請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54482完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾雪峰 | |
| dc.contributor.author | Shi-Hao Huang | en |
| dc.contributor.author | 黃士豪 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:59:32Z | - |
| dc.date.available | 2015-07-31 | |
| dc.date.copyright | 2015-07-31 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-03 | |
| dc.identifier.citation | [1] T.-S. Ho, P. Yeh, C.-C. Tsai, K.-Y. Hsu, and S.-L. Huang, 'Spectroscopic measurement of absorptive thin films by Spectral-Domain Optical Coherence Tomography,' Optics express, vol. 22, pp. 5675-5683, 2014.
[2] N. Kollias and A. Baqer, 'Spectroscopic characteristics of human melanin in vivo,' Journal of investigative dermatology, vol. 85, pp. 38-42, 1985. [3] M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, 'In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,' Journal of Investigative Dermatology, vol. 104, pp. 946-952, 1995. [4] C.-C. Tsai, C.-K. Chang, K.-Y. Hsu, T.-S. Ho, M.-Y. Lin, J.-W. Tjiu, et al., 'Full-depth epidermis tomography using a Mirau-based full-field optical coherence tomography,' Biomedical optics express, vol. 5, pp. 3001-3010, 2014. [5] I. A. Vitkin, J. Woolsey, B. C. Wilson, and R. Anderson, 'Optical and thermal characterization of natural (Sepia officinalis) melanin,' Photochemistry and photobiology, vol. 59, pp. 455-462, 1994. [6] D. Yudovsky and L. Pilon, 'Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance,' Applied optics, vol. 49, pp. 1707-1719, 2010. [7] W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications: Springer, 2008. [8] J. G. Fujimoto, 'Optical coherence tomography for ultrahigh resolution in vivo imaging,' Nature biotechnology, vol. 21, pp. 1361-1367, 2003. [9] M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, et al., 'Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,' Ophthalmology, vol. 103, pp. 1260-1270, 1996. [10] M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, et al., 'Optical coherence tomography of the human retina,' Archives of ophthalmology, vol. 113, pp. 325-332, 1995. [11] M. R. Hee, C. A. Puliafito, J. S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, et al., 'Topography of diabetic macular edema with optical coherence tomography,' Ophthalmology, vol. 105, pp. 360-370, 1998. [12] M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, J. S. Schuman, et al., 'Optical coherence tomography of macular holes,' Ophthalmology, vol. 102, pp. 748-756, 1995. [13] M. R. Hee, C. A. Puliafito, C. Wong, E. Reichel, J. S. Duker, J. S. Schuman, et al., 'Optical coherence tomography of central serous chorioretinopathy,' American journal of ophthalmology, vol. 120, pp. 65-74, 1995. [14] C. K. Hitzenberger, 'Optical measurement of the axial eye length by laser Doppler interferometry,' Invest Ophthalmol Vis Sci, vol. 32, pp. 616-24, 1991. [15] J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, et al., 'Optical coherence tomography: a new tool for glaucoma diagnosis,' Current opinion in ophthalmology, vol. 6, pp. 89-95, 1995. [16] J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, et al., 'Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography: a pilot study,' Archives of ophthalmology, vol. 113, pp. 586-596, 1995. [17] E. A. Swanson, D. Huang, C. Lin, C. Puliafito, M. Hee, and J. Fujimoto, 'High-speed optical coherence domain reflectometry,' Optics Letters, vol. 17, pp. 151-153, 1992. [18] A. Fercher, W. Drexler, C. Hitzenberger, and T. Lasser, 'Optical coherence tomography-principles and applications,' Reports on Progress in Physics, vol. 66, pp. 239-303, 2003. [19] K. Saladin, Anatomy & Physiology: The Unity of Form and Function: McGraw-Hill Education, 2011. [20] B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, et al., 'Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,' Biomedical optics express, vol. 3, pp. 1670-1683, 2012. [21] J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, et al., 'Optical biopsy and imaging using optical coherence tomography,' Nature medicine, vol. 1, pp. 970-972, 1995. [22] J. G. Fujimoto, C. Puliafito, R. Margolis, A. Oseroff, S. De Silvestri, and E. Ippen, 'Femtosecond optical ranging in biological systems,' Optics letters, vol. 11, pp. 150-152, 1986. [23] C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, et al., 'Imaging of macular diseases with optical coherence tomography,' Ophthalmology, vol. 102, pp. 217-229, 1995. [24] J. Schmitt, A. Knüttel, and R. Bonner, 'Measurement of optical properties of biological tissues by low-coherence reflectometry,' Applied Optics, vol. 32, pp. 6032-6042, 1993. [25] J. Schmitt, S. Lee, and K. Yung, 'An optical coherence microscope with enhanced resolving power in thick tissue,' Optics Communications, vol. 142, pp. 203-207, 1997. [26] A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, 'In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid,' Optics express, vol. 13, pp. 3252-3258, 2005. [27] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method: Artech House, 2005. [28] J.-P. Berenger, 'A perfectly matched layer for the absorption of electromagnetic waves,' Journal of computational physics, vol. 114, pp. 185-200, 1994. [29] D. S. Katz, E. T. Thiele, and A. Taflove, 'Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FD-TD meshes,' Microwave and Guided Wave Letters, IEEE, vol. 4, pp. 268-270, 1994. [30] W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, 'Ultrahigh-resolution ophthalmic optical coherence tomography,' Nature medicine, vol. 7, pp. 502-507, 2001. [31] U. Morgner, W. Drexler, F. Kärtner, X. Li, C. Pitris, E. Ippen, et al., 'Spectroscopic optical coherence tomography,' Optics letters, vol. 25, pp. 111-113, 2000. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54482 | - |
| dc.description.abstract | 黑色素是一種在生物體中廣泛分佈的天然色素,但現今黑色素精確的折射率仍不清楚。光學同調斷層掃描(OCT)是具有高速掃描的優點和更高的解析度,但重建圖像的穿透度低,因此它是一種非常合適應用到淺層結構的斷層攝影,像是表皮組織和眼睛的視網膜結構。
有限時域差分法(FDTD)是一種數值電磁模擬方法,可以很容易的模擬實驗中原始數據的軸向掃描(A-Scan)。我們假設光從樣本反射的機制是正向入射遵循菲涅爾公式且用一維的有限時域差分法來模擬實驗中原始數據的軸向掃描。 我們提出的方法是使用有吸收的反射訊號去重構組織單純不具吸收結構。得到不吸收的結構後,該結構可以是另一個無吸收的參考結構去模擬,以獲得另一個無吸收的反射訊號,藉此與之前的反射訊號做比較。 結論上來說,吸收係數(α)可以從訊號中第二反射的衰減來計算。結果顯示一些重建結構的缺陷可以歸因於細小的邊界由於在橫向方向上的厚度太薄。因此,我們比較與雙倍尺寸重建的結果,結果顯示較大的幾何形狀可減少由厚度小於解析度所引起的重建誤差。 | zh_TW |
| dc.description.abstract | Melanin is a widely distributed natural pigment in creature, but the exact refractive index of melanin is still not clear. Optical coherence tomography (OCT) is with the advantage of high-speed scan and much higher resolution, but with low image penetration. Therefore, it is very appropriate to apply the tomography to superficial in vivo sample like epidermis tissue and the structure of retina in the eye.
The numerical electromagnetic simulation method: finite-difference time domain (FDTD) can easily simulate the axial scan (A-scan) from OCT experiment carrier raw data. We assumed that the mechanism of light reflected from sample is incident Fresnel’s equation and simulated the OCT carrier raw data by 1D-FDTD. The method we propose is to use the signal which are with absorption to reconstruct the sample without absorption structure first. After getting the structure without absorption, the structure can be a simulation scenario to get another reflection signal without absorption to compare with the first reflection. In conclusion, the absorption coefficient (α) can be calculated from the decay of second reflection and the result shows that the reconstructed sample with some defects can be attributed to the slight boundary that is with thin thickness in lateral direction. Therefore, we compare to the result with double sized structure, the difference shows that the larger geometry can reduce the reconstruct error caused by the thickness under the resolution. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:59:32Z (GMT). No. of bitstreams: 1 ntu-104-R02941112-1.pdf: 2252552 bytes, checksum: 0e99fb1f3616b2d1d8811b32e8423e03 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Optical coherence tomography 2 1.3 Low coherence interferometer 5 1.4 Mathematical model of Optical coherence tomography 7 1.5 Background of Melanin 10 Chapter 2 Finite-Difference Time-Domain Simulation 11 2.1 Central difference 11 2.2 Maxwell’s Equations 13 2.3 Yee Algorithm 18 2.4 Courant Limit 23 2.5 The Total-Field/Scattered-Field technique 25 2.6 Perfectly Matched Layer Absorbing Boundary Conditions 27 Chapter 3 Absorption Analyses Method 31 3.1 Absorption Materials 31 3.2 Simulation Melanin Model with Absorption 33 3.3 Simulation Source in OCT Experiment 35 3.4 Analysis Method and Validation 38 3.4.1 Refractive index reconstruction method 38 3.4.2 Absorption effect reconstruction method 41 3.4.3 Reconstruct validation of structure and absorption 46 Chapter 4 Simulation and analysis 51 4.1 Time domain OCT simulation analysis with absorption 51 4.2 Reconstructed absorption constant analysis 57 Chapter 5 Conclusions and Future Work 61 5.1 Conclusions 61 5.2 Future Work 62 Reference 63 | |
| dc.language.iso | en | |
| dc.subject | 黑色素 | zh_TW |
| dc.subject | 吸收性組織 | zh_TW |
| dc.subject | 有限時域差分法 | zh_TW |
| dc.subject | 麥克森干涉儀 | zh_TW |
| dc.subject | 光學同調斷層掃描 | zh_TW |
| dc.subject | 黑色素 | zh_TW |
| dc.subject | 吸收性組織 | zh_TW |
| dc.subject | 有限時域差分法 | zh_TW |
| dc.subject | 光學同調斷層掃描 | zh_TW |
| dc.subject | 麥克森干涉儀 | zh_TW |
| dc.subject | Optical coherence tomography | en |
| dc.subject | Michelson’s interferometry | en |
| dc.subject | finite-difference time domain method | en |
| dc.subject | absorptive tissue | en |
| dc.subject | melanin | en |
| dc.subject | Optical coherence tomography | en |
| dc.subject | Michelson’s interferometry | en |
| dc.subject | finite-difference time domain method | en |
| dc.subject | absorptive tissue | en |
| dc.subject | melanin | en |
| dc.title | 以有限時域差分法分析在光學同調掃描術量測具有吸收效應的複數黑色素折射率 | zh_TW |
| dc.title | Finite-difference time-domain analysis of refractive index tomography of melanin measured by optical coherence tomography | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張世慧,黃升龍 | |
| dc.subject.keyword | 光學同調斷層掃描,麥克森干涉儀,有限時域差分法,吸收性組織,黑色素, | zh_TW |
| dc.subject.keyword | Optical coherence tomography,Michelson’s interferometry,finite-difference time domain method,absorptive tissue,melanin, | en |
| dc.relation.page | 64 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-06 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
