請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54476完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蕭浩明(Hao-Ming Hsiao) | |
| dc.contributor.author | Cheng-Han Lin | en |
| dc.contributor.author | 林承翰 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:59:11Z | - |
| dc.date.available | 2020-08-28 | |
| dc.date.copyright | 2015-08-28 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2015-07-05 | |
| dc.identifier.citation | [1] http://health99.hpa.gov.tw/Hot_News/h_NewsDetailN.aspx?TopIcNo=6798
[2] http://www.sussexheartcharity.org/heart-attack-symptoms-action.php. [3] S. W. Cheng, A. C. Ting, and J. Wong, 'Endovascular stenting of superficial femoral artery stenosis and occlusions: results and risk factor analysis,' Vascular, vol. 9, pp. 133-140, 2001. [4] L. Cho, M. Roffi, D. Mukherjee, D. L. Bhatt, C. Bajzer, and J. S. Yadav, 'Superficial femoral artery occlusion: nitinol stents achieve better flow and reduce the need for medications than balloon angioplasty alone,' The Journal of invasive cardiology, vol. 15, pp. 198-200, 2003. [5] T. Duerig, A. Pelton, and D. Stöckel, 'An overview of nitinol medical applications,' Materials Science and Engineering: A, vol. 273, pp. 149-160, 1999. [6] http://www.bostonscientific.com/en-US/products/stents--gastrointestinal/wallf lex-duodenal-stents.html [7] M.-C. Morice, P. W. Serruys, J. E. Sousa, J. Fajadet, E. Ban Hayashi, M. Perin, et al., 'A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization,' New England Journal of Medicine, vol. 346, pp. 1773-1780, 2002. [8] 摘自台大化工系廖英志教授實驗室 [9] http://www.dicardiology.com/article/nevo-sirolimus-eluting-coronary-stent-has-s ignificantly-less-chest-pain-taxus-liberte [10] H.M. Hsiao and M.T. Yin, 'An intriguing design concept to enhance the pulsatile fatigue life of self-expanding stents,' Biomedical microdevices, vol. 16, pp. 133-141, 2014. [11] H.M. Hsiao, L.W. Wu, M.T. Yin, C.H. Lin, and H. Chen, 'Quintupling fatigue resistance of intravascular stents via a simple design concept,' Computational Materials Science, vol. 86, pp. 57-63, 2014. [12] H.M. Hsiao, C.T. Yeh, Y.H. Chiu, C. Wang, and C.P. Chen, 'New clinical failure mode triggered by a new coronary stent design,' Bio-medical materials and engineering, vol. 24, pp. 37-43, 2014. [13] A. Pelton, V. Schroeder, M. Mitchell, X.Y. Gong, M. Barney, and S. Robertson, 'Fatigue and durability of Nitinol stents,' Journal of the mechanical behavior of biomedical materials, vol. 1, pp. 153-164, 2008. [14] M. Garcia-Toca, H. E. Rodriguez, P. A. Naughton, A. Keeling, S. V. Phade, M. D. Morasch, et al., 'Are carotid stent fractures clinically significant?,' Cardiovascular and interventional radiology, vol. 35, pp. 263-267, 2012. [15] L. Petrini, W. Wu, E. Dordoni, A. Meoli, F. Migliavacca, and G. Pennati, 'Fatigue behavior characterization of nitinol for peripheral stents,' Functional Materials Letters, vol. 5, 2012. [16] M. R. Jaff, 'The nature of SFA disease,' Endovasc. Today pp. 3-5, October 2004. [17] D. Scheinert, S. Scheinert, J. Sax, C. Piorkowski, S. Bräunlich, M. Ulrich, et al., 'Prevalence and clinical impact of stent fractures after femoropopliteal stenting,' Journal of the American College of Cardiology, vol. 45, pp. 312-315, 2005. [18] J. M. Gibbs, C. S. Peña, and J. F. Benenati, 'Treating the diseased superficial femoral artery,' Techniques in vascular and interventional radiology, vol. 13, pp. 37-42, 2010. [19] X. Gong, D. Chwirut, M. Mitchell, B. Choules, and K. Cavanaugh, 'Fatigue to fracture: an informative, fast, and reliable approach for assessing medical implant durability,' J ASTM Int, vol. 6, pp. 1-10, 2009. [20] H. B. Smouse, A. Nikanorov, and D. LaFlash, 'Biomechanical forces in the femoropopliteal arterial segment,' Endovascular Today, vol. 4, pp. 60-66, 2005. [21] A. Mehta, X. Y. Gong, V. Imbeni, A. R. Pelton, and R. O. Ritchie, 'Understanding the Deformation and Fracture of Nitinol Endovascular Stents Using In Situ Synchrotron X‐Ray Microdiffraction,' Advanced Materials, vol. 19, pp. 1183-1186, 2007. [22] M. Silva, E. F. Shepherd, W. O. Jackson, F. J. Dorey, and T. P. Schmalzried, 'Average patient walking activity approaches 2 million cycles per year: pedometers under-record walking activity,' The Journal of arthroplasty, vol. 17, pp. 693-697, 2002. [23] X.Y. Gong, A. R. Pelton, T. W. Duerig, N. Rebelo, and K. Perry, 'Finite element analysis and experimental evaluation of superelastic Nitinol stent,' in SMST–2003 Proc. International Conference on Shape Memory and Superelastic Technologies, 2004, pp. 453-462. [24] H.M. Hsiao, Y.H. Chiu, T.Y. Wu, J.K. Shen, and T.Y. Lee, 'Effects of through-hole drug reservoirs on key clinical attributes for drug-eluting depot stent,' Medical engineering & physics, vol. 35, pp. 884-897, 2013. [25] H.M. Hsiao and Y.H. Chiu, 'Assessment of mechanical integrity for drug-eluting renal stent with micro-sized drug reservoirs,' Computer methods in biomechanics and biomedical engineering, vol. 16, pp. 1307-1318, 2013. [26] M. Eriksen, 'Effect of pulsatile arterial diameter variations on blood flow estimated by Doppler ultrasound,' Medical and Biological Engineering and Computing, vol. 30, pp. 46-50, 1992. [27] T. KAWASAKI, S. SASAYAMA, S.-I. YAGI, T. ASAKAWA, and T. HIRAI, 'Non-invasive assessment of the age related changes in stiffness of major branches of the human arteries,' Cardiovascular Research, vol. 21, pp. 678-687, 1987. [28] 'ABAQUS UMAT for Superelasticity and Plasticity of Shape Memory Alloys document'. [29] F. Auricchio, 'A robust integration-algorithm for a finite-strain shape-memory-alloy superelastic model,' International Journal of Plasticity, vol. 17, pp. 971-990, 2001. [30] F. Auricchio and R. L. Taylor, 'Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior,' Computer methods in applied mechanics and engineering, vol. 143, pp. 175-194, 1997. [31] T. M. Pham, M. DeHerrera, and W. Sun, 'Analysis and Simulation of PTMA Device Deployment into the Coronary Sinus: Impact of Stent Strut Thickness,' in Mechanics of Biological Systems and Materials, Volume 2, ed: Springer, 2011, pp. 1-10. [32] F. Auricchio, M. Conti, S. Morganti, and A. Reali, 'Shape Memory Alloys: Material Modeling and Device Finite Element Simulations,' in IUTAM Symposium on Multiscale Modelling of Fatigue, Damage and Fracture in Smart Materials, 2011, pp. 33-42. [33] F. Auricchio, M. Conti, S. Morganti, and A. Reali, 'Shape Memory Alloy: from Constitutive Modeling to Finite Element Analysis of Stent Deployment,' CMES: Computer Modeling in Engineering & Sciences, vol. 57, pp. 225-244, 2010. [34] S. Schievano, A. M. Taylor, C. Capelli, P. Lurz, J. Nordmeyer, F. Migliavacca, et al., 'Patient specific finite element analysis results in more accurate prediction of stent fractures: application to percutaneous pulmonary valve implantation,' Journal of biomechanics, vol. 43, pp. 687-693, 2010. [35] M. Early, C. Lally, P. J. Prendergast, and D. J. Kelly, 'Stresses in peripheral arteries following stent placement: a finite element analysis,' Computer methods in biomechanics and biomedical engineering, vol. 12, pp. 25-33, 2009. [36] J. Li, Q. Luo, Z. Xie, Y. Li, and Y. Zeng, 'Fatigue life analysis and experimental verification of coronary stent,' Heart and vessels, vol. 25, pp. 333-337, 2010. [37] P. Adler, J. Allen, J. Lessar, and R. Francis, 'Martensite Transformations and Fatigue Behavior of Nitinol,' Journal of ASTM International, vol. 4, pp. 1-16, 2007. [38] T. Duerig, D. Tolomeo, and M. Wholey, 'An overview of superelastic stent design,' Minimally Invasive Therapy & Allied Technologies, vol. 9, pp. 235-246, 2000. [39] M. Grujicic, B. Pandurangan, A. Arakere, and J. Snipes, 'Fatigue-life computational analysis for the self-expanding endovascular nitinol stents,' Journal of materials engineering and performance, vol. 21, pp. 2218-2230, 2012. [40] Z. Lin and A. Denison, 'Nitinol fatigue resistance—a strong function of surface quality,' in Medical Device Materials II: Proceedings of the Materials and Medical Devices Conference, 2004, pp. 205-208. [41] Z. Lin, H. M. Hsiao, D. Mackiewicz, B. Anukhin, and K. Pike, 'Anisotropic Behavior of Radiopaque NiTiPt Hypotube for Biomedical Applications,' Advanced Engineering Materials, vol. 11, pp. B189-B193, 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54476 | - |
| dc.description.abstract | 微型儲藥槽血管支架已成為未來植入式醫療器材之流行新趨勢,它不僅可以作為傳統塗藥血管支架的另一選項,也可以應用於治療癌症之新藥物載具,具有許多潛在的可能性。微型儲藥槽血管支架的製造,必須於血管支架表面進行雷射鑽孔,加工微型儲藥槽以儲存藥物。其潛在優點包括可攜帶更高藥物劑量、可攜帶多種藥物、可於不同時間點釋放不同藥物、可同時治療兩種以上疾病等可能。然而微型儲藥槽血管支架之結構,通常在加工後會遭到破壞,可能產生臨床性質弱化,而其中以疲勞壽命之影響最巨。
本文提出一項獨特創新之菱形式微型儲藥槽血管支架,其設計概念,乃藉由改變儲藥槽之幾何形狀,將血管支架局部所承受之集中應力,分散導引至應力承載較少區域,使能量重新作更有效分配。由於能量重新分配之故,其疲勞壽命不減反增,甚至高於無任何鑽孔之傳統塗藥血管支架。 文中以有限元素與Goodman方法進行模擬與疲勞安全係數計算,對菱形式微型儲藥槽血管支架進行量化分析,以驗證其抗疲勞強度。由電腦模擬結果顯示,其中一款菱形式微型儲藥槽血管支架最多可將疲勞安全係數提升至傳統塗藥支架的1.7倍、藥物承載量為同尺寸傳統塗藥血管支架之2.7倍,效果十分顯著。在提升上述兩項重要性質時,血管支架並沒有犧牲如徑向支撐力等其他重要臨床性質。此設計概念,對於微型儲藥槽血管支架而言是一大突破,為全球首創,也為其未來市場發展創造了無限的可能。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:59:11Z (GMT). No. of bitstreams: 1 ntu-103-R01522830-1.pdf: 15247503 bytes, checksum: a0fde264b182ec26104c4e554a36d12b (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii ABSTRACT iv 目錄 vi 圖目錄 viii 表目錄 x 第一章 緒論 1 1.1 心腦血管疾病與支架 1 1.2 塗藥血管支架 3 1.3 血管支架的設計與製造 4 1.4 血管支架之疲勞破壞 6 1.5 研究內容與貢獻 7 第二章 血管支架設計 9 2.1 傳統塗藥血管支架設計 9 2.2 傳統微型儲藥槽血管支架設計 11 2.3 創新儲藥槽血管支架設計 13 第三章 有限元素模型分析 17 3.1 有限元素模型 17 3.1.1 鎳鈦合金材料設定 22 3.1.2 網格與接觸設定 24 3.2 Goodman疲勞安全係數分析 29 3.3 支架徑向支撐力分析 31 第四章 模擬結果與討論 33 4.1 菱形儲藥槽血管支架之機械性質分析 33 4.1.1 舒緩應變之成效 33 4.1.2 疲勞安全係數分析 34 4.1.3 儲藥量分析 38 4.1.4 徑向支撐力分析 39 4.2 不同參數之菱形儲藥槽血管支架 40 4.2.1 槽長度對於菱形式儲藥槽血管支架疲勞安全係數之影響 41 4.2.2 槽長度對於菱形式儲藥槽血管支架儲藥量之影響 46 4.2.3 槽長度對於菱形式儲藥槽血管支架徑向支撐力之影響 47 4.2.4 槽寬度對於菱形式儲藥槽血管支架疲勞安全係數之影響 48 4.2.5 槽寬度對於菱形式儲藥槽血管支架儲藥量之影響 49 4.2.6 槽寬度對於菱形式儲藥槽血管支架徑向支撐力之影響 50 4.3 支架設計之評論 51 第五章 結論與未來展望 55 參考文獻 57 | |
| dc.language.iso | zh-TW | |
| dc.subject | 有限元素分析 | zh_TW |
| dc.subject | Goodman疲勞壽命分析 | zh_TW |
| dc.subject | 有限元素分析 | zh_TW |
| dc.subject | 微型儲藥槽血管支架 | zh_TW |
| dc.subject | 心血管疾病 | zh_TW |
| dc.subject | 自動擴張式血管支架 | zh_TW |
| dc.subject | Goodman疲勞壽命分析 | zh_TW |
| dc.subject | 自動擴張式血管支架 | zh_TW |
| dc.subject | 心血管疾病 | zh_TW |
| dc.subject | 微型儲藥槽血管支架 | zh_TW |
| dc.subject | Self-expanding stent | en |
| dc.subject | Goodman fatigue life analysis | en |
| dc.subject | Finite element analysis | en |
| dc.subject | Goodman fatigue life analysis | en |
| dc.subject | Self-expanding stent | en |
| dc.subject | Cardiovascular disease | en |
| dc.subject | Drug-eluting depot stent | en |
| dc.subject | Finite element analysis | en |
| dc.subject | Cardiovascular disease | en |
| dc.subject | Drug-eluting depot stent | en |
| dc.title | 創新菱形式儲藥槽血管支架 | zh_TW |
| dc.title | Novel Rhombus-Shaped Depot Stent with Micro-Sized Drug Reservoirs | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖洺漢(Ming-Han Liao),盧彥文(Yen-Wen Lu) | |
| dc.subject.keyword | 自動擴張式血管支架,心血管疾病,微型儲藥槽血管支架,有限元素分析,Goodman疲勞壽命分析, | zh_TW |
| dc.subject.keyword | Self-expanding stent,Cardiovascular disease,Drug-eluting depot stent,Finite element analysis,Goodman fatigue life analysis, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-06 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 14.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
