請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54578完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾雪峰(Snow H. Tseng) | |
| dc.contributor.author | Chia-Ta Tseng | en |
| dc.contributor.author | 曾家達 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:05:32Z | - |
| dc.date.available | 2015-08-11 | |
| dc.date.copyright | 2015-08-11 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-06-28 | |
| dc.identifier.citation | B. Zel’dovich, N. Pilipetsky, and V. Shkunov, 'Introduction to Optical Phase Conjugation,' in Principles of Phase Conjugation. vol. 42, ed: Springer Berlin Heidelberg, 1985, pp. 1-24.
[2] G. S. He*, 'Optical phase conjugation: principles,techniques, and applications,' Progress in Quantum Electronics, 2002. [3] Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, 'Optical phase conjugation for turbidity suppression in biological samples,' Nat Photon, vol. 2, pp. 110-115, 02//print 2008. [4] J. F. Lam and W. P. Brown, 'Optical resonators with phase-conjugate mirrors,' Optics Letters, vol. 5, pp. 61-63, 1980/02/01 1980. [5] H. J. EICHLER and O. MEHL, 'PHASE CONJUGATE MIRRORS,' Journal of Nonlinear Optical Physics & Materials, vol. 10, pp. 43-52, 2001. [6] Q. H. Liu, 'The pseudospectral time-domain (PSTD) method: a new algorithm for solutions of Maxwell's equations,' in Antennas and Propagation Society International Symposium, 1997. IEEE., 1997 Digest, 1997, pp. 122-125 vol.1. [7] Q. H. Liu, 'The PSTD algorithm: A time-domain method requiring only two cells per wavelength,' Microwave and Optical Technology Letters, vol. 15, pp. 158-165, 1997. [8] L. Qing Huo, 'Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm,' Geoscience and Remote Sensing, IEEE Transactions on, vol. 37, pp. 917-926, 1999. [9] A. Taflove and S. Hagness, 'Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston),' ISBN 978-1-58053-832-92005. [10] S. H. Tseng and C. Yang, '2-D PSTD Simulation of optical phase conjugation for turbidity suppression,' Optics express, vol. 15, pp. 16005-16016, 2007. [11] S. H. Tseng, 'Investigating the Optical Phase Conjugation Reconstruction Phenomenon of Light Multiply Scattered by a Random Medium,' Photonics Journal, IEEE, vol. 2, pp. 636-641, 2010. [12] S. H. Tseng, W.-L. Ting, and S.-J. Wang, '2-D PSTD Simulation of the time-reversed ultrasound-encoded deep-tissue imaging technique,' Biomedical optics express, vol. 5, pp. 882-894, 2014. [13] S. H. Tseng, '2-D PSTD Simulation of focusing monochromatic light through a macroscopic scattering medium via optical phase conjugation,' Biomedical optics express, vol. 6, pp. 815-826, 2015. [14] J. d. Rosny and M. Fink, 'Focusing properties of near-field time reversal,' PHYSICAL REVIEW A, vol. 76, p. 065801, 2007. [15] G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, 'Focusing beyond the diffraction limit with far-field time reversal,' Science, vol. 315, pp. 1120-2, Feb 23 2007. [16] M. Fink, 'Time-reversal waves and super resolution,' Journal of Physics: Conference Series, vol. 124, 2008. [17] M. Fink, 'Time-Reversal Acoustics,' Journal of Physics: Conference Series, vol. 118, 2008. [18] I. Vellekoop and A. Mosk, 'Focusing of light by random scattering,' Arxiv preprint cond-mat/0604253, 2006. [19] I. M. Vellekoop and A. P. Mosk, 'Focusing coherent light through opaque strongly scattering media,' Optics Letters, vol. 32, pp. 2309-2311, Aug 15 2007. [20] I. M. Vellekoop and A. P. Mosk, 'Phase control algorithms for focusing light through turbid media,' Optics Communications, vol. 281, pp. 3071-3080, Jun 1 2008. [21] M. Xu and L. V. Wang, 'Photoacoustic imaging in biomedicine,' Review of Scientific Instruments, vol. 77, p. 041101, 2006. [22] H. Liu, X. Xu, P. Lai, and L. V. Wang, 'Time-reversed ultrasonically encoded optical focusing into tissue-mimicking media with thickness up to 70 mean free paths,' Journal of biomedical optics, vol. 16, pp. 086009-086009-6, 2011. [23] P. Lai, X. Xu, H. Liu, and L. V. Wang, 'Time-reversed ultrasonically encoded optical focusing in biological tissue,' Journal of Biomedical Optics, vol. 17, pp. 0305061-0305063, 2012. [24] P. Lai, Y. Suzuki, X. Xu, and L. V. Wang, 'Focused fluorescence excitation with time-reversed ultrasonically encoded light and imaging in thick scattering media,' Laser physics letters, vol. 10, p. 075604, 2013. [25] P. W. Anderson, 'Absence of Diffusion in Certain Random Lattices,' Physical Review, vol. 109, pp. 1492-1505, 03/01/ 1958. [26] E. Abrahams, P. Anderson, D. Licciardello, and T. Ramakrishnan, 'Scaling theory of localization: Absence of quantum diffusion in two dimensions,' Physical Review Letters, vol. 42, pp. 673-676, 1979. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54578 | - |
| dc.description.abstract | 在近幾年的生醫光學研究裡,如何使光聚焦在散射介質裡面,一直是個熱門的研究目標。在本論文裡,我們介紹了一種方法可以使光成功聚焦,這種方法叫做光學相位共軛(optical phase conjugation)。為了要觀察這種聚焦的現象,我們採用了一種數值的模擬方法,叫做擬譜時域分析法(pseudospectral time-domain)去模擬光聚焦。擬譜時域分析法是源自於馬克斯威方程式(Maxwell equation)的數值解,這套方法有助於我們去模擬電磁波大範圍空間的問題,也降低了模擬時的電腦記憶體。在本論文裡,我們詳細的推導了擬譜時域分析法的公式以及操作,最後我們成功模擬了光學相位共軛聚焦現象。在光學相位共軛的理論裡,我們會紀錄光通過的振幅以及相位,之後用這振幅和相位去產生一個相位反轉的波,這波會沿著原本的路徑傳播進入散射介質裡,並且聚焦在裡面。之後我們介紹了光學相位共軛的一種應用,這種應用叫做時間反轉超聲波編碼(time-reversed ultrasonically encoded),是一種使用光和超聲波的交互作用,使光能聚焦在散射介質裡面的技術。在我們的模擬結果中,我們改變了相位共軛鏡(phase conjugate mirror)的角度範圍,這是一種鏡子用來產生相位共軛波,我們去研究不同的角度範圍,去觀察哪個角度可使它的聚焦最佳化。此外我們還去分析了不同解析度對聚焦的影響。這個模擬使我們了解光的特性在散射介質裡聚焦成像。 | zh_TW |
| dc.description.abstract | Focusing light through the scattering medium is the optical application due to penetration of biomedical optics. In this thesis, we introduce the novel method of optical phase conjugation (OPC) to focus light inside the scattering medium. In order to observe this phenomenon, we provide the numerical method of pseudospectral time-domain (PSTD) technique to simulate the OPC focusing. PSTD simulation technique is employed to obtain numerical solutions of Maxwell’s equations. PSTD technique is good for simulating large space problems and reducing the computer storage. In this thesis, we demonstrate the derivative of PSTD algorithm and the simulation of OPC focusing. In the OPC theory, amplitude and phase of the outgoing light is recorded and later used to generate phase-conjugated light which back-propagates through the scattering medium, and focuses inside. Then, we introduce the application of OPC theory which called time-reversed ultrasonically encoded (TRUE). TURE is the novel technique which use the light and ultrasound to focus inside the scattering medium. In our results, by changing the angular span of phase conjugate mirror (PCM) which generates the phase-conjugated light, we can analyze back-propagation of light for different angular spans. The simulation results may help determine the optimal angular span for practical back-propagation of light. In addition, we also analyze the influence of the resolution to the focusing phenomenon. In this simulation, we understand property of light focusing through the scattering medium. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:05:32Z (GMT). No. of bitstreams: 1 ntu-104-R02941089-1.pdf: 5677445 bytes, checksum: fb4249ef9cdb02987cc0a0077cd5a116 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi Chapter 1 Introduction to Optical Phase Conjugation 1 1.1 Background of optical phase conjugation 1 1.2 2D simulation of OPC phenomenon 3 Chapter 2 Pseudospectral Time-Domain (PSTD) Technique 5 2.1 PSTD algorithm 5 2.2 Nyquist limit 11 2.3 Perfectly Matched Layer absorbing boundary condition 13 Chapter 3 OPC Focusing into Scattering Media 21 3.1 The implementation of OPC technique 21 3.1.1 Phase conjugate wave 21 3.1.2 Backward degenerate four-wave mixing (FWM) 25 3.1.3 Experiments and applications of OPC 27 3.2 Time-reversed ultrasonically encoded focusing into scattering media 30 3.2.1 Mechanisms of ultrasonic modulation of coherent light 30 3.2.2 Spatial Light Modulator (SLM) 34 3.2.3 Experimental arrangements of TRUE 36 Chapter 4 Simulation of Optical Phase Conjugation 38 4.1 Simulation schematic of OPC focusing in our simulation 38 4.2 Effect of different angular PCM 50 4.3 Simulation of controlling focus spot 61 4.4 The effect of resolution on focusing process 64 Chapter 5 Summary and Future Work 70 5.1 Summary 70 5.2 Future work 71 REFERENCE 73 | |
| dc.language.iso | en | |
| dc.subject | 光聚焦 | zh_TW |
| dc.subject | 擬譜時域分析法 | zh_TW |
| dc.subject | 時間反轉超聲波編碼 | zh_TW |
| dc.subject | 擬譜時域分析法 | zh_TW |
| dc.subject | 時間反轉超聲波編碼 | zh_TW |
| dc.subject | 光學相位共軛 | zh_TW |
| dc.subject | 光學相位共軛 | zh_TW |
| dc.subject | 光聚焦 | zh_TW |
| dc.subject | Pseudospectral Time-Domain (PSTD) | en |
| dc.subject | Optical Phase Conjugation (OPC) | en |
| dc.subject | Pseudospectral Time-Domain (PSTD) | en |
| dc.subject | Time-Reversed Ultrasonically Encoded (TRUE) | en |
| dc.subject | light focusing | en |
| dc.subject | Optical Phase Conjugation (OPC) | en |
| dc.subject | Time-Reversed Ultrasonically Encoded (TRUE) | en |
| dc.subject | light focusing | en |
| dc.title | 光學相位共軛模擬:如何控制光在散射介質裡聚焦 | zh_TW |
| dc.title | Simulation of controlling focus spot in the scattering medium by using optical phase conjugation technique | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳士元,張世慧 | |
| dc.subject.keyword | 光學相位共軛,擬譜時域分析法,時間反轉超聲波編碼,光聚焦, | zh_TW |
| dc.subject.keyword | Optical Phase Conjugation (OPC),Pseudospectral Time-Domain (PSTD),Time-Reversed Ultrasonically Encoded (TRUE),light focusing, | en |
| dc.relation.page | 74 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-06-28 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 5.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
