Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54673
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor單秋成(Chow-Shing Shin)
dc.contributor.authorChi-Hsuan Tangen
dc.contributor.author唐啓軒zh_TW
dc.date.accessioned2021-06-16T03:36:31Z-
dc.date.issued2020
dc.date.submitted2020-08-03
dc.identifier.citation1. Guo, N., et al., Additive manufacturing: technology, applications and research needs. Frontiers of Mechanical Engineering, 2013. 8 (3) : p. 215-243.
2. Zocca, A., et al., Additive Manufacturing of Ceramics: Issues, Potentialities, and Opportunities. Journal of the American Ceramic Society, 2015. 98 (7) : p. 1983-2001.
3. Frazier, W.E., Metal Additive Manufacturing: A Review. Journal of Materials Engineering and Performance, 2014. 23 (6) : p. 1917-1928.
4. Kruth, J.P., et al. , Progress in Additive Manufacturing and Rapid Prototyping. CIRP Annals, 1998. 47 (2) : p. 525-540.
5. Friel, R.J., et al.Ultrasonic Additive Manufacturing – A Hybrid Production Process for Novel Functional Products. Procedia CIRP, 2013. 6: p. 35-40.
6. Jean, D.L., et al., Precision LCVD System Design with Real Time Process Control. 1999 International Solid Freeform Fabrication Symposium 1999: p. 59-66.
7. Ning, F., et al., Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Composites Part B: Engineering, 2015. 80: p. 369-378.
8. Hwang, S., et al., Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process. Journal of Electronic Materials, 2014. 44 (3) : p. 771-777.
9. Clijsters, S., et al., In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system. The International Journal of Advanced Manufacturing Technology, 2014. 75 (5-8) : p. 1089-1101.
10. Kempen, K., et al., Mechanical Properties of AlSi10Mg Produced by Selective Laser Melting. Physics Procedia, 2012. 39: p. 439-446.
11. 邱琬雯 (工研院IEK) , 產業技術評析-積層製造產品化技術關鍵. 2017.
12. Gibson, I., et al. , Additive Manufacturing Technologies-3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. 2014: p. 63-65.
13. Bahnini, I., et al., Additive manufacturing technology: the status, applications, and prospects. The International Journal of Advanced Manufacturing Technology, 2018. 97 (1-4) : p. 147-161.
14. Bertsch, A., et al., Microstereolithography: A Review. 2003.
15. Lee, J.W., et al. , Development of micro-stereolithography technology using metal powder. Microelectronic Engineering, 2006. 83 (4-9) : p. 1253-1256.
16. 葉雲鵬 and 鄭正元, 智慧機械與數位製造3D列印的發展. 科儀新知222期, 2020: p. 101-102.
17. Zhang, A.P., et al., Rapid Fabrication of Complex 3D Extracellular Microenvironments by Dynamic Optical Projection Stereolithography. Advanced Materials, 2012. 24 (31) : p. 4266-4270.
18. 呂如梅, 微機電明星產品-投影機. 國家奈米元件實驗室奈米通訊, 2016: p. 35
19. Wu, M.H., et al.Digital Light Processing update: status and future applications, in Projection Displays V. 1999. p. 158-170.
20. Lovo, J., et al., 3d Dlp Additive Manufacturing: Printer and Validation, in Procceedings of the 24th ABCM International Congress of Mechanical Engineering. 2017.
21. Santoliquido, O., et al., Additive Manufacturing of ceramic components by Digital Light Processing: A comparison between the “bottom-up” and the “top-down” approaches. Journal of the European Ceramic Society, 2019. 39 (6) : p. 2140-2148.
22. Mirzaee, M., et al., Developing flexible 3D printed antenna using conductive ABS materials. 2015.
23. Fantino, E., et al., 3D Printing of Conductive Complex Structures with In Situ Generation of Silver Nanoparticles. Adv Mater, 2016. 28 (19) : p. 3712-7.
24. Fantino, E., et al., In Situ Thermal Generation of Silver Nanoparticles in 3D Printed Polymeric Structures. Materials (Basel) , 2016. 9 (7) .
25. Mu, Q., et al., Digital light processing 3D printing of conductive complex structures. Additive Manufacturing, 2017. 18: p. 74-83.
26. Mousa, A.A., et al., Additive Manufacturing: A New Industrial Revolution - A Review. Journal of Scientific Achievements, 2017. 2 (3) : p. 19-31.
27. Meisel, N.A., et al. , A procedure for creating actuated joints via embedding shape memory alloys in PolyJet 3D printing. Journal of Intelligent Material Systems and Structures, 2014. 26 (12) : p. 1498-1512.
28. 張昱家, 3D列印微結構無電鍍鎳性質探討, in 機械工程學研究所. 2019, 臺灣大學..
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54673-
dc.description.abstract本研究係在探討如何利用成本相對低廉之DLP上照式光固化系統來製作含有金屬成分且可以導電之複合高分子材料結構,嘗試藉由直接在列印原料中混入銀金屬顆粒及奈米碳管,並在原有DLP上照式系統中加入兩款改良式機構,以達到研究目標。
說明利用傳統式DLP上照式系統直接進行列印含有金屬顆粒及奈米碳管原料所遭遇的困難,及新增改良式機構的作動原理、流程及安裝後能克服的問題。探討原料在進行列印時的深度及經過時間對列印過程的影響,並經由EDS元素分析及結構電阻值量測來證明列印完成機構確實含有一定比例之金屬及具有導電性,最後也會對於在兩種機構在不同參數下,列印完成的結構之間的差異進行微觀觀察。
zh_TW
dc.description.abstractThe purpose of this study is to investigate how to use a relatively low-cost DLP (Digital Light Processing) top-down system to produce a polymer composite structure which contains metal components and also can conduct electricity. Attempt to reach the goal by mixing silver metal particles and carbon nanotubes directly in the printing materials, and installing two improved mechanisms to the original DLP top-down system.
The first part of this study is to explain the difficulties encountered when using traditional DLP top-down systems to directly print photosensitive resin which contains metal particles and carbon nanotubes. Then, introducing the operating principles, processes and problems that can be overcome after the installation of the improved mechanism. After discussing the effect of the depth and passed time of the raw materials during printing, EDS (Energy-dispersive X-ray spectroscopy) analysis and structural resistance measurement are used to prove that the finished structures do contain a certain proportion of metal and do have electrical conductivity. Last but not least, the microscopic observations on the differences between the printed structures under different mechanisms and different parameters will be presented.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:36:31Z (GMT). No. of bitstreams: 1
U0001-0208202022101000.pdf: 12680568 bytes, checksum: a9d0f96fc4144c3ba4ca60620e2456ca (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VIII
表目錄 XV
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 論文架構 2
第二章 文獻回顧 3
2.1 積層製造成型技術 (Additive Manufacturing) 3
2.1.1 熔融層積成型 (Fused Deposition Modeling) 5
2.1.2 選擇性雷射融化 (Selective Laser Melting) 7
2.1.3 光固化成型 (Vat Polymerization) 9
2.2 SLA光固化成型技術 (Stereolithography Apparatus) 10
2.3 DLP光固化成型技術 (Digital Light Processing) 13
2.3.1 DLP投影機 13
2.3.2 DMD (Digital Micro-mirror Device) 晶片 16
2.3.3 DLP上照式及下照式之比較 17
2.4 利用積層製造技術製作含金屬或具有導電性之結構 20
2.4.1 硝酸銀 20
2.4.2 奈米碳管 25
2.5 含有刮刀機構 (Sweeper Roller) 之積層製造成型技術 27
第三章 實驗設備及系統架構 30
3.1 列印系統架構 30
3.1.1 DLP投影機 30
3.1.2 三軸移動控制平台 30
3.1.3 單軸向刮刀機構 33
3.1.4 內缸機構 35
3.1.5 馬達及曝光控制軟體 36
3.2 實驗材料 38
3.2.1 DB光敏樹脂 38
3.2.2 蘇丹紅一號 39
3.2.3 奈微米級銀顆粒 40
3.2.4 奈米碳管 40
3.3 實驗量測設備 42
3.3.1 萬用電表 42
3.3.2 電子天秤 42
3.3.3 立體顯微鏡 43
3.3.4 金相顯微鏡 44
3.3.5 SEM掃描式電子顯微鏡 45
3.4 其他實驗相關設備 47
3.4.1 超音波打碎機 47
3.4.2 導電銀膠 48
第四章 實驗原理及流程 49
4.1 列印前流程 49
4.1.1 繪製列印結構及設定切層軟體參數 49
4.1.2 調整列印平台高度 50
4.1.3 調整機構高度及位置 51
4.1.3.1單軸向刮刀機構 51
4.1.3.2內缸機構 52
4.1.4 統一初始液面 53
4.2 G-code設計流程及實際列印步驟 54
4.2.1 單軸向刮刀機構 54
4.2.1.1 G-code設計流程 54
4.2.1.2實際列印步驟 57
4.2.2 內缸機構 59
4.2.2.1 G-code設計流程 59
4.2.2.2實際列印步驟 60
4.3 列印後流程 64
4.3.1 顯微鏡觀測 64
4.3.2 導電度量測 65
第五章 實驗結果及討論 67
5.1 未成化時樹脂原料不同深度導電性 67
5.2 沉澱對於樹脂原料導電性之影響 73
5.3 使用DLP上照式機構列印精細微結構 78
5.4 使用未改良DLP上照式機構列印毫米級結構 81
5.5 使用單軸向刮刀機構之列印結果 84
5.5.1 結構表面SEM影像及EDS分析結果 84
5.5.2 結構側面SEM影像及EDS分析結果 90
5.5.3 小結 98
5.6 使用內缸機構之列印結果 103
5.6.1 結構表面SEM影像及EDS分析結果 104
5.6.2 結構側面SEM影像及EDS分析結果 106
5.6.3 小結 109
5.7 使用單軸向刮刀機構列印之成品導電性量測結果 110
5.7.1 DB + 1μm Ag particle + CNT 112
5.7.2 DB + 200nm Ag particle + CNT 114
5.7.3 小結 116
5.8 使用內缸機構列印之成品導電性量測結果 118
5.9 比較單軸向刮刀及內缸機構優缺 121
第六章 結論及未來展望 125
6.1 結論 125
6.2 未來展望 125
參考文獻 126
附錄 129
dc.language.isozh-TW
dc.subject積層製造技術zh_TW
dc.subject數位光處理技術zh_TW
dc.subject複合材料zh_TW
dc.subject切層厚度zh_TW
dc.subject導電性zh_TW
dc.subjectCompositeen
dc.subjectSlice Thicknessen
dc.subjectElectrical Conductivityen
dc.subjectDigital Light Processingen
dc.subjectAdditive Manufacturingen
dc.titleDLP光固化製程製作具導電性結構探討zh_TW
dc.titleStudy on the manufacturing conductive structure by Digital Light Processingen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林志郎(Chih-Lang Lin),沈銘原(Ming-Yuan Shen)
dc.subject.keyword積層製造技術,數位光處理技術,複合材料,切層厚度,導電性,zh_TW
dc.subject.keywordAdditive Manufacturing,Digital Light Processing,Composite,Slice Thickness,Electrical Conductivity,en
dc.relation.page142
dc.identifier.doi10.6342/NTU202002232
dc.rights.note有償授權
dc.date.accepted2020-08-03
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
U0001-0208202022101000.pdf
  未授權公開取用
12.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved