請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54588完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅敏輝(Min-Hui Lo) | |
| dc.contributor.author | Wen-Ying Wu | en |
| dc.contributor.author | 吳文瑛 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:06:11Z | - |
| dc.date.available | 2015-08-11 | |
| dc.date.copyright | 2015-08-11 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-06-25 | |
| dc.identifier.citation | Adam, J. C., A. F. Hamlet, and D. P. Lettenmaier (2009), Implications of global climate change for snowmelt hydrology in the twenty-first century, Hydrological Processes, 23(7), 962-972.
Allen, M. R., and W. J. Ingram (2002), Constraints on future changes in climate and the hydrologic cycle, Nature, 419(6903), 224-232. Arnell, N. W., and B. Lloyd-Hughes (2014), The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios, Climatic Change, 122(1-2), 127-140. Australia, G. (1997), Australia's River Basins 1997, edited by G. A. National Mapping Division. Baldocchi, D., E. Falge, L. Gu, R. Olson, D. Hollinger, S. Running, P. Anthoni, C. Bernhofer, K. Davis, and R. Evans (2001), FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities, Bulletin of the American Meteorological Society, 82(11), 2415-2434. Barnett, T. P., J. C. Adam, and D. P. Lettenmaier (2005), Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438(7066), 303-309. Bastos, A., S. W. Running, C. Gouveia, and R. M. Trigo (2013), The global NPP dependence on ENSO: La Niña and the extraordinary year of 2011, Journal of Geophysical Research: Biogeosciences, 118(3), 1247-1255. Boening, C., J. K. Willis, F. W. Landerer, R. S. Nerem, and J. Fasullo (2012), The 2011 La Niña: So strong, the oceans fell, Geophysical Research Letters, 39(19), L19602. Bond, N. R., P. Lake, and A. H. Arthington (2008), The impacts of drought on freshwater ecosystems: an Australian perspective, Hydrobiologia, 600(1), 3-16. Budyko, M. I. (1973), Climate and life. Bureau of Meteorology, D. t. E., Australia A map of Australia and the surrounding ocean and atmosphere showing factors that influence the climate, edited. Cazenave, A., H.-B. Dieng, B. Meyssignac, K. von Schuckmann, B. Decharme, and E. Berthier (2014), The rate of sea-level rise, Nature Clim. Change, 4(5), 358-361. Chambers, D. P., J. Wahr, and R. S. Nerem (2004), Preliminary observations of global ocean mass variations with GRACE, Geophysical Research Letters, 31(13), L13310. Chou, C., and C.-W. Lan (2011), Changes in the Annual Range of Precipitation under Global Warming, Journal of Climate, 25(1), 222-235. Chou, C., J. C. H. Chiang, C.-W. Lan, C.-H. Chung, Y.-C. Liao, and C.-J. Lee (2013), Increase in the range between wet and dry season precipitation, Nature Geosci, 6(4), 263-267. Dirmeyer, P. A. (2011), The terrestrial segment of soil moisture–climate coupling, Geophysical Research Letters, 38(16), L16702. Dirmeyer, P. A., Y. Jin, B. Singh, and X. Yan (2013), Trends in Land–Atmosphere Interactions from CMIP5 Simulations, Journal of Hydrometeorology, 14(3), 829-849. Entekhabi, D., I. Rodriguez-Iturbe, and F. Castelli (1996), Mutual interaction of soil moisture state and atmospheric processes, Journal of Hydrology, 184(1–2), 3-17. Famiglietti, J., and E. Wood (1994), Multiscale modeling of spatially variable water and energy balance processes, Water Resources Research, 30(11), 3061-3078. Famiglietti, J. S., M. Lo, S. L. Ho, J. Bethune, K. J. Anderson, T. H. Syed, S. C. Swenson, C. R. de Linage, and M. Rodell (2011), Satellites measure recent rates of groundwater depletion in California's Central Valley, Geophysical Research Letters, 38(3), L03403. Fasullo, J. T., C. Boening, F. W. Landerer, and R. S. Nerem (2013), Australia's unique influence on global sea level in 2010–2011, Geophysical Research Letters, 40(16), 4368-4373. Fischer, E. M., S. I. Seneviratne, P. L. Vidale, D. Lüthi, and C. Schär (2007), Soil Moisture–Atmosphere Interactions during the 2003 European Summer Heat Wave, Journal of Climate, 20(20), 5081-5099. Gregory, J. M., J. F. B. Mitchell, and A. J. Brady (1997), Summer Drought in Northern Midlatitudes in a Time-Dependent CO2 Climate Experiment, Journal of Climate, 10(4), 662-686. Guerschman, J. P., A. I. Van Dijk, G. Mattersdorf, J. Beringer, L. B. Hutley, R. Leuning, R. C. Pipunic, and B. S. Sherman (2009), Scaling of potential evapotranspiration with MODIS data reproduces flux observations and catchment water balance observations across Australia, Journal of Hydrology, 369(1), 107-119. Güntner, A., J. Stuck, S. Werth, P. Döll, K. Verzano, and B. Merz (2007), A global analysis of temporal and spatial variations in continental water storage, Water Resources Research, 43(5), W05416. Held, I. M., and B. J. Soden (2006), Robust Responses of the Hydrological Cycle to Global Warming, Journal of Climate, 19(21), 5686-5699. Hua-lan, R. (2011), README document for global land data assimilation system version 1 (GLDAS-1) products, edited. Huete, A., K. Didan, T. Miura, E. P. Rodriguez, X. Gao, and L. G. Ferreira (2002), Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sensing of Environment, 83(1–2), 195-213. Huffman, G. J., D. T. Bolvin, E. J. Nelkin, D. B. Wolff, R. F. Adler, G. Gu, Y. Hong, K. P. Bowman, and E. F. Stocker (2007), The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales, Journal of Hydrometeorology, 8(1), 38-55. IPCC (2013), Annex I: Atlas of Global and Regional Climate Projections in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley, pp. 1311–1394, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Jones, D. A., W. Wang, and R. Fawcett (2009), High-quality spatial climate data-sets for Australia, Australian Meteorological and Oceanographic Journal, 58(4), 233. Kollet, S. J., and R. M. Maxwell (2008), Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model, Water Resources Research, 44(2). Koster, R. D., et al. (2004), Regions of Strong Coupling Between Soil Moisture and Precipitation, Science, 305(5687), 1138-1140. Koven, C. D., W. J. Riley, and A. Stern (2012), Analysis of Permafrost Thermal Dynamics and Response to Climate Change in the CMIP5 Earth System Models, Journal of Climate, 26(6), 1877-1900. Kumar, S., D. M. Lawrence, P. A. Dirmeyer, and J. Sheffield (2014), Less reliable water availability in the 21st century climate projections, Earth's Future, 2(3), 152-160. Lawrence, D. M., et al. (2011), Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model, Journal of Advances in Modeling Earth Systems, 3(1), M03001. Leblanc, M., S. Tweed, G. Ramillien, P. Tregoning, F. Frappart, A. Fakes, and I. Cartwright (2011), Groundwater change in the Murray basin from long-term in situ monitoring and GRACE estimates, Climate change effects on groundwater resources: A global synthesis of findings and recommendations CRC Press, November, 22, 169-187. Lo, M.-H., P. J. F. Yeh, and J. S. Famiglietti (2008), Constraining water table depth simulations in a land surface model using estimated baseflow, Advances in Water Resources, 31(12), 1552-1564. McGrath, G. S., R. Sadler, K. Fleming, P. Tregoning, C. Hinz, and E. J. Veneklaas (2012), Tropical cyclones and the ecohydrology of Australia's recent continental‐scale drought, Geophysical Research Letters, 39(3). Meng, X. H., J. P. Evans, and M. F. McCabe (2013), The Impact of Observed Vegetation Changes on Land–Atmosphere Feedbacks During Drought, Journal of Hydrometeorology, 15(2), 759-776. Meng, X. H., J. P. Evans, and M. F. McCabe (2014), The influence of inter-annually varying albedo on regional climate and drought, Clim Dyn, 42(3-4), 787-803. Milly, P. C. D., K. A. Dunne, and A. V. Vecchia (2005), Global pattern of trends in streamflow and water availability in a changing climate, Nature, 438(7066), 347-350. Munier, S., M. Becker, P. Maisongrande, and A. Cazenave (2012), Using GRACE to detect Groundwater Storage variations: the cases of Canning Basin and Guarani Aquifer System, International Water Technology Journal, 2, 2-13. Niu, G.-Y., and Z.-L. Yang (2006), Effects of Frozen Soil on Snowmelt Runoff and Soil Water Storage at a Continental Scale, Journal of Hydrometeorology, 7(5), 937-952. Oleson, K. W., D. M. Lawrence, B. Gordon, M. G. Flanner, E. Kluzek, J. Peter, S. Levis, S. C. Swenson, E. Thornton, and J. Feddema (2010), Technical description of version 4.0 of the Community Land Model (CLM). Potter, N. J., and L. Zhang (2009), Interannual variability of catchment water balance in Australia, Journal of Hydrology, 369(1–2), 120-129. Poulter, B., et al. (2014), Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle, Nature, 509(7502), 600-603. Qian, T., A. Dai, K. E. Trenberth, and K. W. Oleson (2006), Simulation of Global Land Surface Conditions from 1948 to 2004. Part I: Forcing Data and Evaluations, Journal of Hydrometeorology, 7(5), 953-975. Ramillien, G., A. Cazenave, and O. Brunau (2004), Global time variations of hydrological signals from GRACE satellite gravimetry, Geophysical Journal International, 158(3), 813-826. Reager, J. T., B. F. Thomas, and J. S. Famiglietti (2014), River basin flood potential inferred using GRACE gravity observations at several months lead time, Nature Geosci, 7(8), 588-592. Rodell, M., and J. S. Famiglietti (2001), An analysis of terrestrial water storage variations in Illinois with implications for the Gravity Recovery and Climate Experiment (GRACE), Water Resources Research, 37(5), 1327-1339. Rodell, M., I. Velicogna, and J. S. Famiglietti (2009), Satellite-based estimates of groundwater depletion in India, Nature, 460(7258), 999-1002. Rodell, M., J. S. Famiglietti, J. Chen, S. I. Seneviratne, P. Viterbo, S. Holl, and C. R. Wilson (2004a), Basin scale estimates of evapotranspiration using GRACE and other observations, Geophysical Research Letters, 31(20), L20504. Rodell, M., et al. (2004b), The Global Land Data Assimilation System, Bulletin of the American Meteorological Society, 85(3), 381-394. Rui, H. (2011), Readme document for global land data assimilation system version 2 (GLDAS-2) products, GES DISC. Schneider, U., T. Fuchs, A. Meyer-Christoffer, and B. Rudolf (2008), Global precipitation analysis products of the GPCC, Global Precipitation Climatology Centre (GPCC), DWD, Internet Publikation, 1-12. Seoane, L., G. Ramillien, F. Frappart, and M. Leblanc (2013), Regional GRACE-based estimates of water mass variations over Australia: validation and interpretation, Hydrol. Earth Syst. Sci., 17(12), 4925-4939. Swenson, S., J. Wahr, and P. C. D. Milly (2003), Estimated accuracies of regional water storage variations inferred from the Gravity Recovery and Climate Experiment (GRACE), Water Resources Research, 39(8), 1223. Swenson, S., P. J. F. Yeh, J. Wahr, and J. Famiglietti (2006), A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois, Geophysical Research Letters, 33(16), L16401. Swenson, S. C., and D. M. Lawrence (2014), Assessing a dry surface layer-based soil resistance parameterization for the Community Land Model using GRACE and FLUXNET-MTE data, Journal of Geophysical Research: Atmospheres, 119(17), 10,299-210,312. Syed, T. H., J. S. Famiglietti, M. Rodell, J. Chen, and C. R. Wilson (2008), Analysis of terrestrial water storage changes from GRACE and GLDAS, Water Resources Research, 44(2), W02433. Syed, T. H., J. S. Famiglietti, M. Rodell, J. Chen, and C. R. Wilson (2008), Analysis of terrestrial water storage changes from GRACE and GLDAS, Water Resources Research, 44(2). Tapley, B. D., S. Bettadpur, M. Watkins, and C. Reigber (2004), The gravity recovery and climate experiment: Mission overview and early results, Geophysical Research Letters, 31(9), L09607. Taylor, K. E. (2001), Summarizing multiple aspects of model performance in a single diagram, Journal of Geophysical Research: Atmospheres, 106(D7), 7183-7192. Taylor, K. E., R. J. Stouffer, and G. A. Meehl (2011), An Overview of CMIP5 and the Experiment Design, Bulletin of the American Meteorological Society, 93(4), 485-498. Taylor, R. G., et al. (2013), Ground water and climate change, Nature Clim. Change, 3(4), 322-329. Thomas, A. C., J. T. Reager, J. S. Famiglietti, and M. Rodell (2014), A GRACE-based water storage deficit approach for hydrological drought characterization, Geophysical Research Letters, 41(5), 2014GL059323. Tregoning, P., S. McClusky, A. Van Dijk, R. Crosbie, and J. Peña-Arancibia (2012), Assessment of GRACE satellites for groundwater estimation in Australia, National Water Commission, Canberra, 82. Trenberth, K. E., L. Smith, T. Qian, A. Dai, and J. Fasullo (2007), Estimates of the Global Water Budget and Its Annual Cycle Using Observational and Model Data, Journal of Hydrometeorology, 8(4), 758-769. Wada, Y., et al. (2013), Multimodel projections and uncertainties of irrigation water demand under climate change, Geophysical Research Letters, 40(17), 4626-4632. Zhang, X., Q. Tang, X. Zhang, and D. P. Lettenmaier (2014), Runoff sensitivity to global mean temperature change in the CMIP5 Models, Geophysical Research Letters, 41(15), 5492-5498. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54588 | - |
| dc.description.abstract | 陸地水含量是全球水循環中的基本要素,其變化在地球氣候系統中扮演重要的角色。自2002年起,重力反演與氣候實驗衛星(GRACE)提供了一個嶄新的方法以估計水含量的變化。藉由測量地球重力的差異,GRACE衛星資料可以在全球尺度下估計該區域每個月的水含量變化。
本研究使用第五期耦合模式相互比對計畫(CMIP5)之模擬結果,估計土壤水含量隨著全球暖化的改變。結果顯示,氣候增暖將增加北半球中高緯度土壤水含量之季節變化量。冬季的降雨增多與降雪減少,提高土壤水含量在冬季的補注;春季之融雪減少則減少土壤水含量在春夏季的補注,導致乾季越乾與濕季越濕。同時,暖化導致的土壤冰融化也會影響滲透率與增加土壤水的可變動量,提高土壤水之季節變化量增加的可能性。本研究顯示土壤水之季節變化量增加與在暖化的水資源分佈不均,對於氣候變遷下的水資源管理有相當重要的意義。 此外,本研究以澳洲為例,比較GRACE衛星觀測資料與陸地水文模式的陸地水含量差異,並提出造成差異之可能機制。進一步分析陸氣交互作用之強度後,我們可以得到陸氣交互作用在時空分布的變化。在洪災事件中,陸氣耦合強度可能先上升後下降,即蒸發量隨土壤溼度增加而增加,但在洪災後期蒸發量接近潛在蒸發量,此時蒸發量與土壤濕度則無顯著關聯。本研究顯現不同的土壤溼度可能對地表能量與水氣循環造成非線性的影響。此發現將有助於對於氣候模式的模擬以及短期氣候預報。 | zh_TW |
| dc.description.abstract | Terrestrial water storage (TWS) is a fundamental signal in the land hydrological cycle, and its changes play a crucial role in the earth’s climate system. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) has offered a new method to estimate the variability of TWS by measuring gravity changes, in which GRACE can provide for the first time the TWS globally at monthly time scales.
In this study, we used simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) archives to investigate changes in the annual range of soil water storage under global warming. Results show that future warming could lead to significant declines in snowfall, and a corresponding lack of snowmelt water recharge to the soil, which makes soil water less available during spring and summer. Conversely, more precipitation as rainfall results in higher recharge to soil water during its accumulating season. Thus, the wettest month of soil water gets wetter, and the driest month gets drier, resulting in an increase of the annual range and suggesting that stronger heterogeneity in global water distribution (changing extremes) could occur under global warming. This has implications for water management and water security under a changing climate. In addition, we compared the GRACE data with the results of TWS simulated by several land surface models over Australia, where lots of dry and endorheic basins exist with low frequencies of water mass changes. We examined several factors and mechanisms that cause the bias between models and observations. Since land surface models provide the boundary conditions for the land-atmosphere interaction in the global climate models, the mechanisms whereby water transport influences terrestrial water storage might impact the climate. Furthermore, the highly spatial and temporal variability in water storage over Australia plays an essential role in affecting the variability of land-atmosphere coupling strength. In this study, we applied an index to diagnose the impacts of variabilities in water storage on the coupling strength. Results show that the sensitivity index first increases but then decreases during the flooding in semi-arid regions, which is the temporal transition between the soil moisture-limited regime and the energy-limited regime. The high sensitivity index indicates that the evaporation follows well with soil moisture variations, while the low sensitivity index reveals weaker land-atmosphere interactions. Therefore, the results have crucial implications for land-atmosphere interactions and climate predictions. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:06:11Z (GMT). No. of bitstreams: 1 ntu-104-R02229008-1.pdf: 9392785 bytes, checksum: 67135a6c13bb6c5b37a1938e22462dca (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 謝誌 i
摘要 ii Abstract iii Contents v Figure Captions vii Table Captions xi Chapter 1 Introduction and background 1 1.1 Terrestrial total water storage (TWS) 1 1.2 Changes in hydrologic cycle under global warming 2 1.3 Ocean water mass and its variation with land water storage 5 1.4 Changes in TWS over Australia 6 1.5 Land-atmosphere interactions 8 Chapter 2 Data and method 10 2.1 Coupled Model Intercomparison Project Phase 5 (CMIP5) 10 2.2 Gravity Recovery and Climate Experiment (GRACE) 11 2.3 Global Land Data Assimilation System (GLDAS) 12 2.4 Observation-based datasets for chapter 4 12 2.5 NCAR Community Land Model version 4 14 2.6 Estimation of TWS in different datasets 15 2.7 Annual range of TWS 18 2.8 Land-atmosphere coupling index 18 Chapter 3 Changes in annual range of land water storage under global warming 19 3.1 Selection of CMIP5 models 19 3.2 Water balance analyses 21 3.3 Changes in annual range of land water storage under global warming 22 3.4 Changes in water transport 27 3.5 Land model simulation 27 Chapter 4 Changes in TWS and land-atmosphere interactions over Australia 31 4.1 Water balance analysis 32 4.2 Comparison of GRACE and models 32 4.3 Simulation with CLM4 36 4.4 Land-atmosphere interactions 38 Chapter 5 Conclusions and future work 41 5.1 Changes in annual range of land water storage under global warming 41 5.2 Changes in TWS and land-atmosphere interactions over Australia 43 Reference 46 Figure 53 Table 85 | |
| dc.language.iso | en | |
| dc.subject | 陸氣交互作用 | zh_TW |
| dc.subject | 季節變化 | zh_TW |
| dc.subject | 季節變化 | zh_TW |
| dc.subject | 陸地水含量 | zh_TW |
| dc.subject | 全球暖化 | zh_TW |
| dc.subject | 重力反演與氣候實驗衛星 | zh_TW |
| dc.subject | 陸地水文模式 | zh_TW |
| dc.subject | 陸氣交互作用 | zh_TW |
| dc.subject | 重力反演與氣候實驗衛星 | zh_TW |
| dc.subject | 全球暖化 | zh_TW |
| dc.subject | 陸地水含量 | zh_TW |
| dc.subject | 陸地水文模式 | zh_TW |
| dc.subject | CMIP5 | en |
| dc.subject | annual range | en |
| dc.subject | global warming | en |
| dc.subject | GRACE | en |
| dc.subject | land surface model | en |
| dc.subject | land-atmosphere interaction | en |
| dc.subject | annual range | en |
| dc.subject | CMIP5 | en |
| dc.subject | global warming | en |
| dc.subject | GRACE | en |
| dc.subject | land surface model | en |
| dc.subject | land-atmosphere interaction | en |
| dc.title | 全球暖化下陸地水含量的季節變化與陸氣交互作用 | zh_TW |
| dc.title | Annual Range of Water Storage and its Application on Land-Atmosphere Interactions | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李明旭,黃誌川,李時雨,黃彥婷 | |
| dc.subject.keyword | 季節變化,陸地水含量,全球暖化,重力反演與氣候實驗衛星,陸地水文模式,陸氣交互作用, | zh_TW |
| dc.subject.keyword | annual range,CMIP5,global warming,GRACE,land surface model,land-atmosphere interaction, | en |
| dc.relation.page | 90 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-06-25 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 9.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
