請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54565
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李宣書(Hsuan-Shu Lee) | |
dc.contributor.author | Yu-Wen Huang | en |
dc.contributor.author | 黃育文 | zh_TW |
dc.date.accessioned | 2021-06-16T03:04:43Z | - |
dc.date.available | 2016-08-11 | |
dc.date.copyright | 2015-08-11 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-06-30 | |
dc.identifier.citation | REFERENCES
ACLOQUE, H., ADAMS, M. S., FISHWICK, K., BRONNER-FRASER, M. & NIETO, M. A. 2009. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest, 119, 1438-49. AHMED, N., MAINES-BANDIERA, S., QUINN, M. A., UNGER, W. G., DEDHAR, S. & AUERSPERG, N. 2006. Molecular pathways regulating EGF-induced epithelio-mesenchymal transition in human ovarian surface epithelium. Am J Physiol Cell Physiol, 290, C1532-42. APPLE, F. S., WU, A. H., MAIR, J., RAVKILDE, J., PANTEGHINI, M., TATE, J., PAGANI, F., CHRISTENSON, R. H., MOCKEL, M., DANNE, O. & JAFFE, A. S. 2005. Future biomarkers for detection of ischemia and risk stratification in acute coronary syndrome. Clin Chem, 51, 810-24. BAE, S. H., OH, S. H., YOON, S. K., PARK, J. A., KIM, G. D., HUR, W., CHOI, J. Y., OH, I. H. & YOON, K. H. 2011. Proliferation of Hepatic Oval Cells via Cyclooxygenase-2 and Extracellular Matrix Protein Signaling during Liver Regeneration Following 2-AAF/Partial Hepatectomy in Rats. Gut Liver, 5, 367-76. BALZAR, M., WINTER, M. J., DE BOER, C. J. & LITVINOV, S. V. 1999. The biology of the 17-1A antigen (Ep-CAM). J Mol Med (Berl), 77, 699-712. BEST, D. H. & COLEMAN, W. B. 2010. Liver regeneration by small hepatocyte-like progenitor cells after necrotic injury by carbon tetrachloride in retrorsine-exposed rats. Exp Mol Pathol, 89, 92-8. BIANCO, P., RIMINUCCI, M., GRONTHOS, S. & ROBEY, P. G. 2001. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells, 19, 180-92. BOZKURT, S., KAYA, E. B., OKUTUCU, S., AYTEMIR, K., COSKUN, F. & OTO, A. 2011. The diagnostic and prognostic value of first hour glycogen phosphorylase isoenzyme BB level in acute coronary syndrome. Cardiol J, 18, 496-502. BRABLETZ, T., JUNG, A., REU, S., PORZNER, M., HLUBEK, F., KUNZ-SCHUGHART, L. A., KNUECHEL, R. & KIRCHNER, T. 2001. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A, 98, 10356-61. BROWN, A. M. 2004. Brain glycogen re-awakened. J Neurochem, 89, 537-52. BROWN, A. M. & RANSOM, B. R. 2007. Astrocyte glycogen and brain energy metabolism. Glia, 55, 1263-71. CHIU, C. C., HUANG, Y. W., CHOU, S. H., HUANG, G. T., CHIOU, L. L. & LEE, H. S. 2009. Generation of a monoclonal antibody specifically reacting with undifferentiated liver progenitor cells. Hybridoma (Larchmt), 28, 435-9. COLEMAN, W. B., MCCULLOUGH, K. D., ESCH, G. L., FARIS, R. A., HIXSON, D. C., SMITH, G. J. & GRISHAM, J. W. 1997. Evaluation of the differentiation potential of WB-F344 rat liver epithelial stem-like cells in vivo. Differentiation to hepatocytes after transplantation into dipeptidylpeptidase-IV-deficient rat liver. Am J Pathol, 151, 353-9. COLEMAN, W. B., SMITH, G. J. & GRISHAM, J. W. 1994. Development of dexamethasone-inducible tyrosine aminotransferase activity in WB-F344 rat liver epithelial stemlike cells cultured in the presence of sodium butyrate. J Cell Physiol, 161, 463-9. COLEMAN, W. B., WENNERBERG, A. E., SMITH, G. J. & GRISHAM, J. W. 1993. Regulation of the differentiation of diploid and some aneuploid rat liver epithelial (stemlike) cells by the hepatic microenvironment. Am J Pathol, 142, 1373-82. CONDEELIS, J. & SEGALL, J. E. 2003. Intravital imaging of cell movement in tumours. Nat Rev Cancer, 3, 921-30. CORBEIL, D., ROPER, K., HELLWIG, A., TAVIAN, M., MIRAGLIA, S., WATT, S. M., SIMMONS, P. J., PEAULT, B., BUCK, D. W. & HUTTNER, W. B. 2000. The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J Biol Chem, 275, 5512-20. DARWICHE, H., OH, S. H., STEIGER-LUTHER, N. C., WILLIAMS, J. M., PINTILIE, D. G., SHUPE, T. D. & PETERSEN, B. E. 2011. Inhibition of Notch signaling affects hepatic oval cell response in rat model of 2AAF-PH. Hepat Med, 3, 89-98. DAVID, E. S. & CRERAR, M. M. 1986. Quantitation of muscle glycogen phosphorylase mRNA and enzyme amounts in adult rat tissues. Biochim Biophys Acta, 880, 78-90. DORRELL, C., ERKER, L., LANXON-COOKSON, K. M., ABRAHAM, S. L., VICTOROFF, T., RO, S., CANADAY, P. S., STREETER, P. R. & GROMPE, M. 2008. Surface markers for the murine oval cell response. Hepatology, 48, 1282-91. DORRELL, C., ERKER, L., SCHUG, J., KOPP, J. L., CANADAY, P. S., FOX, A. J., SMIRNOVA, O., DUNCAN, A. W., FINEGOLD, M. J., SANDER, M., KAESTNER, K. H. & GROMPE, M. 2011. Prospective isolation of a bipotential clonogenic liver progenitor cell in adult mice. Genes Dev, 25, 1193-203. EVERHART, J. E. & RUHL, C. E. 2009. Burden of digestive diseases in the United States Part III: Liver, biliary tract, and pancreas. Gastroenterology, 136, 1134-44. FAUSTO, N. 1990. Hepatocyte differentiation and liver progenitor cells. Curr Opin Cell Biol, 2, 1036-42. FAUSTO, N. & CAMPBELL, J. S. 2003. The role of hepatocytes and oval cells in liver regeneration and repopulation. Mech Dev, 120, 117-30. FISHER, R. A. & STROM, S. C. 2006. Human hepatocyte transplantation: worldwide results. Transplantation, 82, 441-9. FOX, I. J., DALEY, G. Q., GOLDMAN, S. A., HUARD, J., KAMP, T. J. & TRUCCO, M. 2014. Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease. Science, 345, 1247391. FUKUI, Y., YAMAMOTO, A., KYODEN, T., KATO, K. & TASHIRO, Y. 1990. Quantitative immunogold localization of dipeptidyl peptidase IV (DPP IV) in rat liver cells. Cell Struct Funct, 15, 117-25. GOUW, A. S., CLOUSTON, A. D. & THEISE, N. D. 2011. Ductular reactions in human liver: diversity at the interface. Hepatology, 54, 1853-63. GRISHAM, J. W. 1980. Cell types in long-term propagable cultures of rat liver. Ann N Y Acad Sci, 349, 128-37. GRISHAM, J. W., COLEMAN, W. B. & SMITH, G. J. 1993. Isolation, culture, and transplantation of rat hepatocytic precursor (stem-like) cells. Proc Soc Exp Biol Med, 204, 270-9. GRISHAM, J. W. & THORGEIRSSON, S. S. 1997. Liver Stem Cells. In Stem Cells. Stewart, S., editor. San Diego, California, USA. 255-75. HARTEL, S., GOSSRAU, R., HANSKI, C. & REUTTER, W. 1988. Dipeptidyl peptidase (DPP) IV in rat organs. Comparison of immunohistochemistry and activity histochemistry. Histochemistry, 89, 151-61. HASHIMOTO, K., TAMURA, K., OTANI, H. & TANAKA, O. 1995. Histocytochemical and immunohistochemical studies related to the role of glycogen in human developing digestive organs. Anat Embryol (Berl), 192, 497-505. HAY, E. D. 1968. Organization and fine structure of epithelium and mesenchyme in the developing chick embryo. In: Epithelial-mesenchymal interactions. R. Fleischmajer and R.E. Billingham, editors. Williams & Wilkins. Baltimore, Maryland, USA. 31–55. HAY, E. D. 1991. Collagen and other matrix glycoproteins in embryogenesis. In Cell Biology of Extracellular Matrix. 2nd edn. (Hay, E.D., Ed.), New York, USA. 419-62. HERLYN, D., HERLYN, M., STEPLEWSKI, Z. & KOPROWSKI, H. 1979. Monoclonal antibodies in cell-mediated cytotoxicity against human melanoma and colorectal carcinoma. Eur J Immunol, 9, 657-9. HORN, P. A., TESCH, H., STAIB, P., KUBE, D., DIEHL, V. & VOLIOTIS, D. 1999. Expression of AC133, a novel hematopoietic precursor antigen, on acute myeloid leukemia cells. Blood, 93, 1435-7. HUEBERT, R. C. & RAKELA, J. 2014. Cellular therapy for liver disease. Mayo Clin Proc, 89, 414-24. HUGHES, R. D., MITRY, R. R. & DHAWAN, A. 2012. Current status of hepatocyte transplantation. Transplantation, 93, 342-47. JOHNSON, L. N. 1992. Glycogen phosphorylase: control by phosphorylation and allosteric effectors. FASEB J, 6, 2274-82. KADYK, L. C., COLLINS, L. R., LITTMAN, N. J. & MILLAN, M. T. 2015. Proceedings: moving toward cell-based therapies for liver disease. Stem Cells Transl Med, 4, 207-10. KALLURI, R. & WEINBERG, R. A. 2009. The basics of epithelial-mesenchymal transition. J Clin Invest, 119, 1420-8. KASSNER, G., RICHTER, F., WENZEL, K. W., BOHME, H. J. & HOFMANN, E. 1987. Glycogen phosphorylase isozyme pattern in rat liver and isolated non-parenchymal liver cells. Biomed Biochim Acta, 46, 357-60. KATO, K., SHIMIZU, A., KUROBE, N., TAKASHI, M. & KOSHIKAWA, T. 1989. Human brain-type glycogen phosphorylase: quantitative localization in human tissues determined with an immunoassay system. J Neurochem, 52, 1425-32. KLONISCH, T., WIECHEC, E., HOMBACH-KLONISCH, S., ANDE, S. R., WESSELBORG, S., SCHULZE-OSTHOFF, K. & LOS, M. 2008. Cancer stem cell markers in common cancers - therapeutic implications. Trends Mol Med, 14, 450-60. LEA, M. A., MURPHY, P. & MORRIS, H. P. 1972. Glycogen metabolism in regenerating liver and liver neoplasms. Cancer Res, 32, 61-6. LEE, H. S., CRANE, G. G., MEROK, J. R., TUNSTEAD, J. R., HATCH, N. L., PANCHALINGAM, K., POWERS, M. J., GRIFFITH, L. G. & SHERLEY, J. L. 2003a. Clonal expansion of adult rat hepatic stem cell lines by suppression of asymmetric cell kinetics (SACK). Biotechnol Bioeng, 83, 760-71. LEE, H. S., MIAU, L. H., CHEN, C. H., CHIOU, L. L., HUANG, G. T., YANG, P. M. & SHEU, J. C. 2003b. Differential role of p38 in IL-1alpha induction of MMP-9 and MMP-13 in an established liver myofibroblast cell line. J Biomed Sci, 10, 757-65. LEE, J., ROMERO, R., DONG, Z., LEE, D. C., DONG, Y., MITTAL, P., CHAIWORAPONGSA, T., HASSAN, S. S. & KIM, C. J. 2012. Glycogen phosphorylase isoenzyme BB plasma concentration is elevated in pregnancy and preterm preeclampsia. Hypertension, 59, 274-82. LI, W., YOU, P., WEI, Q., LI, Y., FU, X., DING, X., WANG, X. & HU, Y. 2007. Hepatic differentiation and transcriptional profile of the mouse liver epithelial progenitor cells (LEPCs) under the induction of sodium butyrate. Front Biosci, 12, 1691-8. LOBO, N. A., SHIMONO, Y., QIAN, D. & CLARKE, M. F. 2007. The biology of cancer stem cells. Annu Rev Cell Dev Biol, 23, 675-99. LOO, C. S., CHEN, C. W., WANG, P. J., CHEN, P. Y., LIN, S. Y., KHOO, K. H., FENTON, R. A., KNEPPER, M. A. & YU, M. J. 2013. Quantitative apical membrane proteomics reveals vasopressin-induced actin dynamics in collecting duct cells. Proc Natl Acad Sci U S A, 110, 17119-24. LOPEZ-NOVOA, J. M. & NIETO, M. A. 2009. Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med, 1, 303-14. MAIR, J. 1998. Glycogen phosphorylase isoenzyme BB to diagnose ischaemic myocardial damage. Clin Chim Acta, 272, 79-86. MANI, S. A., GUO, W., LIAO, M. J., EATON, E. N., AYYANAN, A., ZHOU, A. Y., BROOKS, M., REINHARD, F., ZHANG, C. C., SHIPITSIN, M., CAMPBELL, L. L., POLYAK, K., BRISKEN, C., YANG, J. & WEINBERG, R. A. 2008. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133, 704-15. MITAKA, T. 1998. The current status of primary hepatocyte culture. Int J Exp Pathol, 79, 393-409. MIYAJIMA, A., TANAKA, M. & ITOH, T. 2014. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell, 14, 561-74. MULLER-BORER, B. J., CASCIO, W. E., ANDERSON, P. A., SNOWWAERT, J. N., FRYE, J. R., DESAI, N., ESCH, G. L., BRACKHAM, J. A., BAGNELL, C. R., COLEMAN, W. B., GRISHAM, J. W. & MALOUF, N. N. 2004. Adult-derived liver stem cells acquire a cardiomyocyte structural and functional phenotype ex vivo. Am J Pathol, 165, 135-45. NEWGARD, C. B., HWANG, P. K. & FLETTERICK, R. J. 1989. The family of glycogen phosphorylases: structure and function. Crit Rev Biochem Mol Biol, 24, 69-99. NUSSLER, A., KONIG, S., OTT, M., SOKAL, E., CHRIST, B., THASLER, W., BRULPORT, M., GABELEIN, G., SCHORMANN, W., SCHULZE, M., ELLIS, E., KRAEMER, M., NOCKEN, F., FLEIG, W., MANNS, M., STROM, S. C. & HENGSTLER, J. G. 2006. Present status and perspectives of cell-based therapies for liver diseases. J Hepatol, 45, 144-59. OGDEN, G. R., CHISHOLM, D. M. & LANE, E. B. 1996. The utility of cytokeratin profiles for detecting oral cancer using exfoliative cytology. Br J Oral Maxillofac Surg, 34, 461-6. OTT, M., RAJVANSHI, P., SOKHI, R. P., ALPINI, G., ARAGONA, E., DABEVA, M., SHAFRITZ, D. A. & GUPTA, S. 1999. Differentiation-specific regulation of transgene expression in a diploid epithelial cell line derived from the normal F344 rat liver. J Pathol, 187, 365-73. OUYANG, G., WANG, Z., FANG, X., LIU, J. & YANG, C. J. 2010. Molecular signaling of the epithelial to mesenchymal transition in generating and maintaining cancer stem cells. Cell Mol Life Sci, 67, 2605-18. PETERSEN, J., OTT, M. & VON WEIZSACKER, F. 2001. [Current status of cell-based therapies in liver diseases]. Z Gastroenterol, 39, 975-80. PFEIFFER, B., BUSE, E., MEYERMANN, R. & HAMPRECHT, B. 1995. Immunocytochemical localization of glycogen phosphorylase in primary sensory ganglia of the peripheral nervous system of the rat. Histochem Cell Biol, 103, 69-74. PFEIFFER-GUGLIELMI, B., BROER, S., BROER, A. & HAMPRECHT, B. 2000. Isozyme pattern of glycogen phosphorylase in the rat nervous system and rat astroglia-rich primary cultures: electrophoretic and polymerase chain reaction studies. Neurochem Res, 25, 1485-91. PFEIFFER-GUGLIELMI, B., FLECKENSTEIN, B., JUNG, G. & HAMPRECHT, B. 2003. Immunocytochemical localization of glycogen phosphorylase isozymes in rat nervous tissues by using isozyme-specific antibodies. J Neurochem, 85, 73-81. PFEIFFER-GUGLIELMI, B., FRANCKE, M., REICHENBACH, A. & HAMPRECHT, B. 2007. Glycogen phosphorylase isozymes and energy metabolism in the rat peripheral nervous system--an immunocytochemical study. Brain Res, 1136, 20-7. PISCAGLIA, A. C., CAMPANALE, M., GASBARRINI, A. & GASBARRINI, G. 2010. Stem cell-based therapies for liver diseases: state of the art and new perspectives. Stem Cells Int, 2010, 259461. POULSEN, R. C., KNOWLES, H. J., CARR, A. J. & HULLEY, P. A. 2014. Cell differentiation versus cell death: extracellular glucose is a key determinant of cell fate following oxidative stress exposure. Cell Death Dis, 5, e1074. RANNELS, S. R., LIU, L. & WEAVER, T. E. 1997. Expression of glycogen phosphorylase isozymes in developing rat lung. Am J Physiol, 273, L389-94. RICHTER, F., BOHME, H. J. & HOFMANN, E. 1983. Developmental changes of glycogen phosphorylase b isozymes in rat tissues. Biomed Biochim Acta, 42, 1229-35. RICHTER, F., BOHME, H. J. & HOFMANN, E. 1988. Changes of glycogen phosphorylase isozyme pattern, in rat tissues during pre- and postnatal development. Biomed Biochim Acta, 47, 743-52. RIEHLE, K. J., DAN, Y. Y., CAMPBELL, J. S. & FAUSTO, N. 2011. New concepts in liver regeneration. J Gastroenterol Hepatol, 26 Suppl 1, 203-12. ROSKAMS, T. A., LIBBRECHT, L. & DESMET, V. J. 2003. Progenitor cells in diseased human liver. Semin Liver Dis, 23, 385-96. ROSKAMS, T. A., THEISE, N. D., BALABAUD, C., BHAGAT, G., BHATHAL, P. S., BIOULAC-SAGE, P., BRUNT, E. M., CRAWFORD, J. M., CROSBY, H. A., DESMET, V., FINEGOLD, M. J., GELLER, S. A., GOUW, A. S., HYTIROGLOU, P., KNISELY, A. S., KOJIRO, M., LEFKOWITCH, J. H., NAKANUMA, Y., OLYNYK, J. K., PARK, Y. N., PORTMANN, B., SAXENA, R., SCHEUER, P. J., STRAIN, A. J., THUNG, S. N., WANLESS, I. R. & WEST, A. B. 2004. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology, 39, 1739-45. ROUNTREE, C. B., MISHRA, L. & WILLENBRING, H. 2012. Stem cells in liver diseases and cancer: recent advances on the path to new therapies. Hepatology, 55, 298-306. S.H., S., S., B., A.S., F. & L.M, R. 1994. The liver as a stem cell and lineage system., New York, Marcel Dekker Inc. S.S., T. & R.P., E. 1992. Growth and differentiation of stem cells in adult rat liver, Boca Raton, CRC Press Inc. SATO, K., MORRIS, H. P. & WEINHOUSE, S. 1972. Phosphorylase: a new isozyme in rat hepatic tumors and fetal liver. Science, 178, 879-81. SATO, K., MORRIS, H. P. & WEINHOUSE, S. 1973. Characterization of glycogen synthetases and phosphorylases in transplantable rat hepatomas. Cancer Res, 33, 724-33. SATO, K., SATOH, K., SATO, T., IMAI, F. & MORRIS, H. P. 1976. Isozyme patterns of glycogen phosphorylase in rat tissues and transplantable hepatomas. Cancer Res, 36, 487-95. SATO, M., MURAGAKI, Y., SAIKA, S., ROBERTS, A. B. & OOSHIMA, A. 2003. Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest, 112, 1486-94. SCHEEL, C. & WEINBERG, R. A. 2012. Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol, 22, 396-403. SCHMELZER, E., ZHANG, L., BRUCE, A., WAUTHIER, E., LUDLOW, J., YAO, H. L., MOSS, N., MELHEM, A., MCCLELLAND, R., TURNER, W., KULIK, M., SHERWOOD, S., TALLHEDEN, T., CHENG, N., FURTH, M. E. & REID, L. M. 2007. Human hepatic stem cells from fetal and postnatal donors. J Exp Med, 204, 1973-87. SCHMID, H., DOLDERER, B., THIESS, U., VERLEYSDONK, S. & HAMPRECHT, B. 2008. Renal expression of the brain and muscle isoforms of glycogen phosphorylase in different cell types. Neurochem Res, 33, 2575-82. SELL, S. 1990. Is there a liver stem cell? Cancer Res, 50, 3811-5. SHAPIRO, A. L., VINUELA, E. & MAIZEL, J. V., JR. 1967. Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun, 28, 815-20. SHIMADA, S., MAENO, M., MISUMI, A., TAKANO, S. & AKAGI, M. 1987. Antigen reversion of glycogen phosphorylase isoenzyme in carcinoma and proliferative zone of intestinal metaplasia of the human stomach. An immunohistochemical study. Gastroenterology, 93, 35-40. SHIMADA, S., TASHIMA, S., YAMAGUCHI, K., MATSUZAKI, H. & OGAWA, M. 1999. Carcinogenesis of intestinal-type gastric cancer and colorectal cancer is commonly accompanied by expression of brain (fetal)-type glycogen phosphorylase. J Exp Clin Cancer Res, 18, 111-8. SINGH, S. K., CLARKE, I. D., TERASAKI, M., BONN, V. E., HAWKINS, C., SQUIRE, J. & DIRKS, P. B. 2003. Identification of a cancer stem cell in human brain tumors. Cancer Res, 63, 5821-8. SIRICA, A. E., MATHIS, G. A., SANO, N. & ELMORE, L. W. 1990. Isolation, culture, and transplantation of intrahepatic biliary epithelial cells and oval cells. Pathobiology, 58, 44-64. STOLZING, A., COLEMAN, N. & SCUTT, A. 2006. Glucose-induced replicative senescence in mesenchymal stem cells. Rejuvenation Res, 9, 31-5. SUZUKI, A., IWAMA, A., MIYASHITA, H., NAKAUCHI, H. & TANIGUCHI, H. 2003. Role for growth factors and extracellular matrix in controlling differentiation of prospectively isolated hepatic stem cells. Development, 130, 2513-24. TANG, C., ANG, B. T. & PERVAIZ, S. 2007. Cancer stem cell: target for anti-cancer therapy. FASEB J, 21, 3777-85. THIERY, J. P., ACLOQUE, H., HUANG, R. Y. & NIETO, M. A. 2009. Epithelial-mesenchymal transitions in development and disease. Cell, 139, 871-90. THOMPSON, N. L., HIXSON, D. C., CALLANAN, H., PANZICA, M., FLANAGAN, D., FARIS, R. A., HONG, W. J., HARTEL-SCHENK, S. & DOYLE, D. 1991. A Fischer rat substrain deficient in dipeptidyl peptidase IV activity makes normal steady-state RNA levels and an altered protein. Use as a liver-cell transplantation model. Biochem J, 273 ( Pt 3), 497-502. TRELSTAD, R. L., HAY, E. D. & REVEL, J. D. 1967. Cell contact during early morphogenesis in the chick embryo. Dev Biol, 16, 78-106. TRIMBOLI, A. J., FUKINO, K., DE BRUIN, A., WEI, G., SHEN, L., TANNER, S. M., CREASAP, N., ROSOL, T. J., ROBINSON, M. L., ENG, C., OSTROWSKI, M. C. & LEONE, G. 2008. Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res, 68, 937-45. TSAO, M. S., SMITH, J. D., NELSON, K. G. & GRISHAM, J. W. 1984. A diploid epithelial cell line from normal adult rat liver with phenotypic properties of 'oval' cells. Exp Cell Res, 154, 38-52. TURNER, R., LOZOYA, O., WANG, Y., CARDINALE, V., GAUDIO, E., ALPINI, G., MENDEL, G., WAUTHIER, E., BARBIER, C., ALVARO, D. & REID, L. M. 2011. Human hepatic stem cell and maturational liver lineage biology. Hepatology, 53, 1035-45. WALTER, R., SIMMONS, W. H. & YOSHIMOTO, T. 1980. Proline specific endo- and exopeptidases. Mol Cell Biochem, 30, 111-27. WANG, P., JIA, J. D., TANG, S. Z., YAN, Z. Y., YOU, H., CONG, M., WANG, B. E., CHEN, L. & AN, W. 2004. Sodium butyrate induces rat hepatic oval cells differentiating into mature hepatocytes in vitro. Zhonghua Gan Zang Bing Za Zhi, 12, 718-21. WATANABE, Y., KOJIMA, T. & FUJIMOTO, Y. 1987. Deficiency of membrane-bound dipeptidyl aminopeptidase IV in a certain rat strain. Experientia, 43, 400-1. WERTHEIM, J. A., PETROWSKY, H., SAAB, S., KUPIEC-WEGLINSKI, J. W. & BUSUTTIL, R. W. 2011. Major challenges limiting liver transplantation in the United States. Am J Transplant, 11, 1773-84. XU, K., MORGAN, K. T., TODD GEHRIS, A., ELSTON, T. C. & GOMEZ, S. M. 2011. A whole-body model for glycogen regulation reveals a critical role for substrate cycling in maintaining blood glucose homeostasis. PLoS Comput Biol, 7, e1002272. YOVCHEV, M. I., GROZDANOV, P. N., ZHOU, H., RACHERLA, H., GUHA, C. & DABEVA, M. D. 2008. Identification of adult hepatic progenitor cells capable of repopulating injured rat liver. Hepatology, 47, 636-47. YU, M. J., PISITKUN, T., WANG, G., SHEN, R. F. & KNEPPER, M. A. 2006. LC-MS/MS analysis of apical and basolateral plasma membranes of rat renal collecting duct cells. Mol Cell Proteomics, 5, 2131-45. YU, Y., FISHER, J. E., LILLEGARD, J. B., RODYSILL, B., AMIOT, B. & NYBERG, S. L. 2012. Cell therapies for liver diseases. Liver Transpl, 18, 9-21. ZHANG, L., THEISE, N., CHUA, M. & REID, L. M. 2008. The stem cell niche of human livers: symmetry between development and regeneration. Hepatology, 48, 1598-607. ZHOU, Q. J., XIANG, L. X., SHAO, J. Z., HU, R. Z., LU, Y. L., YAO, H. & DAI, L. C. 2007. In vitro differentiation of hepatic progenitor cells from mouse embryonic stem cells induced by sodium butyrate. J Cell Biochem, 100, 29-42. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54565 | - |
dc.description.abstract | 肝臟雖然具備再生的能力,然而當切除或受損超過三分之二以上時,肝臟細胞的再生能力也會受到抑制,一般認為在此狀況下,肝臟前軀細胞(hepatic progenitor cell)或肝臟幹細胞(liver stem cell)會被激活,進而增殖並分化為成熟的肝臟細胞,取代缺損部分以便修復肝臟功能。多數研究學者認為,低分化的“卵圓細胞”(oval cell)是具有雙效力(bipotency)分化能力之肝臟前軀細胞,可以分化成膽管上皮細胞(biliary epithelial cell)和肝細胞(hepatocyte)。到現在為止,至少有4種類型的肝臟前軀細胞被認是候選肝臟幹細胞,包括卵圓細胞,星狀肝細胞(也稱為Ito細胞) ,肝上皮細胞(liver epithelial cell),以及間葉幹細胞(mesenchymal stem cell)。多數研究認為肝上皮細胞保留一些類似幹細胞的特性,且被證明能夠修復嚴重損傷或切除之肝臟部分。其中研究最多的是從成年雄性Fischer-344大鼠肝臟分離出來的WB-F344細胞,因為它們具有肝臟前軀細胞小而多角形的形態特徵,同時表達肝細胞系標記物甲型胎兒蛋白、白蛋白和膽管細胞系標記物細胞角質蛋白,而且它們不僅能分化成肝細胞和膽管上皮細胞,在給予特定生長因子時,他們也能接收訊息分化成其他細胞。此外從雄性Fischer-344大鼠肝臟非實質部分分離出的Lig-8細胞也與WB-F344細胞型態相似且具有分化成肝細胞和膽管上皮細胞之潛能。然而人類肝臟幹細胞卻一直沒能被成功的分離出來,主要是缺乏獨特可利用的標記來分離。本研究證明Lig-8細胞株被證明能夠在丁酸鈉(sodium butyrate)誘導下分化成肝細胞和膽管細胞,並且表達這些終端成熟細胞的標記:白蛋白和細胞角質蛋白19 。我們利用Lig-8細胞作為免疫原刺激BALB/c小鼠,生產並純化對Lig-8細胞具有專一特異性的單株抗體,命名為Ligab。藉由免疫螢光染色法與流式細胞儀的分析,我們發現Ligab不僅能專一的辨認肝臟前軀細胞Lig-8,也一樣可以專一辨認WB-F344細胞,我們將Ligab辨認的抗原稱為Ligab Ag。實驗結果顯示,Ligab無法在正十二烷硫酸鈉(sodium dodecyl sulfate, SDS)濃度超過2%以上的環境下辨認Ligab Ag,這是一般標準的正十二烷硫酸鈉-聚丙烯醯胺膠電泳(sodium dodecyl sulfate-polyacrylamide gel, SDS-PAGE)所含SDS的濃度。因此我們推論Ligab所辨認的抗原分子可能是分子結構,而不是一個胜肽序列。因此本研究進一步利用免疫沈澱法來抓取Lig-8細胞膜蛋白質萃取液中的Ligab Ag,藉由標準的SDS-PAGE電泳和銀染分離出有興趣的候選蛋白胜肽片段,以液相層析串聯式質譜(Liquid Chromatography Combined Tandem Mass Spectrometry, LC-MS/MS)分析胜肽片段,從資料庫中比對出肝醣磷酸化酶(glycogen phophorylase)可能是Ligab認得的抗原之一。肝醣磷酸化酶是一種肝糖分解代謝中的關鍵酶,催化肝糖的磷酸分解反應,此種酶有三種異構酶,分別是腦型、肝臟型與肌肉型,其中腦型肝糖磷酸化酶(brain isoform glycogen phosphorylase, GPBB)最早出現於胚胎發育中, 因此胚胎型肝醣磷酸化酶(fetal isoform of glycogen phophorylase)被認為是腦型肝糖磷酸化酶。經由逆轉錄聚合酶鏈式反應與西方點墨法證實,肝臟前軀細胞Lig-8和WB-F344都大量表達腦型肝醣磷酸化酶,卻不表達肝臟型或肌肉型的肝醣磷酸化酶。有趣的是當我們用丁酸鈉來誘導Lig-8細胞分化時,GPBB被表達的量驟減,取而代之的是肝臟型的肝醣磷酸化酶。進而,我們設計以小髮夾型核醣核酸(short hairpin RNA; shRNA)來沉默WB-F344細胞中的GPBB基因表達,再以丁酸鈉來誘導細胞分化,結果顯示GPBB基因沉默會延遲WB-F344細胞的分化,顯示GPBB在此類前驅細胞的分化上扮演某種角色。而且GPBB的基因沉默也影響細胞在缺少葡萄糖的培養基中的存活率。也就是說被干擾GPBB蛋白表達的細胞,其死亡率有意義的高於GPBB正常表達的細胞,此種現象,在相對低濃度(1 g/mL)葡萄糖細胞培養基或移除葡萄糖與丙酮酸鈉(sodium pyruvate)的細胞培養基中,更明顯。
我們認為GPBB不僅可以作為肝臟前軀細胞的新穎性標記,而且它在肝臟前軀細胞的分化上可能扮演某種角色。在缺少能量的環境中,GPBB可以幫助前軀細胞的存活。 | zh_TW |
dc.description.abstract | The liver is constantly renewing itself under normal conditions. With adult stem cells having been discovered in many of the body's organs, one might assume that the tremendous regenerative capacity of the liver is contributed by liver stem/progenitor cells. Until now, at least four types of liver cells are considered as candidate of liver stem cells, including oval cells, hepatic stellate cells (also known as Ito cells), liver epithelial cells (liver epithelial cell), mesenchymal stem cells. However, it hasn’t been so easy to isolate in mammals due to limited liver progenitor cell markers. An adult rat liver progenitor cell line Lig-8 has been established, which is characterized like liver epithelial cell. In the induction of sodium butyrate, these cells were shown able to differentiate into both hepatocytes and bile duct cells expressing albumin and cytokeratin-19, the markers of respective cell types. We previously generated a monoclonal antibody using the whole Lig-8 cells as immunogen. The yielded monoclonal antibody, named as Ligab, belongs to IgG subclass G1 and κ-light chain. It specifically reacted to Lig-8 cells but it did not react to a rat hepatoma cell line H4IIE. Furthermore, the expression of Ligab antigen in Lig-8 cells declined under sodium butyrate (SB)-induced differentiation was found. We took advantage of Ligab antibody to immunoprecipitate the target antigen, and identify glycogen phosphorylase (GP) in Ligab immunoprecipitates by using liquid chromatography combined with tandem mass spectrometry. Three GP isoforms exist in mammals: the brain isoform (GPBB), liver isoform (GPLL), and muscle isoform (GPMM). Three isoform-specific polyclonal antibodies and antiserum were used to examine the existence of these GP isoforms in the liver progenitor cells. Immunoblotting results showed that GPBB was expressed in two liver progenitor cell lines Lig-8 and WB-F344. The level of GPBB expression decreased in the WB-F344 cells under sodium butyrate (SB)-induced cell differentiation, which was consistent with roles of GPBB as a liver progenitor cell marker. The short hairpin RNA (shRNA)-mediated GPBB knockdown followed by glucose deprivation test shows that GPBB aids in liver progenitor cell survival under the low glucose conditions. Furthermore, shRNA-mediated GPBB knockdown followed by SB-induced cell differentiation shows that reducing GPBB expression delayed liver progenitor cell differentiation.
In conclusion, GPBB is a novel liver progenitor cell marker, which facilitates liver progenitor cell survival under the low glucose conditions and cell differentiation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T03:04:43Z (GMT). No. of bitstreams: 1 ntu-104-D95642002-1.pdf: 6069320 bytes, checksum: 20e6a71b06376eca5db758edfea9278a (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | CONTENTS
口試委員審定書 1 致謝 II 中文摘要 IV ABSTRACT VII CONTENTS IX LIST OF FIGURES XIII LIST OF TABLES XV CHAPTER 1: OVERALL INTRODUCTION 1 1.1 Overview of Liver Progenitor Cells and Liver Stem Cells 1 1.1.1 Discovery of liver stem/progenitor cells 1 1.1.2 The role of liver progenitor cells in cell-based therapies 6 1.2 Overview of Glycogen Phosphorylase 8 1.2.1 Three isoforms of glycogen phosphorylase 8 1.2.2 Brain isoform glycogen phosphorylase being the biomarker for diseases 10 1.3 The Aims of This Study 11 CHAPTER 2: SPECIFIC EXPRESSION OF LIGAB ANTIGEN IN LIVER PROGENITOR CELLS 13 2.1 Introduction 13 2.2 Materials and Methods 14 2.2.1 Cell culture and induction of in vitro cell differentiation 14 2.2.2 Immunofluorescence cell staining and analysis by microscopy and flow cytometry 14 2.2.3 Cell protein extraction, non-denaturing polyacrylamide gel electrophoresis and immunoblotting 16 2.3 Results 17 2.3.1 Specific reaction of Ligab to Lig-8 cells 17 2.3.2 Expression of Ligab antigen in both liver progenitor cells, Lig-8 and WB-F344 20 2.3.3 Reduced Ligab antigen in Lig-8 cell-induced differentiation 22 2.4 Discussion 24 CHAPTER 3: DISCOVERY OF THE NOVEL MARKER OF BRAIN FORM GLYCOGEN PHOSPHORYLASE (GPBB) IN HEPATIC PROGENITOR CELLS 26 3.1 Introduction 26 3.2 Materials and Methods 27 3.2.1 Immunoprecipitation 27 3.2.2 Protein identification by using liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) 28 3.2.3 RNA isolation 29 3.2.4 Reverse transcription-polymerase chain reaction (RT-PCR) and quantitative polymerase chain reaction (qPCR) 29 3.2.5 Generating and obtaining GP isozyme-specific polyclonal antibodies 34 3.2.6 Extraction of cellular proteins and immunoblotting analysis 34 3.2.7 Statistical analysis 37 3.3 Results 38 3.3.1 Identification of glycogen phosphorylase (GP) by Ligab-immunoprecipitate 38 3.3.2 Specific expression of GPBB in liver progenitor cells 40 3.4 Discussion 44 CHAPTER 4: CHARACTERIZATION OF BRAIN ISOFORM GLYCOGEN PHOAPHORYLASE (GPBB) IN LIVER PROGENITOR CELLS 45 4.1 Introduction 45 4.2 Materials and Methods 46 4.2.1 Establishment of stable GPBB knockdown system by short hairpin RNA interference 46 4.2.2 Flow cytometry analysis 48 4.2.3 Morphology observation of GPBB knockdown WB-F344 cell 49 4.2.4 In Vitro liver progenitor cell differentiation 50 4.2.5 Immunocytochemistry staining and microscopic image 50 4.3 Results 55 4.3.1 No change of Ligab immunoreactivity in liver progenitor cells with shRNA-mediated GPBB knockdown 55 4.3.2 No change of morphology and gene expression in GPBB knockdown WB-F344 cells 59 4.3.3 Changing expression patterns of GPBB, liver isoform glycogen phosphorylase (GPLL) and cytokeratin 19 (CK19) in differentiating WB-F344 cells 59 4.3.4 GPBB knockdown slightly delaying liver progenitor cell differentiation by sodium butyrate induction 63 4.3.5 Silencing of GPBB rendered WB-F344 and Lig-8 cells more vulnerable under glucose deprived culture conditions 66 CHAPTER 5: DISCUSSION AND CONCLUSIONS 69 CHAPTER 6: FUTURE PROSPECTS 75 REFERENCES 82 PUBLICATION LISTS 97 APPENDIX 98 LIST OF FIGURES FIGURE 1. SCHEMATIC OVERVIEW OF LIVER LOBULE. 5 FIGURE 2. IMMUNO-REACTION CHARACTERISTICS OF LIGAB. 19 FIGURE 3. EXPRESSION OF LIGAB ANTIGEN IN LIVER PROGENITOR CELLS 21 FIGURE 4. REDUCTION OF LIGAB ANTIGEN IN LIG-8 CELLS POST-INDUCTION OF DIFFERENTIATION. 23 FIGURE 5. SILVER-STAINING OF THE LIGAB IMMUNOPRECIPITATES OF LIG-8 CELLS 39 FIGURE 6. EXPRESSION OF GP ISOFORMS IN LIVER PROGENITOR CELLS. 41 FIGURE 7. THE EXPRESSION LEVEL OF GPBB UPON WB-F344 CELL UNDERGOING SODIUM BUTYRATE (SB)-INDUCED CELL DIFFERENTIATION 43 FIGURE 8. THE MAP OF PGREENPURO VECTOR EXPRESSING GPBB-SHRNA. 53 FIGURE 9. WB-F344 AND LIG-8 CELLS WITH OR WITHOUT SHRNA-MEDIATED GPBB KNOCKDOWN 56 FIGURE 10. LIGAB IMMUNOREACTIVITIES IN WB-F344 AND LIG-8 CELLS WITH OR WITHOUT SHRNA-MEDIATED GPBB KNOCKDOWN 57 FIGURE 11. DETECTION OF GPBB IN THE LIGAB-IMMUNOPRECIPITATES. 58 FIGURE 12. TIME COURSE EXPRESSION OF GPBB, GPLL AND CK19 IN WB-F344 CELLS DURING SODIUM BUTYRATE (SB)-INDUCED DIFFERENTIATION. 61 FIGURE 13. EXPRESSION OF CK19 IN GPBB KNOCKDOWN WB-F344 CELLS WITH SODIUM BUTYRATE (SB)-INDUCED DIFFERENTIATION 64 FIGURE 14. SURVIVAL OF GPBB KNOCKDOWN WB-F344 AND LIG-8 CELLS UNDER LOW GLUCOSE CONDITIONS. 67 | |
dc.language.iso | en | |
dc.title | 腦型肝醣磷酸化酶作為大鼠肝臟前驅細胞新穎標記之鑑定與研究 | zh_TW |
dc.title | Identification and characterization of brain isoform glycogen phosphorylase as a novel marker of rat hepatic progenitor cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 繆希椿(Shi-Chuen Miaw),余明俊(Ming-Jiun Yu),林劭品(Shau-Ping Lin),吳君泰(June-Tai Wu),宋麗英(Li-Ying Sung) | |
dc.subject.keyword | 大鼠肝臟前驅細胞,肝臟幹細胞,肝上皮細胞,細胞治療,再生醫學, | zh_TW |
dc.subject.keyword | hepatic progenitor cell,stem cell,liver epithelial cell,glucose deprivation,apoptosis,cell-based therapy,regenerative medicine, | en |
dc.relation.page | 118 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-06-30 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物科技研究所 | zh_TW |
顯示於系所單位: | 生物科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 5.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。