請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5446完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳榮凱 | |
| dc.contributor.author | Chin-Yi Lin | en |
| dc.contributor.author | 林金毅 | zh_TW |
| dc.date.accessioned | 2021-05-15T17:59:06Z | - |
| dc.date.available | 2014-02-26 | |
| dc.date.available | 2021-05-15T17:59:06Z | - |
| dc.date.copyright | 2014-02-26 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-02-12 | |
| dc.identifier.citation | [1] G. Belousov “The maximal number of singular points on log del Pezzo surfaces”,
J. Math. Sci. Univ. Tokyo.16, 231-238 (2009) [2] I. Cheltsov, “Log canonical thresholds on hypersurfaces”, Sbornik: Mathematics 192(2001),1241-1257. [3] I. Cheltsov, D. Kosta, “ Computing αinvariants of Singular Del Pezzo Surfaces”, arXiv:1010.0043. [4] Ivan Cheltsov, Constantin Shramov, “Del Pezzo Zoo”, arXiv:0904.0114. [5] J. A. Chen, M. Chen, “An optimal boundedness on weak Q-Fano threefolds”, Adv. Math., 219, (2008), 2086-2104. arXiv 0712.4356. [6] D. F. Coray, M. A. Tsfasman, “Arithmetic on singular Del Pezzo surfaces”. Proc. London Math. Soc (3), 57(1) , 25–87 (1988). [7] I. Dolgachev, “Weighted projective spaces”. [8] A. R. Fletcher, “Working on Weighted Complete Intersections”, L.M.S. Lecture Note Series 281 (2000), 101-173. [9] W. Fulton, “Introduction to Toric Varieties”, Princeton University Press, 1993. [10] Robin Hartshorne, “Algebraic Geometry”, Springer GTM 52. [11] Y. Kawamata, K. Matsuda, and K. Matsuki, “Introduction to the Minimal Model Problem”, Algebraic Geometry, Sendai 1985, Advanced Studies in Pure Math. 10, (1987) Kinokuniya and North-Holland, 283-360. [12] Janos Kollar, “Flips and Abundance for Algebraic Threefolds” (Salt Lake City, UT, 1991), Asterisque 211, Soc. math. France. Montronge, 1992. [13] Janos Kollar, “Singularities of Pairs”, Proceedings of Symposia in Pure Mathematics 62 (1997), 221-287. [14] J. Kollar, S. Mori , ‘Birational Geometry of Algebraic Varieties”, Cambridge University Press, 1998. [15] J. Neukirch, “Algebraic Number Theory”, Springer Comprehensive studies 322. [16] Yu. G. Prokhorov.“ Lectures on complements on log surfaces”, arXiv:9912111. [17] Yu. G. Prokhorov and A.B. Verevkin. “The Riemann-Roch theorem on surfaces with log-terminal singularities” J. Math. Sci., 140, No.2 (2007). [18] M. Reid, “Young person’s guide to canonical singularities” Proc. Symp. Pure Math., 46, 343-416 (1987). [19] V. V. Shokurov, “Complements on surfaces” J. Math. Sci. , 102,No. 2 (2000). [20] G. Tian, “On Kahler-Einstein metrics on certain Kahler manifolds with c(M) > 0 “. Invent, math. 89 (1987) 225-246. [21] V. Tosatti, “Kahler-Einstein metrics on Fano surfaces”,Expositiones Mathematicae 30, 11-30 (2012). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5446 | - |
| dc.description.abstract | 本文介紹del Pezzo曲面之研究。早期的研究主要以光滑曲面為對向,但近年則多考慮帶有奇點的曲面。因此第二章即討論各種奇點,始自第三章起正式定義del Pezzo 曲面,介紹光滑曲面的分類。第四章介紹Shokurov發展的complement 理論,並在第五章的weighted complete intersection 中給出例子。第六章介紹凱勒─愛因斯坦距離和del Pezzo曲面的關係。第七章與第八章是作者的研究結果利用黎曼─羅赫定理計算尤拉示性數並得到一種特別的不消沒定理。 | zh_TW |
| dc.description.abstract | The thesis in on the geometry of del Pezzo surfaces. Early researches focused on smooth surfaces, while recently surfaces with singularities have been mostly considered. Consequently, in Chapter 2, different types of singularities are first discussed, and then del Pezzo surfaces can be defined formally in Chapter 3. Research on smooth surfaces are also given there. In Chapter 4, we introduce the complement theory developed by Shokurov, and we give some examples of weighted complete intersection in Chapter 5. Chapter 6 is about the relation between Kahler-Einstein metrics and del Pezzo surfaces. In Chapter 7 and Chapter 8, we introduce our research result. We use Riemann-Roch theorem to calculated Euler characteristics, and then give a special type of nonvanishing theorem. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-15T17:59:06Z (GMT). No. of bitstreams: 1 ntu-103-D96221006-1.pdf: 1090493 bytes, checksum: 2430266463bf8e1ae94998c9b76c5bac (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 目錄Contents
口試委員審定書i 誌謝ii 摘要iii Abstract iv 1 Introduction 1 1.1 Notation and Conventions . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Singularities 2 2.1 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Log singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Toric varieties and singularities . . . . . . . . . . . . . . . . . . . . . 13 2.4 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3 Del Pezzo Surfaces 19 4 Complements on Log Surfaces 21 4.1 n-complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5 Weighted Complete Intersection 28 5.1 Weighted projective space . . . . . . . . . . . . . . . . . . . . . . . . 28 5.2 Weighted complete intersection . . . . . . . . . . . . . . . . . . . . . 30 6 Kahler-Einstein Metric 35 7 Euler Characteristics 37 7.1 Singular Riemann-Roch Theorem . . . . . . . . . . . . . . . . . . . . 37 7.2 Euler characteristics under L-blowups . . . . . . . . . . . . . . . . . . 40 8 Nonvanishing 43 Reference 46 | |
| dc.language.iso | en | |
| dc.title | del Pezzo 曲面之幾何 | zh_TW |
| dc.title | On Geometry of Del Pezzo Surfaces | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳俊成,江謝宏任,余正道,莊武諺 | |
| dc.subject.keyword | del Pezzo 曲面,奇點,complement,凱勒─愛因斯坦距離,不消沒定理, | zh_TW |
| dc.subject.keyword | del Pezzo surfaces,singularities,complement,Kahler-Einstein metrics,nonvanishing, | en |
| dc.relation.page | 48 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2014-02-13 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf | 1.06 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
