Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54495
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊鏡堂(Jing-Tang Yang)
dc.contributor.authorTian-Fu Hsiehen
dc.contributor.author謝天富zh_TW
dc.date.accessioned2021-06-16T03:00:19Z-
dc.date.available2015-07-20
dc.date.copyright2015-07-20
dc.date.issued2015
dc.date.submitted2015-07-03
dc.identifier.citationAzuma, A. (2006). The Biokinetics of Flying and Swimming. Reston, VA, American Institute of Aeronautics and Astronautics, Inc.
Bomphrey, R. J., N. J. Lawson, G. K. Taylor, and A. L. R. Thomas (2006). 'Application of digital particle image velocimetry to insect aerodynamics: measurement of the leading-edge vortex and near wake of a Hawkmoth.' Experiments in Fluids 40 (4): 546-554.
Brodsky, A. K. (1991). 'Vortex Formation in the Tethered Flight of the Peacock Butterfly Inachis Io L (Lepidoptera, Nymphalidae) and Some Aspects of Insect Flight Evolution.' Journal of Experimental Biology 161: 77-95.
Chen, Y. H. and M. Skote (2015). 'Study of lift enhancing mechanisms via comparison of two distinct flapping patterns in the dragonfly Sympetrum flaveolum.' Physic of Fluids 27, 033604
Combes, S. A. and T. L. Daniel (2003). 'Flexural stiffness in insect wings I. Scaling and the influence of wing venation.' Journal of Experimental Biology 206 (17): 2979-2987.
Dickinson, M. H., S. P. Sane, and F. O. Lehmann (1999). 'Wing rotation and the aerodynamic basis of insect flight.' Science 284, 1954-1960
Dickinson, M. H. (1996). 'Unsteady mechanisms of force generation in aquatic and aerial locomotion.' American Zoologist 36 (6): 537-554.
Donoughe, S., J. D. Crall, R. A. Merz, and S. A. Combes (2011). 'Resilin in dragonfly and damselfly wings and its implications for wing flexibility.' Journal of morphology 272:1409-1421
Drucker, E. G. and G. V. Lauder (1999). 'Locomotor forces on a swimming fish: Three-dimensional vortex wake dynamics quantified using digital particle image velocimetry.' Journal of Experimental Biology 202 (18): 2393-2412.
Du, G. and M. Sun (2010). 'Effects of wing deformation on aerodynamic forces in hovering hoverflies.' Journal of Experimental Biology 213 (13): 2273-2283.
Dudley, R. (2000). The biomechanics of insect flight : form, function, evolution. Princeton, N.J., Princeton University Press.
Ellington, C. P., C. vandenBerg, A. P. Willmott, and A. L. R. Thomas (1996). 'Leading-edge vortices in insect flight.' Nature 384: 626-630.
Fujikawa, T., Y. Sato, Y. Makata, T. Yamashita, and K. Kikuchi (2009). 'Motion analysis of butterfly-style flapping robot for different wing and Body Design.' 2008 IEEE International Conference on Robotics and Biomimetics, Vols 1-4: 216-221.
Hamamoto, M., Y. Ohta, K. Hara, and T. Hisada (2013). 'Three-dimensional free-flight analysis of the rapid turning of a dragonfly using fluid-structure interaction analysis.' Journal of Computational Science and Technology 7 (1): 75-88
Heathcote, S., Z. Wang, and I. Grsul (2008). 'Effect of spanwise flexibility on flapping wing propulsion.' Journal of Fluids and Structures 24 (2): 183-199.
Marden, J. H. (1987), 'Maximum lift production during takeoff in flying animals.' Journal of Experimental Biology 130: 235-258
Mateti, K., R. A. Byrne-Dugan, S. A. Tadigadapa, and C. D. Rahn (2012). 'Wing rotation and lift in SUEX flapping wing mechanisms.' Smart Materials and Structures 22:1-11
Miller, L. A. and C. S. Peskin (2009). 'Flexible clap and fling in tiny insect flight.' Journal of Experimental Biology 212 (19): 3076-3090.
Mountcastle, A. M. and T. L. Daniel (2009). 'Aerodynamic and functional consequences of wing compliance.' Experiments in Fluids 46 (5): 873-882.
Park, H., K. Bae, B. Lee, W.-P. Jeon, H. Choi (2010). 'Aerodynamic performance of a gliding swallowtail butterfly wing model.' Experimental Mechanics 50 (9): 1313-1321.
Pines, D. J. and F. Bohorquez (2006). 'Challenges facing future micro-air-vehicle development.' Journal of Aircraft 43 (2): 290-305.
Senda, K., T. Obara, M. Kitamura, N. Yokoyama, N. Hirai, and M. lima (2012). 'Effects of structural flexibility of wings in flapping flight of butterfly.' Bioinspiration & Biomimetics 7 (2):1-15.
Shreyas, J. V., S. Devranjan, and K. R. Sreenivas (2011). 'Aerodynamics of bird and insect flight.' Journal of the Indian Institute of Science 91 (3):415-427
Shyy, W., Y. Lian, J. Tang, D. Viieru, and H. Liu (2007). Aerodynamics of low Reynolds number flyers. Cambridge ; New York, Cambridge University Press.
Srygley, R. B. and A. L. R. Thomas (2002). 'Unconventional lift-generating mechanisms in free-flying butterflies.' Nature 420: 660-664.
Tanaka, H. and I. Shimoyama (2010). 'Forward flight of swallowtail butterfly with simple flapping motion.' Bioinspiration & Biomimetics 5 (3):1-9.
Tay, W. B., B. W. van Qudheusden, and H. Bijl (2014). 'Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method.' Bioinspiration & Biomimetics 9:1-21.
Truong, T. Q., V. H. Phan, and H. C. Park (2013). 'Effect of wing twisting on aerodynamic performance of flapping wing system.' AIAA Journal 51:1612-1620.
Vanella, M., T. Fitzgerald, S. Preidikman, E. Balaras, and B. Balachandran (2009). 'Influence of flexibility on the aerodynamic performance of a hovering wing.' Journal of Experimental Biology 212 (1): 95-105.
Wakeling, J. M. and C. P. Ellington (1997). 'Dragonfly flight II. Velocities, accelerations and kinematics of flapping flight.' Journal of Experimental Biology 200: 557-582
Wakeling, J. M. and C. P. Ellington (1997). 'Dragonfly flight III. lift and power requirements.' Journal of Experimental Biology 200: 583-600
Weisfogh, T. (1973). 'Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production.' Journal of Experimental Biology 59 (1): 169-230.
Wu, P., B. K. Stanford, E. Sallstrom, L. Ukeiley, and P. G. lfju (2011). 'Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings.' Bioinspiration & Biomimetics 6 (1):1-20.
Yin, B. and H. X. Luo (2010). 'Effect of wing inertia on hovering performance of flexible flapping wings.' Physics of Fluids 22 (11):1-10.
Yokoyama, N., K. Senda, M. lima, and N. Hirai (2013). 'Aerodynamic forces and vortical structures in flapping butterfly′s forward flight.' Physics of Fluids 25:1-24.
Young, J., S. M. Walker, R. J. Bomphrey, G. K. Taylor, and A. L. R. Thomas (2009). 'Details of Insect wing design and deformation enhance aerodynamic function and flight efficiency.' Science 325: 1549-1552.
Zhao, L., Q. Huang, X. Deng, and S. P. Sane (2010). 'Aerodynamic effects of flexibility in flapping wings.' Journal of the Royal Society Interface 7 (44): 485-497.
丁上杰 2009 魚類操控式游動之流體動力與生物物理學研究. 國立清華大學動力機械工程學系博士論文.
李秉樺 2009蝴蝶之翼形與撲翼模式對飛行之影響研究. 國立清華大學動力機械工程學系碩士論文.
章聿珩 2010 運動學參數對鳥類拍撲翼之升力影響. 國立台灣大學機械工程學系碩士論文.
陳思詠 2013 群游策略對於魚類游動性能及節能之影響. 國立台灣大學機械工程學系碩士論文
蔡語誠 2014 豆娘穩定前飛與急停迴旋之力學機制探討. 國立台灣大學機械工程學系碩士論文
蘇健元 2013 綠繡眼高操控性飛行之生物力學研究. 國立台灣大學機械工程學系博士論文.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54495-
dc.description.abstract豆娘具有敏捷的操控性並能藉由調整雙翅的頻率、相位、攻角進行靈活的飛行,因此本文以兩種台灣常見的豆娘中華珈蟌(Psolodesmus mandarinus)及細胸珈蟌(Mnais tenuis)作為研究對象,研究豆娘在撲翼飛行時使用的正向旋轉機制,藉由實驗觀測與數值模擬的比對,結合流固耦合與動態網格技術,得到豆娘在飛行時能藉由翅膀旋轉增加升力,結果可以應用在仿生撲翼機構的設計上,提供飛行策略的設計概念。
實驗將豆娘放入壓克力箱中,藉由高速攝影機捕捉豆娘自由飛行時的拍翅動作,並利用二維PIV技術將流場可視化,藉由流場與動作分析,探討豆娘拍撲飛行時所採用的特殊機制與流場渦漩間的相互關係。流場分析得到,豆娘在下拍時雙翅皆能產生渦漩並由翼尖開始脫離翅膀表面,並藉由成對的渦漩產生射流提供飛行所需升力,此結果與數值模擬中得到之流場共同現象相吻合,藉此驗證模擬中之動作參數雖然皆以簡單函數逼近,但並不影響流場渦漩之趨勢。動作分析觀察到,兩種豆娘在自由飛行中皆採用翅膀由後向前的正向旋轉模式,因此將兩種不同的旋轉模式加入數值模擬中發現,在雙翅無相位差時,翅膀的旋轉改變了表面在水平及垂直方向上的投影量,因此加入旋轉動作後在一個上拍或下拍的衝程中的升力略微降低、阻力卻大幅上升,此結果看似對於拍撲飛行有著反效果但考慮完整一週期下之合力,正向旋轉能提供正值的升力與負值的阻力即推力。反向旋轉在上拍時產生的渦漩結構較完整,翅膀表面生成之低壓區也較大,進而產生強度更強的射流,然而其方向向上,反而造成負值的升力;而正向旋轉能減低上拍時產生的負升力值,使一週期之平均升力大幅提升,並在上拍時能產生一強大的推力,此結果說明了為何豆娘在拍撲飛行時皆使用正向旋轉而非反向旋轉。
zh_TW
dc.description.abstractThis study is aimed to investigate the flapping fight of damselfly species Psolodesmus mandarinus and Mnais tenuis. By experimental observation and numerical simulation with fluid-structure interaction and dynamic mesh technique, we found out that damselfly can increase lift force by rotating their wing on flapping flight. The results can be applied on the design of biomimetic flapping mechanism and micro aerial vehicle.
In the experiment, damselflies free-fly in acrylic chamber. High speed camera is used to capture the flapping motion and flow field while two dimensional PIV technique shows the interaction between the motion and vortex structure. In motion analysis, both species of damselflies utilize forward rotation, then adding this rotation motion into the numerical simulation. Comparing three kind of flapping motion, non-rotation, forward rotation, and backward rotation, while tandem wing has 0 degree phase lag. Results show that wing rotation changes wing surface area on horizontal and vertical direction. Flapping with rotation decrease lift force and increase drag force on each stroke but considering a whole flapping period, forward rotation can generate positive lift force and negative drag force which is thrust. Leading edge vortex and low pressure area on wing surface of backward rotation are stronger during up-stroke. It causes generating of negative lift force, however, forward rotation can decrease negative lift force during up-stroke. Therefore, It promote mean lift force greatly in a whole flapping period and can generate thrust during up-stroke. The result shows that why damselflies utilize forward rotation in stead of backward rotation on their flapping flight.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:00:19Z (GMT). No. of bitstreams: 1
ntu-104-R02522401-1.pdf: 8031881 bytes, checksum: fb52065173d6ecc68c9e51caacd26852 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖表目錄 ix
符號說明 xii
第一章 前言 1
1-1 研究背景 1
1-2 研究動機 2
第二章 文獻回顧 3
2-1 微型飛行器 4
2-1.1 飛行器的分類 5
2-1.2 微型飛行器的發展困境 5
2-2 名詞介紹 6
2-3 豆娘構造簡介 7
2-4 渦度與環流量 9
2-4.1 Kutta-Joukowski定理 9
2-4.2 渦漩環理論模式 10
2-5 撲翼飛行之物理機制 11
2-5.1 夾翼與拋翼 11
2-5.2 翼前緣渦旋 11
2-5.3 翼尖渦旋 12
2-5.4 翅膀旋轉 12
2-5.5 尾流捕獲 13
2-6 昆蟲飛行研究 14
2-6.1 拍撲機構 14
2-6.2 數值模擬 14
第三章 研究方法 16
3-1 研究架構 16
3-2 統御方程式 16
3-3 實驗參數與因次分析 18
3-4 研究物種 20
3-5 軟體介紹 21
3-6 流固耦合 22
3-7 網格介紹 23
3-7.1 網格種類 23
3-7.2 動態網格 25
3-8 物理建模 25
3-8.1 固力模型 25
3-8.2 流力模型 26
3-9 實驗分析 27
第四章 結果與討論 31
4-1 拍撲流場分析 31
4-2 雙翅相位與翅膀旋轉之探討 35
4-2.1 雙翅相位差 35
4-2.2 翅膀旋轉 36
4-3 撓性翼與來流速度 44
4-4 飛行動作觀察 48
第五章 結論與未來展望 61
5-1 結論 61
5-2 未來展望 63
5-3 碩士論文研究甘梯圖 64
參考文獻 65
dc.language.isozh-TW
dc.title翅膀旋轉及拍翅相位對豆娘拍撲飛行之影響zh_TW
dc.titleEffect of Wing Rotation and Phase Lag on Flapping Flight of Damselfliesen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee馬萬鈞,王興華,紀凱容,潘國隆
dc.subject.keyword豆娘,翼前緣渦漩,撲翼飛行,翅膀旋轉,渦漩互動,zh_TW
dc.subject.keywordamselfly,leading edge vortex,flapping flight,wing rotation,vortices interaction,en
dc.relation.page69
dc.rights.note有償授權
dc.date.accepted2015-07-03
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
7.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved