4994–5005, New York, NY, USA, 2017. ACM.
[29] R.Suzuki,C.Zheng,Y.Kakehi,T.Yeh,E.Y.-L.Do,M.D.Gross,andD.Leithinger. Shapebots: Shape-changing swarm robots. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, pages 493–505, 2019.
[30] P. M. Taylor, A. Hosseini-Sianaki, and C. J. Varley. An electrorheological fluid- based tactile array for virtual environments. In Proceedings of IEEE International Conference on Robotics and Automation, volume 1, pages 18–23 vol.1, 1996.
[31] S.-Y. Teng, T.-S. Kuo, C. Wang, C.-h. Chiang, D.-Y. Huang, L. Chan, and B.-Y. Chen. Pupop: Pop-up prop on palm for virtual reality. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology, UIST ’18, pages 5–17, New York, NY, USA, 2018. ACM.
[32] T. Watanabe and S. Fukui. A method for controlling tactile sensation of surface roughness using ultrasonic vibration. In Proceedings of 1995 IEEE International Conference on Robotics and Automation, volume 1, pages 1134–1139 vol.1, 1995.
[33] E. Whitmire, H. Benko, C. Holz, E. Ofek, and M. Sinclair. Haptic revolver: Touch, shear, texture, and shape rendering on a reconfigurable virtual reality controller. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, pages 86:1–86:12, New York, NY, USA, 2018. ACM.
[34] V. Yem, R. Okazaki, and H. Kajimoto. Fingar: Combination of electrical and me- chanical stimulation for high-fidelity tactile presentation. In ACM SIGGRAPH 2016 Emerging Technologies, SIGGRAPH ’16, pages 7:1–7:2, New York, NY, USA, 2016. ACM.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54706-
dc.description.abstractTexels 是由一個一個獨立的方塊所組成的動態平面材質顯示裝置。 每個獨立的材質方塊都裝載有多種不同的材質,可以動態地變換成使 用者需要的材質。每一個方塊的核心部件是圍繞在整個方塊外部的履 帶,由馬達所驅動,將貼於履帶上的材質自方塊內部轉至上方表面。 此履帶以及馬達齒輪組的設計能夠讓每個材質方塊上方表面維持平 坦,讓方塊間能夠彼此相接組成一個大平面,並且將其他未使用材質 儲存在方塊內部。我們並實作了一個軟體系統,可以同時控制單個或 是多個材質方塊,讓這個動態材質平面顯示器的大小是可變動的:可 以單單由一個方塊組成,也可以用多個方塊組成一排,進而組成多排 的平面,分別使用在不同的應用上。我們在此篇論文中用多個應用去 呈現 Texels 的功能,包括為視覺障礙者提供即時觸覺回饋、在不同情 境下切換成不同物理特性的材質、實時畫布呈現等等。我們以 Texels 為基礎討論未來動態材質平面互動的可能性應用。zh_TW
dc.description.abstractWe present Texels, self-contained blocks that change their surface texture on demand. The core component of each block is a crawler belt where a set of texture patches are attached. This design allows the top surface remaining flat to form dynamic texture displays at any sizes by concatenating with other blocks while wrapping the rest of the belt inside. We built a working system that controls one or more blocks to form dynamic texture displays from 0 to 2 dimensions, i.e., a single block, an array and a matrix. We demonstrate Texels’ capability with numbers of applications including providing real-time tactile feedback for visual impaired users, changing physical properties of a surface such as friction and thermal conductivity, and realistic painting canvas that allows multiple users to interact with. With Texels, we explore the future of dynamically reconfiguring surface texture in our daily life.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:37:02Z (GMT). No. of bitstreams: 1
U0001-0208202021095600.pdf: 18424891 bytes, checksum: 2e3279d47729e2a5541044ea64554cb1 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
1 Introduction 1
2 Related Work 3
2.1 Tangible User Interface 3
2.2 Simulating Textures 4
3 Texture Changing User Interface 5
3.1 Definition 5
3.2 Texels 6
3.3 SystemDesign 7
4 Implementation 9
4.1 DesigningTexel 9
4.1.1 Design1:TapeRecorder 9
4.1.2 Design2:PageTurner 9
4.1.3 Design3:CrawlerBelt 10
4.2 StructureDesign 11
4.2.1 Size 11
4.2.2 FlatnessofSurface 12
4.2.3 Accuracy 13
5 Technical Evaluation 15
5.1 MotorSpeed 15
5.2 ColorDetection 16
5.3 Accuracy 17
5.4 MaximumDelay 17
5.5 Gaps 18
5.6 AmountofTexels 18
6 Application 19
6.1 Editor 19
6.2 Photo 19
6.3 Game 22
7 Discussion and Limitation 23
7.1 Jamming 23
7.2 Texture 23
7.3 NumberofTextures 24
7.4 NumberofTexels 24
7.5 SizeofaTexel 25
8 Conclusion 26
Bibliography 27
dc.language.isoen
dc.title動態材質顯示器zh_TW
dc.titleTexels: Texture Changing Displayen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳彥仰(Mike Y. Chen),陳炳宇(BY Chen),詹力韋(Li-wei Chan),蔡欣叡(Hsin-Ruey Tsai)
dc.subject.keyword實體顯示裝置,觸覺回饋,材質,zh_TW
dc.subject.keywordPhysical Display,Haptic Feedback,Textures,en
dc.relation.page31
dc.identifier.doi10.6342/NTU202002227
dc.rights.note有償授權
dc.date.accepted2020-08-10
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
U0001-0208202021095600.pdf
  目前未授權公開取用
17.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved