Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54483
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉伊純(Yi-Cheun Yeh)
dc.contributor.authorTsan-Yu Tsaien
dc.contributor.author蔡璨宇zh_TW
dc.date.accessioned2021-06-16T02:59:36Z-
dc.date.available2025-08-04
dc.date.copyright2020-08-06
dc.date.issued2020
dc.date.submitted2020-08-04
dc.identifier.citation1. Li, Y.; Yang, L.; Zeng, Y.; Wu, Y.; Wei, Y.; Tao, L., Self-Healing Hydrogel with a Double Dynamic Network Comprising Imine and Borate Ester Linkages. Chemistry of Materials 2019, 31 (15), 5576-5583.
2. Russell, R. J.; Pishko, M. V.; Gefrides, C. C.; McShane, M. J.; Cote, G. L., A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly (ethylene glycol) hydrogel. Analytical Chemistry 1999, 71 (15), 3126-3132.
3. Zhang, M.; Cheng, Z.; Zhao, T.; Liu, M.; Hu, M.; Li, J., Synthesis, characterization, and swelling behaviors of salt-sensitive maize bran-poly(acrylic acid) superabsorbent hydrogel. J Agric Food Chem 2014, 62 (35), 8867-8874.
4. Pyarasani, R. D.; Jayaramudu, T.; John, A., Polyaniline-based conducting hydrogels. Journal of Materials Science 2019, 54 (2), 974-996.
5. Naficy, S.; Brown, H. R.; Razal, J. M.; Spinks, G. M.; Whitten, P. G., Progress toward robust polymer hydrogels. Australian Journal of Chemistry 2011, 64 (8), 1007-1025.
6. Motealleh, A.; Kehr, N. S., Nanocomposite Hydrogels and Their Applications in Tissue Engineering. Adv Healthc Mater 2017, 6 (1), 16000938.
7. Haque, M. A.; Kurokawa, T.; Gong, J. P., Super tough double network hydrogels and their application as biomaterials. Polymer 2012, 53 (9), 1805-1822.
8. Wu, L.; Zhuang, Z.; Li, S.; Ma, X.; Diao, W.; Bu, X.; Fang, Y., Ultrastretchable, Super Tough, and Rapidly Recoverable Nanocomposite Double‐Network Hydrogels by Dual Physically Hydrogen Bond and Vinyl‐Functionalized Silica Nanoparticles Macro‐Crosslinking. Macromolecular Materials and Engineering 2019, 304 (5), 1800737.
9. Engkagul, V.; Sereemaspun, A.; Chirachanchai, S., One pot preparation of chitosan/hyaluronic acid-based triple network hydrogel via in situ click reaction, metal coordination and polyion complexation in water. Carbohydr Polym 2018, 200 (15), 616-623.
10. Gong, J. P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y., Double‐network hydrogels with extremely high mechanical strength. Advanced materials 2003, 15 (14), 1155-1158.
11. Gong, J. P., Why are double network hydrogels so tough? Soft Matter 2010, 6 (12), 2583-2590.
12. Liu, R.; Liang, S.; Tang, X.-Z.; Yan, D.; Li, X.; Yu, Z.-Z., Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. Journal of Materials Chemistry 2012, 22 (28), 14160-14167.
13. Skardal, A.; Zhang, J.; McCoard, L.; Oottamasathien, S.; Prestwich, G. D., Dynamically crosslinked gold nanoparticle–hyaluronan hydrogels. Advanced Materials 2010, 22 (42), 4736-4740.
14. Gaharwar, A. K.; Peppas, N. A.; Khademhosseini, A., Nanocomposite hydrogels for biomedical applications. Biotechnology and bioengineering 2014, 111 (3), 441-453.
15. Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N., Superior thermal conductivity of single-layer graphene. Nano letters 2008, 8 (3), 902-907.
16. Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P., Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005, 438 (7065), 201-204.
17. Cai, W.; Piner, R. D.; Stadermann, F. J.; Park, S.; Shaibat, M. A.; Ishii, Y.; Yang, D.; Velamakanni, A.; An, S. J.; Stoller, M., Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 2008, 321 (5897), 1815-1817.
18. Tadyszak, K.; Wychowaniec, J. K.; Litowczenko, J., Biomedical applications of graphene-based structures. Nanomaterials 2018, 8 (11), 944-963.
19. Bai, H.; Sheng, K.; Zhang, P.; Li, C.; Shi, G., Graphene oxide/conducting polymer composite hydrogels. Journal of Materials Chemistry 2011, 21 (46), 18653-18658.
20. Bai, H.; Li, C.; Wang, X.; Shi, G., A pH-sensitive graphene oxide composite hydrogel. Chem Commun (Camb) 2010, 46 (14), 2376-2378.
21. Sahu, A.; Choi, W. I.; Tae, G., A stimuli-sensitive injectable graphene oxide composite hydrogel. Chem Commun (Camb) 2012, 48 (47), 5820-5822.
22. Liu, J.; Song, G.; He, C.; Wang, H., Self-healing in tough graphene oxide composite hydrogels. Macromol Rapid Commun 2013, 34 (12), 1002-1007.
23. Li, Z.; Shen, J.; Ma, H.; Lu, X.; Shi, M.; Li, N.; Ye, M., Preparation and characterization of pH-and temperature-responsive nanocomposite double network hydrogels. Materials Science and Engineering: C 2013, 33 (4), 1951-1957.
24. Gao, G.; Du, G.; Cheng, Y.; Fu, J., Tough nanocomposite double network hydrogels reinforced with clay nanorods through covalent bonding and reversible chain adsorption. Journal of Materials Chemistry B 2014, 2 (11), 1539-1548.
25. Yan, X.; Yang, J.; Chen, F.; Zhu, L.; Tang, Z.; Qin, G.; Chen, Q.; Chen, G., Mechanical properties of gelatin/polyacrylamide/graphene oxide nanocomposite double-network hydrogels. Composites Science and Technology 2018, 163 (28), 81-88.
26. Su, X.; Chen, B., Tough, resilient and pH-sensitive interpenetrating polyacrylamide/alginate/montmorillonite nanocomposite hydrogels. Carbohydrate Polymer 2018, 197 (1), 497-507.
27. Liu, G.; Luo, Q.; Wang, H.; Zhuang, W.; Wang, Y., In situ synthesis of multidentate PEGylated chitosan modified gold nanoparticles with good stability and biocompatibility. RSC Advances 2015, 5 (86), 70109-70116.
28. Sun, S.-W.; Lin, Y.-C.; Weng, Y.-M.; Chen, M.-J., Efficiency improvements on ninhydrin method for amino acid quantification. Journal of Food Composition and Analysis 2006, 19 (2-3), 112-117.
29. Zhao, H.; Heindel, N. D., Determination of degree of substitution of formyl groups in polyaldehyde dextran by the hydroxylamine hydrochloride method. Pharmaceutical research 1991, 8 (3), 400-402.
30. Wang DY, W. I., Huang IS, Yeh YC, Li SS, Tu KH, Chen CC, Chen CW Quantum Dot Light-Emitting Diode Using Solution-Processable Graphene Oxide as the Anode Interfacial Layer. J. Phys. Chem. C 2012, 116 (18), 10181−10185.
31. Basiruddin, S. K.; Swain, S. K., Phenylboronic acid functionalized reduced graphene oxide based fluorescence nano sensor for glucose sensing. Mater Sci Eng C Mater Biol Appl 2016, 58 (1), 103-109.
32. Rodrigues, S.; Dionísio, M.; López, C. R.; Grenha, A., Biocompatibility of chitosan carriers with application in drug delivery. Journal of functional biomaterials 2012, 3 (3), 615-641.
33. Meng, Q.; Li, Y.; Shen, C., Antibacterial Coatings of Biomedical Surfaces by Polydextran Aldehyde/Polyethylenimine Nanofibers. ACS Applied Bio Materials 2018, 2 (1), 562-569.
34. Valencia, C.; Valencia, C. H.; Zuluaga, F.; Valencia, M. E.; Mina, J. H.; Grande-Tovar, C. D., Synthesis and application of scaffolds of chitosan-graphene oxide by the freeze-drying method for tissue regeneration. Molecules 2018, 23 (10), 2651.
35. Moazzami Gudarzi, M.; Sharif, F., Enhancement of dispersion and bonding of graphene-polymer through wet transfer of functionalized graphene oxide. Express Polymer Letters 2012, 6 (12), 1017-1031.
36. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. carbon 2007, 45 (7), 1558-1565.
37. Yang, K.; Huang, X.; Fang, L.; He, J.; Jiang, P., Fluoro-polymer functionalized graphene for flexible ferroelectric polymer-based high-k nanocomposites with suppressed dielectric loss and low percolation threshold. Nanoscale 2014, 6 (24), 14740-14753.
38. Han, L.; Lu, X.; Wang, M.; Gan, D.; Deng, W.; Wang, K.; Fang, L.; Liu, K.; Chan, C. W.; Tang, Y., A mussel‐inspired conductive, self‐adhesive, and self‐healable tough hydrogel as cell stimulators and implantable bioelectronics. Small 2017, 13 (2), 1601916.
39. Jing, X.; Mi, H.-Y.; Napiwocki, B. N.; Peng, X.-F.; Turng, L.-S., Mussel-inspired electroactive chitosan/graphene oxide composite hydrogel with rapid self-healing and recovery behavior for tissue engineering. Carbon 2017, 125, 557-570.
40. Huang, W.; Qi, C.; Gao, Y., Injectable Self-Healable Nanocomposite Hydrogels with Mussel-Inspired Adhesive Properties for 3D Printing Ink. ACS Applied Nano Materials 2019, 2 (8), 5000-5008.
41. Chen, Y.; Diaz-Dussan, D.; Wu, D.; Wang, W.; Peng, Y.-Y.; Asha, A. B.; Hall, D. G.; Ishihara, K.; Narain, R., Bioinspired self-healing hydrogel based on benzoxaborole-catechol dynamic covalent chemistry for 3D cell encapsulation. ACS Macro Letters 2018, 7 (8), 904-908.
42. Xu, X.; Flores, J. D.; McCormick, C. L., Reversible Imine Shell Cross-Linked Micelles from Aqueous RAFT-Synthesized Thermoresponsive Triblock Copolymers as Potential Nanocarriers for “pH-Triggered” Drug Release. Macromolecules 2011, 44 (6), 1327-1334.
43. Chen, M. H.; Wang, L. L.; Chung, J. J.; Kim, Y.-H.; Atluri, P.; Burdick, J. A., Methods to assess shear-thinning hydrogels for application as injectable biomaterials. ACS biomaterials science engineering 2017, 3 (12), 3146-3160.
44. Ali, I.; Shah, L. A., Rheological investigation of the viscoelastic thixotropic behavior of synthesized polyethylene glycol-modified polyacrylamide hydrogels using different accelerators. Polymer Bulletin 2020, 1-17.
45. Xie, M.; Lei, H.; Zhang, Y.; Xu, Y.; Shen, S.; Ge, Y.; Li, H.; Xie, J., Non-covalent modification of graphene oxide nanocomposites with chitosan/dextran and its application in drug delivery. RSC advances 2016, 6 (11), 9328-9337.
46. Wang, J.; Su, S.; Qiu, J., Biocompatible swelling graphene oxide reinforced double network hydrogels with high toughness and stiffness. New Journal of Chemistry 2017, 41 (10), 3781-3789.
47. Huang, Y.; Zeng, M.; Ren, J.; Wang, J.; Fan, L.; Xu, Q., Preparation and swelling properties of graphene oxide/poly (acrylic acid-co-acrylamide) super-absorbent hydrogel nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2012, 401(5), 97-106.
48. Rasoulzadeh, M.; Namazi, H., Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent. Carbohydrate polymers 2017, 168 (15), 320-326.
49. Wang, L. L.; Highley, C. B.; Yeh, Y. C.; Galarraga, J. H.; Uman, S.; Burdick, J. A., Three‐dimensional extrusion bioprinting of single‐and double‐network hydrogels containing dynamic covalent crosslinks. Journal of Biomedical Materials Research Part A 2018, 106 (4), 865-875.
50. Depan, D.; Girase, B.; Shah, J.; Misra, R., Structure–process–property relationship of the polar graphene oxide-mediated cellular response and stimulated growth of osteoblasts on hybrid chitosan network structure nanocomposite scaffolds. Acta biomaterialia 2011, 7 (9), 3432-3445.
51. Carvalho, C. R.; López-Cebral, R.; Silva-Correia, J.; Silva, J. M.; Mano, J. F.; Silva, T. H.; Freier, T.; Reis, R. L.; Oliveira, J. M., Investigation of cell adhesion in chitosan membranes for peripheral nerve regeneration. Materials Science and Engineering: C 2017, 71 (1), 1122-1134.
52. Chang, Y.; Yang, S.-T.; Liu, J.-H.; Dong, E.; Wang, Y.; Cao, A.; Liu, Y.; Wang, H., In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicology letters 2011, 200 (3), 201-210.
53. Li, J.; Hu, W.; Zhang, Y.; Tan, H.; Yan, X.; Zhao, L.; Liang, H., pH and glucose dually responsive injectable hydrogel prepared by in situ crosslinking of phenylboronic modified chitosan and oxidized dextran. Journal of Polymer Science Part A: Polymer Chemistry 2015, 53 (10), 1235-1244.
54. Mantooth, S. M.; Munoz‐Robles, B. G.; Webber, M. J., Dynamic hydrogels from host–guest supramolecular interactions. Macromolecular Bioscience 2019, 19 (1), 1800281.
55. Ding, X.; Wang, Y., Weak bond-based injectable and stimuli responsive hydrogels for biomedical applications. Journal of Materials Chemistry B 2017, 5 (5), 887-906.
56. Appel, E. A.; del Barrio, J.; Loh, X. J.; Scherman, O. A., Supramolecular polymeric hydrogels. Chemical Society Reviews 2012, 41 (18), 6195-6214.
57. Dankers, P. Y.; Hermans, T. M.; Baughman, T. W.; Kamikawa, Y.; Kieltyka, R. E.; Bastings, M. M.; Janssen, H. M.; Sommerdijk, N. A.; Larsen, A.; Van Luyn, M. J., Hierarchical formation of supramolecular transient networks in water: a modular injectable delivery system. Advanced materials 2012, 24 (20), 2703-2709.
58. Seiffert, S.; Sprakel, J., Physical chemistry of supramolecular polymer networks. Chemical Society Reviews 2012, 41 (2), 909-930.
59. Mynar, J. L.; Aida, T., The gift of healing. Nature 2008, 451 (7181), 895-896.
60. Gerth, M.; Bohdan, M.; Fokkink, R.; Voets, I.; van der Gucht, J.; Sprakel, J., Supramolecular Assembly of Self‐Healing Nanocomposite Hydrogels. Macromolecular rapid communications 2014, 35 (24), 2065-2070.
61. Steed, J. W.; Atwood, J. L., Supramolecular chemistry. John Wiley Sons: 2013.
62. Lohmeijer, B. G.; Schubert, U. S., Playing LEGO with macromolecules: Design, synthesis, and self‐organization with metal complexes. Journal of Polymer Science Part A: Polymer Chemistry 2003, 41 (10), 1413-1427.
63. Giammanco, G. E.; Ostrowski, A. D., Photopatterning the mechanical properties of polysaccharide-containing gels using Fe3+ coordination. Chemistry of Materials 2015, 27 (14), 4922-4925.
64. Auletta, J. T.; LeDonne, G. J.; Gronborg, K. C.; Ladd, C. D.; Liu, H.; Clark, W. W.; Meyer, T. Y., Stimuli-responsive iron-cross-linked hydrogels that undergo redox-driven switching between hard and soft states. Macromolecules 2015, 48 (6), 1736-1747.
65. Park, J. P.; Song, I. T.; Lee, J.; Ryu, J. H.; Lee, Y.; Lee, H., Vanadyl–catecholamine hydrogels inspired by ascidians and mussels. Chemistry of Materials 2015, 27 (1), 105-111.
66. Weng, G.; Thanneeru, S.; He, J., Dynamic Coordination of Eu-Iminodiacetate to Control Fluorochromic Response of Polymer Hydrogels to Multistimuli. Adv Mater 2018, 30 (11), 1706526.
67. Razgoniaev, A. O.; Butaeva, E. V.; Iretskii, A. V.; Ostrowski, A. D., Changing mechanical strength in Cr (III)-metallosupramolecular polymers with ligand groups and light irradiation. Inorganic Chemistry 2016, 55 (11), 5430-5437.
68. Barrett, D. G.; Fullenkamp, D. E.; He, L.; Holten‐Andersen, N.; Lee, K. Y. C.; Messersmith, P. B., pH‐based regulation of hydrogel mechanical properties through mussel‐inspired chemistry and processing. Advanced functional materials 2013, 23 (9), 1111-1119.
69. Calvo-Marzal, P.; Delaney, M. P.; Auletta, J. T.; Pan, T.; Perri, N. M.; Weiland, L. M.; Waldeck, D. H.; Clark, W. W.; Meyer, T. Y., Manipulating mechanical properties with electricity: electroplastic elastomer hydrogels. ACS Macro Letters 2012, 1 (1), 204-208.
70. Zhou, Y.; Bao, Q.; Tang, L. A. L.; Zhong, Y.; Loh, K. P., Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chemistry of Materials 2009, 21 (13), 2950-2956.
71. Wang, B.; Jeon, Y. S.; Park, H. S.; Kim, J.-H., Self-healable mussel-mimetic nanocomposite hydrogel based on catechol-containing polyaspartamide and graphene oxide. Materials Science and Engineering: C 2016, 69, 160-170.
72. Cong, H. P.; Wang, P.; Yu, S. H., Highly elastic and superstretchable graphene oxide/polyacrylamide hydrogels. Small 2014, 10 (3), 448-453.
73. Zhang, Q.; Zhang, L.; Wang, P.; Du, S., Coordinate bonding strategy for molecularly imprinted hydrogels: Toward pH-responsive doxorubicin delivery. Journal of pharmaceutical sciences 2014, 103 (2), 643-651.
74. Fullenkamp, D. E.; He, L.; Barrett, D. G.; Burghardt, W. R.; Messersmith, P. B., Mussel-inspired histidine-based transient network metal coordination hydrogels. Macromolecules 2013, 46 (3), 1167-1174.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54483-
dc.description.abstract水凝膠是一種發展已久的材料,然而因為機械性能不佳,受到許多限制。有許多提升水凝膠機械性能的方法被發表,如奈米複合水凝膠(NC hydrogel)、雙網絡水凝膠(DN hydrogel)、奈米複合雙網絡水凝膠(ncDN hydrogel)。然而,開發的趨勢轉向具有壓力及破壞響應且能長時間應用的水凝膠。為了因應這個需求,動態鍵結開始被引入水凝膠的系統中。動態鍵結可分為物理性(超分子作用力)及化學性的動態鍵結,不論由何種動態鍵結建構網絡,都能賦予水凝膠自修復的能力以及剪切稀化的性質。使得水凝膠可由針筒注射成形,開闊其應用範疇。
在本研究中,我們在雙網絡水凝膠結構中引入了多種動態鍵結(如:動態共價鍵、氫鍵、靜電作用力及金屬配位鍵),藉此賦予雙網絡水凝膠剪切稀化以及自我修復的能力。除此之外,在雙網絡水凝膠中摻入官能基團修飾的奈米材料,可透過動態鍵結進一步交聯雙網絡水凝膠中的兩種高分子鏈,以增加水凝膠結構的多樣性。最重要的是,本研究中水凝膠的性質能夠藉由摻入奈米材料的濃度、pH值或是溶液種類等外在因素來調控。
綜合以上所述,在這篇論文裡,我們提供了一種藉由奈米粒子來製備新一代水凝膠的方法,未來可配合特定的應用來調控網絡結構。
zh_TW
dc.description.abstractHydrogels have been utilized in different applications. Nevertheless, most of conventional hydrogels presented weak mechanical properties, restricting the development of hydrogels. Recently, several hydrogels possessed great mechanical properties have been demonstrated, such as nanocomposite hydrogels, double network hydrogels, and nanocomposite double network hydrogels. However, researchers start to develop hydrogels with ability to respond to stress and damage, which is a tendency to more durable application. In order to make hydrogels possess self-recovery and self-healing ability, dynamic bonds have been introduced to construct polymer network.
Dynamic bonds are either noncovalent by physical interactions (supramolecular interaction) or covalent via dynamic covalent bonds. Hydrogels constructed by dynamic bonds possess self-healing and shear-thinning properties, allowing hydrogels to perform injectability to expand their applications.
In this work, we aim to develop versatile DN hydrogels by introducing multiple dynamic bonds to DN hydrogel structures to provide shear-thinning and self-healing ability. The dynamic bonds include dynamic covalent bonds (i.e. imine bonds and boronate ester bonds) and noncovalent bonds (i.e. hydrogen bonds, electrostatic interaction and coordination bonds). Additionally, surface functionalized nanomaterials were used to further crosslink two polymer chain in DN hydrogel by dynamic bonds to increase the complexity of hydrogel structure. Most importantly, the properties of designed hydrogels could be simply modulated by the amounts of nanomaterials, pH value, or even solution. Taken together, we hereby provide a nanomaterial approach to fabricate a new class of DN hydrogels with controllable networks and favorite properties for specific biomedical applications.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:59:36Z (GMT). No. of bitstreams: 1
U0001-0308202014212000.pdf: 4657263 bytes, checksum: fc492d51d15d6d60c054285919f1ee16 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents謝誌………………………..…………………………..……...……………………..…..ii
中文摘要………………………………………………………………………….…….iii
Abstract………………………………………………………………………………..iv
List of Figures………………………………………………………………………….x
Chapter 1- In situ formation of self-healable and injectable nanocomposite double-network hydrogels with imine and boronate ester dynamic covalent bonds……………...1
1. Introduction………………………………………………………………………….2
2. Materials and Method………………………………………………………………10
2.1 Materials………………………………………………………………………..10
2.2 Synthesis and characterization of TEGylated Chitosan (TEG-CS)……….….…10
2.3 Synthesis and characterization of polydextran aldehyde (PDA)………………...12
2.4 Synthesis and characterization of graphene oxide (GO)………………………...13
2.5 Synthesis and characterization of phenylboronic acid modified reduced graphene oxide (PBA-rGO)……………………………………………………………….13
2.6 Formation of TEG-CS/PDA/ PBA-rGO ncDN hydrogels………………………14
2.7 Mechanical testing of ncDN hydrogels…………………………………………14
2.8 Swelling ratio…………………………………………………………………...15
2.9 Cell culture……………………………………………………………………...15
2.10 Statistical analysis……………………………………………………………..17
3. Result and Discussion………………………………………………………………18
3.1 Characterization of materials…………………………………………………...18
3.2 Construction of ncDN hydrogels………………………………………………..29
3.3 Sol-gel transition and mechanical testing of ncDN hydrogels…………………..32
3.4 Swelling ratio…………………………………………………………………...43
3.5 Self-healing and injectable properties of ncDN hydrogels……………………...45
3.6 Cell culture……………………………………………………………………...48
4. Conclusion………………………………………………………………………….52
Chapter 2-In situ formation of nanocomposite double-network hydrogels with self-healing and shear-thinning by imine bond and coordination bond………………………53
1. Introduction………………………………………………………………………...54
2. Materials and Method………………………………………………………………58
2.1 Material………………………………………………………………………..58
2.2 Synthesis and characterization of DPA………………………………………..59
2.3 Synthesis and characterization of PDA and DPA-PDA………………………..59
2.4 Synthesis and characterization of GO and DPA-GO………………………..…60
2.5 Synthesize and characterization of TEG-CS…………………………………..61
2.6 Formation of TEG-CS/BPA-PDA/BPA-GO ncDN hydrogels………………...62
3. Result and discussion…………………………………………………………….…64
3.1 Characterization of materials………………………………………..…………64
3.2 Construction of ncDN hydrogels……………………………………………....74
4. Future work…………………………………………………………………………..79
5. Reference…………………………………………………………….………………80
dc.language.isoen
dc.title利用動態鍵結開發具有剪切稀化及自癒合特性的奈米複合水凝膠zh_TW
dc.titleDevelopment of shear-thinning and self-healing nanocomposite hydrogels through dynamic bond formationen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林峯輝(Feng-Huei Lin),游佳欣(Jiashing Yu),白孟宜(Meng-Yi Bai)
dc.subject.keyword奈米複合雙網絡水凝膠,動態共價鍵,剪切稀化,自我修復,超分子作用力,zh_TW
dc.subject.keywordNanocomposite double network hydrogel,dynamic covalent bond,shear-thinning,self-healing,supramolecular interaction,en
dc.relation.page85
dc.identifier.doi10.6342/NTU202002268
dc.rights.note有償授權
dc.date.accepted2020-08-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0308202014212000.pdf
  目前未授權公開取用
4.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved