請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54598完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 詹迺立 | |
| dc.contributor.author | Chih-Chiang Chang | en |
| dc.contributor.author | 張志強 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:06:51Z | - |
| dc.date.available | 2015-09-25 | |
| dc.date.copyright | 2015-09-25 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-06-25 | |
| dc.identifier.citation | 1. Tai, H.C. and Lim, C. (2006) Computational studies of the coordination stereochemistry, bonding, and metal selectivity of mercury. J. Phys. Chem.. A, 110, 452-462.
2. Barkay, T., Miller, S.M. and Summers, A.O. (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol. Rev., 27, 355-384. 3. Giedroc, D.P. and Arunkumar, A.I. (2007) Metal sensor proteins: nature's metalloregulated allosteric switches. Dalton Trans., 3107-3120. 4. O'Halloran, T.V. (1993) Transition metals in control of gene expression. Science, 261, 715-725. 5. Silver, S. and Phung le, T. (2005) A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J. Ind. Microbiol. Biotechnol., 32, 587-605. 6. Osborn, A.M., Bruce, K.D., Strike, P. and Ritchie, D.A. (1997) Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiol. Rev., 19, 239-262. 7. O'Halloran, B.A.G.a.T.V. (2013) Mechanisms Controlling the Cellular Metal Economy, Encyclopedia of Inorganic and Bioinorganic Chemistry. 8. Reyes-Caballero, H., Campanello, G.C. and Giedroc, D.P. (2011) Metalloregulatory proteins: metal selectivity and allosteric switching. Biophys. Chem., 156, 103-114. 9. Hobman, J.L. (2007) MerR family transcription activators: similar designs, different specificities. Mol. Microbiol., 63, 1275-1278. 10. Hobman, J.L., Wilkie, J. and Brown, N.L. (2005) A design for life: prokaryotic metal-binding MerR family regulators. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine, 18, 429-436. 11. Brown, N.L., Stoyanov, J.V., Kidd, S.P. and Hobman, J.L. (2003) The MerR family of transcriptional regulators. FEMS Microbiol. Rev., 27, 145-163. 12. Helmann, J.D., Wang, Y., Mahler, I. and Walsh, C.T. (1989) Homologous metalloregulatory proteins from both gram-positive and gram-negative bacteria control transcription of mercury resistance operons. J. Bacteriol., 171, 222-229. 13. Watanabe, S., Kita, A., Kobayashi, K. and Miki, K. (2008) Crystal structure of the [2Fe-2S] oxidative-stress sensor SoxR bound to DNA. Proc. Natl. Acad. Sci. U.S.A., 105, 4121-4126. 14. Changela, A., Chen, K., Xue, Y., Holschen, J., Outten, C.E., O'Halloran, T.V. and Mondragon, A. (2003) Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science, 301, 1383-1387. 15. Heldwein, E.E. and Brennan, R.G. (2001) Crystal structure of the transcription activator BmrR bound to DNA and a drug. Nature, 409, 378-382. 16. Godsey, M.H., Baranova, N.N., Neyfakh, A.A. and Brennan, R.G. (2001) Crystal structure of MtaN, a global multidrug transporter gene activator. J. Biol. Chem., 276, 47178-47184. 17. Kumaraswami, M., Newberry, K.J. and Brennan, R.G. (2010) Conformational plasticity of the coiled-coil domain of BmrR is required for bmr operator binding: the structure of unliganded BmrR. J. Mol. Biol., 398, 264-275. 18. Newberry, K.J. and Brennan, R.G. (2004) The structural mechanism for transcription activation by MerR family member multidrug transporter activation, N terminus. J. Biol. Chem., 279, 20356-20362. 19. Zeng, Q., Stalhandske, C., Anderson, M.C., Scott, R.A. and Summers, A.O. (1998) The core metal-recognition domain of MerR. Biochemistry, 37, 15885-15895. 20. Song, L., Caguiat, J., Li, Z., Shokes, J., Scott, R.A., Olliff, L. and Summers, A.O. (2004) Engineered single-chain, antiparallel, coiled coil mimics the MerR metal binding site. J. Bacteriol., 186, 1861-1868. 21. Helmann, J.D., Ballard, B.T. and Walsh, C.T. (1990) The MerR metalloregulatory protein binds mercuric ion as a tricoordinate, metal-bridged dimer. Science, 247, 946-948. 22. Shewchuk, L.M., Verdine, G.L., Nash, H. and Walsh, C.T. (1989) Mutagenesis of the cysteines in the metalloregulatory protein MerR indicates that a metal-bridged dimer activates transcription. Biochemistry, 28, 6140-6145. 23. Nascimento, A.M. and Chartone-Souza, E. (2003) Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments. Genet. Mol. Res., 2, 92-101. 24. Huang, C.C., Narita, M., Yamagata, T., Itoh, Y. and Endo, G. (1999) Structure analysis of a class II transposon encoding the mercury resistance of the Gram-positive Bacterium bacillus megaterium MB1, a strain isolated from minamata bay, Japan. Gene, 234, 361-369. 25. Brown, N.L., Misra, T.K., Winnie, J.N., Schmidt, A., Seiff, M. and Silver, S. (1986) The nucleotide sequence of the mercuric resistance operons of plasmid R100 and transposon Tn501: further evidence for mer genes which enhance the activity of the mercuric ion detoxification system. Mol. Genet. Genomic., 202, 143-151. 26. Brown, N.L., Ford, S.J., Pridmore, R.D. and Fritzinger, D.C. (1983) Nucleotide sequence of a gene from the Pseudomonas transposon Tn501 encoding mercuric reductase. Biochemistry, 22, 4089-4095. 27. Fox, B. and Walsh, C.T. (1982) Mercuric reductase. Purification and characterization of a transposon-encoded flavoprotein containing an oxidation-reduction-active disulfide. J. Biol. Chem., 257, 2498-2503. 28. Hobman, J.L. and Brown, N.L. (1997) bacterial mercury-resistance genes. Metal ions in biological systems, 34, 527-568. 29. Summers, A.O. (1986) Organization, expression, and evolution of genes for mercury resistance. Annu. Rev. Microbiol., 40, 607-634. 30. Ansari, A.Z., Bradner, J.E. and O'Halloran, T.V. (1995) DNA-bend modulation in a repressor-to-activator switching mechanism. Nature, 374, 371-375. 31. Frantz, B. and O'Halloran, T.V. (1990) DNA distortion accompanies transcriptional activation by the metal-responsive gene-regulatory protein MerR. Biochemistry, 29, 4747-4751. 32. O'Halloran, T.V., Frantz, B., Shin, M.K., Ralston, D.M. and Wright, J.G. (1989) The MerR heavy metal receptor mediates positive activation in a topologically novel transcription complex. Cell, 56, 119-129. 33. Lund, P.A. and Brown, N.L. (1989) Regulation of transcription in Escherichia coli from the mer and merR promoters in the transposon Tn501. J. Mol. Biol., 205, 343-353. 34. Moyle, H., Waldburger, C. and Susskind, M.M. (1991) Hierarchies of base pair preferences in the P22 ant promoter. J. Bacteriol., 173, 1944-1950. 35. Harley, C.B. and Reynolds, R.P. (1987) Analysis of E. coli promoter sequences. Nucleic Acids Res., 15, 2343-2361. 36. Huang, C.C., Narita, M., Yamagata, T. and Endo, G. (1999) Identification of three merB genes and characterization of a broad-spectrum mercury resistance module encoded by a class II transposon of Bacillus megaterium strain MB1. Gene, 239, 361-366. 37. Parkhill, J. and Brown, N.L. (1990) Site-specific insertion and deletion mutants in the mer promoter-operator region of Tn501; the nineteen base-pair spacer is essential for normal induction of the promoter by MerR. Nucleic Acids Res., 18, 5157-5162. 38. Kulkarni, R.D. and Summers, A.O. (1999) MerR cross-links to the alpha, beta, and sigma 70 subunits of RNA polymerase in the preinitiation complex at the merTPCAD promoter. Biochemistry, 38, 3362-3368. 39. Lee, I.W., Livrelli, V., Park, S.J., Totis, P.A. and Summers, A.O. (1993) In vivo DNA-protein interactions at the divergent mercury resistance (mer) promoters. II. Repressor/activator (MerR)-RNA polymerase interaction with merOP mutants. J. Biol. Chem., 268, 2632-2639. 40. Heltzel, A., Lee, I.W., Totis, P.A. and Summers, A.O. (1990) Activator-dependent preinduction binding of sigma-70 RNA polymerase at the metal-regulated mer promoter. Biochemistry, 29, 9572-9584. 41. Summers, A.O. (1992) Untwist and shout: a heavy metal-responsive transcriptional regulator. J. Bacteriol., 174, 3097-3101. 42. Guo, H.B., Johs, A., Parks, J.M., Olliff, L., Miller, S.M., Summers, A.O., Liang, L. and Smith, J.C. (2010) Structure and conformational dynamics of the metalloregulator MerR upon binding of Hg(II). J. Mol. Biol., 398, 555-568. 43. Song, L., Teng, Q., Phillips, R.S., Brewer, J.M. and Summers, A.O. (2007) 19F-NMR reveals metal and operator-induced allostery in MerR. J. Mol. Biol., 371, 79-92. 44. Ansari, A.Z., Chael, M.L. and O'Halloran, T.V. (1992) Allosteric underwinding of DNA is a critical step in positive control of transcription by Hg-MerR. Nature, 355, 87-89. 45. Chen, C.Y., Hsieh, J.L., Silver, S., Endo, G. and Huang, C.C. (2008) Interactions between two MerR regulators and three operator/promoter regions in the mercury resistance module of Bacillus megaterium. Biosci. Biotechnol. Biochem., 72, 2403-2410. 46. Huang, C.C., Narita, M., Yamagata, T., Phung le, T., Endo, G. and Silver, S. (2002) Characterization of two regulatory genes of the mercury resistance determinants from TnMERI1 by luciferase-based examination. Gene, 301, 13-20. 47. Otwinowski, Z. and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol., 276, 307-326. 48. Terwilliger, T.C. (2003) Automated main-chain model building by template matching and iterative fragment extension. Acta Crystallogr. D, 59, 38-44. 49. Terwilliger, T.C. (2000) Maximum-likelihood density modification. Acta Crystallogr. D, 56, 965-972. 50. Terwilliger, T.C. and Berendzen, J. (1999) Discrimination of solvent from protein regions in native Fouriers as a means of evaluating heavy-atom solutions in the MIR and MAD methods. Acta Crystallogr. D, 55, 501-505. 51. Emsley, P. and Cowtan, K. (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr. D, 60, 2126-2132. 52. Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W. et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D, 66, 213-221. 53. Painter, J. and Merritt, E.A. (2006) Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr. D, 62, 439-450. 54. Shewchuk, L.M., Verdine, G.L. and Walsh, C.T. (1989) Transcriptional switching by the metalloregulatory MerR protein: initial characterization of DNA and mercury (II) binding activities. Biochemistry, 28, 2331-2339. 55. Outten, C.E., Outten, F.W. and O'Halloran, T.V. (1999) DNA distortion mechanism for transcriptional activation by ZntR, a Zn(II)-responsive MerR homologue in Escherichia coli. J. Biol. Chem., 274, 37517-37524. 56. Veglia, G., Porcelli, F., DeSilva, T., Prantner, A. and Opella, S.J. (2000) The structure of the metal-binding motif GMTCAAC is similar in an 18-residue linear peptide and the mercury binding protein MerP. J. Am. Chem. Soc., 122, 2389-2390. 57. Steele, R.A. and Opella, S.J. (1997) Structures of the reduced and mercury-bound forms of MerP, the periplasmic protein from the bacterial mercury detoxification system. Biochemistry, 36, 6885-6895. 58. Dudev, T. and Lim, C. (2014) Competition among Metal Ions for Protein Binding Sites: Determinants of Metal Ion Selectivity in Proteins. Chem. Rev., 114, 538-556. 59. Wright, J.G., Tsang, H.T., Pennerhahn, J.E. and Ohalloran, T.V. (1990) Coordination Chemistry of the Hg-Merr Metalloregulatory Protein - Evidence for a Novel Tridentate Hg-Cysteine Receptor-Site. J. Am. Chem. Soc., 112, 2434-2435. 60. Utschig, L.M., Bryson, J.W. and O'Halloran, T.V. (1995) Mercury-199 NMR of the metal receptor site in MerR and its protein-DNA complex. Science, 268, 380-385. 61. Ralston, D.M. and O'Halloran, T.V. (1990) Ultrasensitivity and heavy-metal selectivity of the allosterically modulated MerR transcription complex. Pro. Natl. Acad. Sci. U.S.A., 87, 3846-3850. 62. Chen, P.R. and He, C. (2008) Selective recognition of metal ions by metalloregulatory proteins. Curr. Opin. Chem. Biol., 12, 214-221. 63. Ross, W., Park, S.J. and Summers, A.O. (1989) Genetic analysis of transcriptional activation and repression in the Tn21 mer operon. J. Bacteriol., 171, 4009-4018. 64. Shewchuk, L.M., Helmann, J.D., Ross, W., Park, S.J., Summers, A.O. and Walsh, C.T. (1989) Transcriptional switching by the MerR protein: activation and repression mutants implicate distinct DNA and mercury(II) binding domains. Biochemistry, 28, 2340-2344. 65. Parkhill, J., Lawley, B., Hobman, J.L. and Brown, N.L. (1998) Selection and characterization of mercury-independent activation mutants of the Tn501 transcriptional regulator, MerR. Microbiology, 144 ( Pt 10), 2855-2864. 66. Livrelli, V., Lee, I.W. and Summers, A.O. (1993) In vivo DNA-protein interactions at the divergent mercury resistance (mer) promoters. I. Metalloregulatory protein MerR mutants. J. Biol. Chem., 268, 2623-2631. 67. Miller, S.M. (1999) Bacterial detoxification of Hg(II) and organomercurials. Essays Biochem, 34, 17-30. 68. Murakami, K.S., Masuda, S., Campbell, E.A., Muzzin, O. and Darst, S.A. (2002) Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science, 296, 1285-1290. 69. Campbell, E.A., Muzzin, O., Chlenov, M., Sun, J.L., Olson, C.A., Weinman, O., Trester-Zedlitz, M.L. and Darst, S.A. (2002) Structure of the bacterial RNA polymerase promoter specificity sigma subunit. Mol. Cell, 9, 527-539. 70. Caguiat, J.J., Watson, A.L. and Summers, A.O. (1999) Cd(II)-responsive and constitutive mutants implicate a novel domain in MerR. J. Bacteriol., 181, 3462-3471. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54598 | - |
| dc.description.abstract | 汞抗性操作組 (mer operon) 上帶有許多功能性蛋白質基因,可對環境中有毒性的汞離子 (Hg2+) 以及有機汞複合物 (organomercurial compounds) 產生抗性,這些蛋白質具有感應 (sensing protein) 、運輸 (transport protein) 和去毒性 (detoxification protein) 等功能。雙重功能之轉錄調控因子MerR 能對汞抗性操作組之表現與否進行嚴緊的調控。當細菌中沒有汞離子時,MerR 會與汞抗性操作組的轉錄調控區塊 (operator/promoter (O/P)) 結合,抑制汞抗性操作組之轉錄作用,而當汞離子存在時,MerR可與汞離子結合並轉換為轉錄活化因子,啟始汞抗性操作組之轉錄作用,以生成與汞抗性相關之功能性蛋白質。大多數啟動子(promoter)之RNA聚合酶 (RNA polymerase) 結合位-35和-10區塊之間隔為17±1 bps,DNA序列分析發現汞抗性操作組轉錄調控區塊 (mer operon O/P) RNA聚合酶結合位之間隔為19~20 bps,且中間部分帶有一段偽迴文序列 (pseudo-palindromic sequence),使汞抗性操作組之轉錄調控不同於一般基因之轉錄調控機制。汞抗性操作組轉錄調控區塊與MerR結合後,可經由汞離子引發之MerR二聚體發生構型變化,導致汞抗性操作組轉錄調控區 -10和-35區塊之距離縮短,並旋轉至相同位面上,因而活化轉錄作用。為了瞭解汞離子如何與MerR二聚體結合並活化汞抗性操作組之轉錄,在本實驗中,我們解出了Bacillus megaterium strain MB1之汞抗性操作組轉錄調控因子MerR之原態(apo)與汞離子結合態(Hg2+-bound)兩種狀態下之蛋白質結構(簡稱為apo-MerR和 Hg2+-MerR),分別代表MerR抑制態 (repressor) 和活化態 (activator)的蛋白質構型。其中apo-MerR結構更是目前已知結構之MerR 家族 (MerR family) 蛋白質中,唯一沒有配體 (ligand) 結合的全長蛋白質構型。比較兩者之蛋白構型差異,不但可以得知MerR二聚體如何組成一對以平面三角配位與汞離子結合的作用位點,並且可了解汞離子與apo-MerR結合之後所引發的二級、三級和四級結構變化。藉由汞離子所引起MerR二聚體之DNA結合位構型變化,可合理解釋MerR與汞離子之交互作用,如何影響轉錄調控區塊之構型變化並調控汞抗性操作組之轉錄作用。 | zh_TW |
| dc.description.abstract | The mer operon confers bacterial resistance to environmental inorganic mercury (Hg2+) and organomercurial compounds by encoding proteins involved in the sensing, transport, and detoxification of these cytotoxic agents. Expression of the mer operon is tightly regulated by the dual-function transcriptional regulatory protein MerR. Whereas in the absence of Hg2+, MerR binds to the operator/promoter region (O/P) of mer operon to supress transcription, MerR is converted into a transcriptional activator upon Hg2+-binding to induce mer operon expression. Sequence analysis suggests that the O/P of mer operon is pseudopalindromic with the -35 and -10 boxes being spaced by 19~20 bps, deviate from the optimal spacing of 17 bp. Therefore, a Hg2+-dependent DNA distortion by the MerR dimer, which brings closer and reorients the two polymerase binding sites, is required to activate transcription. To understand the structural basis by which Hg2+-binding modulates MerR function, we have determined the crystal structures of apo- and Hg2+-bound MerR dimer form Bacillus megaterium MB1, which correspond to the suppressor and activator conformation of MerR, respectively. To our knowledge, the apo-MerR structure represents the first visualization of an inducer-free form of a MerR family protein. Structural comparison not only illustrated how a buried trigonal planar Hg2+-binding pocket is assembled, but also revealed functionally relevant tertiary and quaternary changes between the apo- and Hg2+-bound MerR dimer. The pronounced Hg2+-dependent reposition of the DNA-binding domains suggests a plausible mechanism of transcription regulation by MerR. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:06:51Z (GMT). No. of bitstreams: 1 ntu-104-D97442006-1.pdf: 21729128 bytes, checksum: 823bc645ba6fabb35422351459d11eb5 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | Contents
口試委員會審定書 ........................................................................................................ I 謝誌............................................................................................................................... II 中文摘要 .................................................................................................................... III Abstract ........................................................................................................................ V Contents .................................................................................................................... VII List of Figures ............................................................................................................. IX List of Tables .............................................................................................................. XI 1. Introduction .......................................................................................................... 1 1.1. Heavy metal resistance system ........................................................................... 2 1.2. The regulatory proteins of the MerR family ..................................................... 3 1.3. The mer operon ................................................................................................. 4 1.4. The TnMERI1 transposon from Bacillus megaterium MB1 strain .................... 6 1.5. Specific aims of this study ................................................................................. 7 2. Methods and Materials ........................................................................................ 9 2.1. Cloning of the Bacillus megaterium MB1 strain MerR ................................... 10 2.2. MerR expression and purification .................................................................... 10 2.3. DNA sequence derived from the mer operon for crystallography ................... 11 2.4. Protein crystallization ....................................................................................... 11 2.5. Structure determination .................................................................................... 13 2.6. Structural modeling .......................................................................................... 14 VIII 2.7 Analyzing the MerR-DNA crystals by gel electrophoresis ............................... 15 3. Results and Discussion ....................................................................................... 16 3.1. Structure determination of apo-MerR and Hg2+-bound MerR .......................... 17 3.2. Overall structure of apo-MerR and Hg2+-bound MerR .................................... 18 3.3. MerR undergoes extensive secondary, tertiary and quaternary structural changes upon Hg2+ binding ............................................................................................ 20 3.4. Structure of the Hg2+-binding site and structural basis of metal selectivity ...... 23 3.5. Functional implications for the MerR from Gram-negative bacteria and the prospective transcriptional regulator MerR2 of TnMERI1 .............................. 26 3.6. Structural basis of MerR-mediated regulation of the mer operon .................... 28 4. Conclusion ......................................................................................................... 32 5. Figures ................................................................................................................ 34 6. Tables ................................................................................................................. 64 7. References .......................................................................................................... 71 | |
| dc.language.iso | en | |
| dc.subject | 汞結合位點 | zh_TW |
| dc.subject | 汞抗性操作組 | zh_TW |
| dc.subject | 轉錄調控區塊 | zh_TW |
| dc.subject | 蛋白質結構 | zh_TW |
| dc.subject | 轉錄抑制態 | zh_TW |
| dc.subject | 轉錄活化態 | zh_TW |
| dc.subject | MerR 家族 | zh_TW |
| dc.subject | 汞抗性操作組 | zh_TW |
| dc.subject | 轉錄調控區塊 | zh_TW |
| dc.subject | 蛋白質結構 | zh_TW |
| dc.subject | 轉錄抑制態 | zh_TW |
| dc.subject | 轉錄活化態 | zh_TW |
| dc.subject | MerR 家族 | zh_TW |
| dc.subject | 汞結合位點 | zh_TW |
| dc.subject | mer operon | en |
| dc.subject | repressor | en |
| dc.subject | activator | en |
| dc.subject | MerR family | en |
| dc.subject | Hg2+ binding site | en |
| dc.subject | mer operon | en |
| dc.subject | operator/promoter region | en |
| dc.subject | crystal structure | en |
| dc.subject | repressor | en |
| dc.subject | activator | en |
| dc.subject | MerR family | en |
| dc.subject | Hg2+ binding site | en |
| dc.subject | operator/promoter region | en |
| dc.subject | crystal structure | en |
| dc.title | 以X-射線結晶學探討汞離子誘發雙重功能轉錄調節因子MerR構型變化之結構機轉 | zh_TW |
| dc.title | Structural Basis of the Hg2+-Mediated Conformational Switching of the Dual-Function Transcriptional Regulator MerR | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 蕭傳鐙,徐駿森,黃介辰,曾秀如 | |
| dc.subject.keyword | 汞抗性操作組,轉錄調控區塊,蛋白質結構,轉錄抑制態,轉錄活化態,MerR 家族,汞結合位點, | zh_TW |
| dc.subject.keyword | mer operon,operator/promoter region,crystal structure,repressor,activator,MerR family,Hg2+ binding site, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-06-25 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 21.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
