請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54535完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 魏宏宇 | |
| dc.contributor.author | Shang-Lun Chiu | en |
| dc.contributor.author | 邱上倫 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:02:46Z | - |
| dc.date.available | 2017-09-30 | |
| dc.date.copyright | 2015-09-30 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-01 | |
| dc.identifier.citation | [1] 3GPP TR 36.814 V9.0.0 Evolved Universal Terrestrial Radio Access (E-UTRA); Further advancements for E-UTRA physical layer aspects, March, 2010.
[2] 3GPP TR 36.843 V12.0.1 Study on LTE device to device proximity services; Radio aspects, March, 2014. [3] USRP N200 website: http://www.ettus.com/product/details/UN200-KIT. [4] F. Adib, S. Kumar, O. Aryan, S. Gollakota, and D. Katabi. Interference Alignment by Motion. In ACM MobiCom, 2013. [5] A. Aijaz, H. Aghvami, and M. Amani. A Survey on Mobile Data Offloading: Technical and Business Perspectives. IEEE Wireless Communications, 20(2):104--112, April 2013. [6] E. Aryafar, N. Anand, T. Salonidis, and E. W. Knightly. Design and Experimental Evaluation of Multi-User Beamforming in Wireless LANs. In ACM MobiCom, 2010. [7] T. Bansal, K. Sundaresan, S. Rangarajan, and P. Sinha. R2D2: Embracing Device-to-Device Communication in Next Generation Cellular Networks. In IEEE INFOCOM, 2014. [8] V. Cadambe and S. Jafar. Interference Alignment and Degrees of Freedom of the K-User Interference Channel. IEEE Transactions on Information Theory, 54(8):3425--3441, Aug 2008. [9] B.-S. Chen, K. C.-J. Lin, and H.-Y. Wei. Harnessing Receive Diversity in Distributed Multi-User MIMO Networks. In ACM SIGCOMM (poster), 2013. [10] S. Gollakota, S. D. Perli, and D. Katabi. Interference Alignment and Cancellation. In ACM SIGCOMM, 2009. [11] K. Gomadam, V. Cadambe, and S. Jafar. Approaching the Capacity of Wireless Networks through Distributed Interference Alignment. In IEEE GLOBECOM, 2008. [12] D. Halperin, W. Hu, A. Sheth, and D. Wetherall. Predictable 802.11 Packet Delivery from Wireless Channel Measurements. In ACM SIGCOMM, 2010. [13] B. Hochwald and S. Vishwanath. Space-Time Multiple Access: Linear Growth in the Sum Rate. In Annual Allerton Conference on Communications, Control and Computing, 2002. [14] H. Huang and V. Lau. Partial Interference Alignment for K-User MIMO Interference Channels. IEEE Transactions on Signal Processing, 59(10):4900--4908, Oct 2011. [15] P. Janis, V. Koivunen, C. Ribeiro, J. Korhonen, K. Doppler, and K. Hugl. Interference-Aware Resource Allocation for Device-to-Device Radio Underlaying Cellular Networks. In IEEE Vehicular Technology Conference, Spring 2009. [16] R. M. Karp. Reducibility among Combinatorial Problems. Springer, 1972. [17] S. Kumar, D. Cifuentes, S. Gollakota, and D. Katabi. Bringing Cross-Layer MIMO to Today's Wireless LANs. In ACM SIGCOMM, 2013. [18] K. C.-J. Lin, S. Gollakota, and D. Katabi. Random Access Heterogeneous MIMO Networks. In ACM SIGCOMM, 2011. [19] A. Mukherjee and A. Hottinen. Energy-efficient device-to-device MIMO underlay network with interference constraints. In International ITG Workshop on Smart Antennas (WSA), March 2012. [20] H. S. Rahul, S. Kumar, and D. Katabi. JMB: Scaling Wireless Capacity with User Demands. In ACM SIGCOMM, 2012. [21] W.-L. Shen, Y.-C. Tung, K.-C. Lee, K. C.-J. Lin, S. Gollakota, D. Katabi, and M.-S. Chen. Rate Adaptation for 802.11 Multiuser MIMO Networks. In ACM MobiCom, 2012. [22] C. Shepard, H. Yu, N. Anand, E. Li, T. Marzetta, R. Yang, and L. Zhong. Argos: Practical Many-Antenna Base Stations. In ACM MobiCom, 2012. [23] C. Shepard, H. Yu, and L. Zhong. ArgosV2: A Flexible Many-Antenna Research Platform. In ACM MobiCom (demo), 2013. [24] K. Tan, H. Liu, J. Fang, W. Wang, J. Zhang, M. Chen, and G. M. Voelker. SAM: Enabling Practical Spatial Multiple Access in Wireless LAN. In ACM MobiCom, 2009. [25] D. Tse and P. Vishwanath. Fundamentals of Wireless Communications. Cambridge University Press, 2005. [26] X. Tu, Z. Chen, J. Fang, L. Li, B. Qu, and B. Fu. On the Feasibility of Generalized Interference Alignment with Partial Interference Cancellation. In Wireless Telecommunications Symposium (WTS), 2014. [27] J. Xiong, K. Sundaresan, K. Jamieson, M. A. Khojastepour, and S. Rangarajan. MIDAS: Empowering 802.11ac Networks with Multiple-Input Distributed Antenna Systems. In ACM CoNEXT, 2014. [28] S. Xu, H. Wang, T. Chen, Q. Huang, and T. Peng. Effective Interference Cancellation Scheme for Device-to-Device Communication Underlaying Cellular Networks. In IEEE Vehicular Technology Conference, Fall 2010. [29] L. Yang, W. Zhang, and S. Jin. Interference Alignment in Device-to-Device LAN Underlaying Cellular Networks. IEEE Transactions on Wireless Communications, PP(99):1--1, 2015. [30] Q. Yang, X. Li, H. Yao, J. Fang, K. Tan, W. Hu, J. Zhang, and Y. Zhang. BigStation: Enabling Scalable Real-time Signal Processing in Large MU-MIMO Systems. In ACM SIGCOMM, 2013. [31] H. Yu, O. Bejarano, and L. Zhong. Combating Inter-Cell Interference in 802.11ac-based Multi-User MIMO Networks. In ACM MobiCom, 2014. [32] X. Zhang, K. Sundaresan, M. A. A. Khojastepour, S. Rangarajan, and K. G. Shin. NEMOx: Scalable Network MIMO for Wireless Networks. In ACM MobiCom, 2013. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54535 | - |
| dc.description.abstract | 裝置對裝置的通訊架構是目前次世代網路的熱門議題之一。藉由兩個裝置的直接通訊,我們可以減少電信網路中基地台的過載問題,3GPP 也積極在制定裝置對裝置通訊的標準架構。由於裝置對裝置傳輸與傳統的基地台傳輸(包含上行和下行)都使用同樣的基地台資源,裝置對裝置通訊最大的難題在於干擾。目前常見的抗干擾機制,大多是將兩種不同的傳輸放在不同的時間或是載波;或是藉由壓低裝置對裝置傳輸的功率,避免影響傳統傳輸的使用者。在我的研究中,我提出一個運用目前手持裝置具備的多天線,以多輸出多輸入的技術,來消除兩種傳輸機制之間的干擾。 | zh_TW |
| dc.description.abstract | Device-to-device (D2D) communications is an emerging service model that is currently under standardization by 3GPP. Although D2D offloading has a great potential to relieve increasingly congested cellular networks, its benefits come at a cost, namely interference. Most of the prevailing D2D designs conservatively avoid interference via either spectrum resource allocation or power control. These works however do not exploit the spatial degrees of freedom (DoF) inherently supported by a multi-antenna device. In this work, we present MD2D, a multiuser D2D system that embraces concurrent D2D transmissions, while leveraging MIMO techniques to actively eliminate interference across D2D pairs. MD2D has a systematic methodology that checks whether the antenna combination in a D2D network is capable of eliminating cross-pair interference, and thus ensuring interference-free concurrent transmissions. If the interference can be eliminated, then MD2D applies a bucket-based DoF assignment algorithm to determine an effective antenna usage configuration that handles the interference. We evaluate our design via testbed experiments and simulations. The results show that, as compared to the traditional interference avoidance scheme, MD2D improves the throughput by 87.39% and 236.02% in a three-pair testbed and in large-scale simulations, respectively. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:02:46Z (GMT). No. of bitstreams: 1 ntu-104-R02942063-1.pdf: 925327 bytes, checksum: 4b2673bee5e5fbab849e8665a2db559e (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書
誌謝 ii 摘要 iii Abstract iv 1 Introduction 1 2 Related Work 5 2.1 MIMO Systems 5 2.2 Interference Alignment 6 2.3 Device-to-Device Communications 6 3 MIMO Primer 8 4 MD2D Overview 10 5 MD2D Interference Management 12 5.1 Uplink Protection 12 5.2 Bucket-Based Interference Elimination 14 5.3 Interference-Free User Selection 19 5.4 Precoding and Decoding 20 5.4.1 Determine Precoding and Decoding Vectors 21 5.4.2 Loop Issue 25 5.5 Generalizing to Multiple Receivers 26 6 CSI Estimation and Feedback Overhead 29 6.1 Centralized Design 30 6.1.1 CSI Estimation Scheduling 30 6.1.2 CSI Feedback Overhead 31 6.2 Distributed Design 32 6.2.1 CSI Estimation Scheduling 32 6.2.2 Precoder and Decoder Computation 33 7 Testbed Experiments 35 7.1 Baseline Schemes 35 7.2 Testbed Setting 36 7.3 Testbed Results 37 8 Simulation Evaluation 38 8.1 Simulation Setting 38 8.2 Effect of Multiple User Selection Tests 39 8.3 Impact of Number of UL Users 40 8.4 Impact of Number of Contending D2D Pairs 41 8.5 Effect of Cycle Cancellation 43 8.6 CSI Estimation Overhead 44 8.7 Different Uplink Protection Levels 45 9 Extension for Downlink Multicast Resource Blocks 48 9.1 Network Scenario 48 9.2 New DoF Bucket Model 49 9.3 New CSI Estimation 51 9.4 Simulation Evaluation and Discussion 53 10 Conclusion 55 Bibliography 56 | |
| dc.language.iso | en | |
| dc.subject | 裝置對裝置網路 | zh_TW |
| dc.subject | 多輸入多輸出 | zh_TW |
| dc.subject | 裝置對裝置網路 | zh_TW |
| dc.subject | 多輸入多輸出 | zh_TW |
| dc.subject | D2D | en |
| dc.subject | MIMO | en |
| dc.subject | MIMO | en |
| dc.subject | D2D | en |
| dc.title | 以多輸入多輸出實現多用戶裝置對裝置網路的干擾控制 | zh_TW |
| dc.title | Interference Management with Multiple-Input Multiple-Output for Multi-User Device-to-Device Networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王奕翔,林靖茹,王志宇,李佳翰 | |
| dc.subject.keyword | 多輸入多輸出,裝置對裝置網路, | zh_TW |
| dc.subject.keyword | MIMO,D2D, | en |
| dc.relation.page | 59 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-01 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 903.64 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
