請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54440完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林菀俞 | |
| dc.contributor.author | C.H. Li | en |
| dc.contributor.author | 李澤華 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:57:03Z | - |
| dc.date.available | 2015-09-14 | |
| dc.date.copyright | 2015-09-14 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-07 | |
| dc.identifier.citation | Arbogast PG, Ray WA. 2011. Performance of disease risk scores, propensity scores, and traditional multivariable outcome regression in the presence of multiple confounders. Am J Epidemiol 174(5):613-20.
Babron M-C, de Tayrac M, Rutledge DN, Zeggini E, Génin E. 2012. Rare and low frequency variant stratification in the UK population: description and impact on association tests. PloS one 7(10):e46519. Basu S, Pan W. 2011. Comparison of statistical tests for disease association with rare variants. Genet Epidemiol 35(7):606-19. Davies RB. 1980. Algorithm AS 155: The distribution of a linear combination of χ 2 random variables. Applied Statistics:323-333. Devlin B, Roeder K. 1999. Genomic control for association studies. Biometrics 55(4):997-1004. Devlin B, Roeder K, Wasserman L. 2001. Genomic control, a new approach to genetic-based association studies. Theoretical population biology 60(3):155-166. Ewens WJ, Spielman RS. 1995. The transmission/disequilibrium test: history, subdivision, and admixture. American journal of human genetics 57(2):455. Han F, Pan W. 2010. A data-adaptive sum test for disease association with multiple common or rare variants. Human heredity 70(1):42. Hansen BB. 2008. The prognostic analogue of the propensity score. Biometrika 95(2):481-488. Hao K, Li C, Rosenow C, Wong WH. 2004. Detect and adjust for population stratification in population-based association study using genomic control markers: an application of Affymetrix Genechip® Human Mapping 10K array. European Journal of Human Genetics 12(12):1001-1006. Hayden EC. 2014. Technology: the $1,000 genome. Nature 507(7492):294-5. Hudson RR. 2002. Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 18(2):337-8. Jiang Y, Satten GA, Han Y, Epstein MP, Heinzen EL, Goldstein DB, Allen AS. 2014. Utilizing population controls in rare-variant case-parent association tests. The American Journal of Human Genetics 94(6):845-853. Lee S, Abecasis GR, Boehnke M, Lin X. 2014. Rare-variant association analysis: study designs and statistical tests. The American Journal of Human Genetics 95(1):5-23. Lee S, Wu MC, Lin X. 2012. Optimal tests for rare variant effects in sequencing association studies. Biostatistics 13(4):762-775. Lee W-C. 2003. Detecting population stratification using a panel of single nucleotide polymorphisms. International journal of epidemiology 32(6):1120-1120. Lee WC. 2004. Case-control association studies with matching and genomic controlling. Genet Epidemiol 27(1):1-13. Leu H-B, Chung C-M, Lin S-J, Lu T-M, Yang H-C, Ho H-Y, Ting C-T, Lin T-H, Sheu S-H, Tsai W-C. 2014. A Novel SNP Associated with Nighttime Pulse Pressure in Young-Onset Hypertension Patients Could Be a Genetic Prognostic Factor for Cardiovascular Events in a General Cohort in Taiwan. Li B, Leal SM. 2008. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet 83(3):311-21. Lin W-Y. 2014a. Adaptive Combination of P-Values for Family-Based Association Testing with Sequence Data. PloS one 9(12):e115971. Lin W-Y, Lou X-Y, Gao G, Liu N. 2014. Rare variant association testing by adaptive combination of P-values. PloS one 9(1):e85728. Lin WY. 2014b. Association testing of clustered rare causal variants in case-control studies. PLoS One 9(4):e94337. Lin WY, Zhang B, Yi N, Gao G, Liu N. 2011. Evaluation of pooled association tests for rare variant identification. BMC Proc 5 Suppl 9:S118. Liu D, Ghosh D, Lin X. 2008. Estimation and testing for the effect of a genetic pathway on a disease outcome using logistic kernel machine regression via logistic mixed models. BMC bioinformatics 9(1):292. Liu D, Lin X, Ghosh D. 2007. Semiparametric Regression of Multidimensional Genetic Pathway Data: Least‐Squares Kernel Machines and Linear Mixed Models. Biometrics 63(4):1079-1088. Liu Q, Nicolae DL, Chen LS. 2013. Marbled inflation from population structure in gene-based association studies with rare variants. Genet Epidemiol 37(3):286-92. Madsen BE, Browning SR. 2009. A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet 5(2):e1000384. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A. 2009. Finding the missing heritability of complex diseases. Nature 461(7265):747-753. Mathieson I, McVean G. 2012. Differential confounding of rare and common variants in spatially structured populations. Nature genetics 44(3):243-246. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, Hirschhorn JN. 2008. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9(5):356-69. MIETTINEN OS. 1976. Stratification by a multivariate confounder score. American journal of epidemiology 104(6):609-620. Morris AP, Zeggini E. 2010. An evaluation of statistical approaches to rare variant analysis in genetic association studies. Genetic epidemiology 34(2):188. Neale BM, Rivas MA, Voight BF, Altshuler D, Devlin B, Orho-Melander M, Kathiresan S, Purcell SM, Roeder K, Daly MJ. 2011. Testing for an unusual distribution of rare variants. PLoS Genet 7(3):e1001322. Price AL, Kryukov GV, de Bakker PI, Purcell SM, Staples J, Wei L-J, Sunyaev SR. 2010. Pooled association tests for rare variants in exon-resequencing studies. The American Journal of Human Genetics 86(6):832-838. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. 2006. Principal components analysis corrects for stratification in genome-wide association studies. Nature genetics 38(8):904-909. Ranjana H, Sadhna S. 2015. Detection of haemoglobin J in an asymptomatic diabetic patient-a case report. Indian Journal of Pathology and Oncology 2(1):53-56. Schaffner SF, Foo C, Gabriel S, Reich D, Daly MJ, Altshuler D. 2005. Calibrating a coalescent simulation of human genome sequence variation. Genome research 15(11):1576-1583. Stürmer T, Schneeweiss S, Brookhart MA, Rothman KJ, Avorn J, Glynn RJ. 2005. Analytic strategies to adjust confounding using exposure propensity scores and disease risk scores: nonsteroidal antiinflammatory drugs and short-term mortality in the elderly. American Journal of Epidemiology 161(9):891-898. Thomas DC, Witte JS. 2002. Point: population stratification: a problem for case-control studies of candidate-gene associations? Cancer Epidemiology Biomarkers & Prevention 11(6):505-512. Wacholder S, Rothman N, Caporaso N. 2000. Population stratification in epidemiologic studies of common genetic variants and cancer: quantification of bias. Journal of the National Cancer Institute 92(14):1151-1158. Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. 2011. Rare-variant association testing for sequencing data with the sequence kernel association test. The American Journal of Human Genetics 89(1):82-93. Yang H-C, Lin C-H, Hsu C-L, Hung S-I, Wu J-Y, Pan W-H, Chen Y-T, Fann CS. 2006. A comparison of major histocompatibility complex SNPs in Han Chinese residing in Taiwan and Caucasians. Journal of biomedical science 13(4):489-498. Zhang Y, Guan W, Pan W. 2013. Adjustment for population stratification via principal components in association analysis of rare variants. Genetic epidemiology 37(1):99-109. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54440 | - |
| dc.description.abstract | 背景:在基因研究裡,吾人常收集病例對照資料,比較兩組的對偶基因頻率。然而,病例組與對照組可能有不同的族群來源結構,而使得兩組未必可互比較。研究者常使用與檢測基因無相關的標識基因來建構主成份,使用數十個重要的主成份於羅吉斯迴歸裡以為調整項,藉此來調整掉病例組與對照組間族群來源的差異。
方法:次世代定序(next-generation sequencing)的成本仍頗高,許多研究並無法負擔全基因組定序的費用,而只能定序某一小段有興趣的染色體區段。本研究探討在500 kb (kilo base pairs)的染色體區段上,使用疾病危險分數(disease risk scores)於序列核相關檢定(sequence kernel association test)中,以為族群分層之調整。 結果:根據蒙地卡羅模擬(Monte Carlo simulations),使用疾病危險分數於序列核相關檢定中,比起傳統直接使用主成份分數(principal component scores)於序列核相關檢定中,疾病危險分數更能調整族群分層的偏差。 建議:若研究者有500 kb 以上的染色體區段定序資料,建議以較遠離檢測基因的常見單核苷酸多型性(常見指次要對偶基因頻率大於5%)來建構疾病危險分數,再以此疾病危險分數放入序列核相關檢定中調整病例組與對照組的族群來源差異。 | zh_TW |
| dc.description.abstract | Background: In genetic studies, we often collect unrelated cases and controls and compare allele frequencies between the two groups. However, cases and controls may come from different ancestral populations, and the allele frequencies of the two groups cannot be compared directly. Researchers usually use markers unlinked to the gene of interest to construct principal components. By using tens of important principal components as covariates in the logistic regression, we can adjust for the ancestral difference between the cases and the controls.
Method: The cost of next-generation sequencing is still high. Many studies cannot afford to the cost of whole-genome sequencing, and may only afford to sequence a chromosomal region of interest. In this study, we discuss the situation that only a 500 kb (kilo base pairs) region can be sequenced. We use disease risk scores to account for population stratification in the sequence kernel association test. Result: According to the Monte Carlo simulations, using disease risk scores in the sequence kernel association test can adjust for population stratification more efficiently, compared with the conventional approach of using principal component scores. Suggestion: If researchers have a sequenced region longer than 500 kb, we suggest using common single-nucleotide polymorphisms (with minor allele frequency > 5%) far from the gene of interest to construct disease risk scores, and adjusting the disease risk scores in the sequence kernel association test to account for the population stratification. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:57:03Z (GMT). No. of bitstreams: 1 ntu-104-P02849008-1.pdf: 536343 bytes, checksum: 56fd6c5368e12f9d1271e51c4162be52 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 誌謝 ……………………………………………………………………………………………………………………..ii
中文摘要 .......................................................................................................................... iii 英文摘要 .......................................................................................................................... iv 第一章緒論 .................................................................................................................... 1 1.1 研究背景與動機 .......................................................................................... 1 1.2 研究目的 ...................................................................................................... 3 第二章文獻回顧 ............................................................................................................ 4 2.1 Burden Test ..................................................................................................... 4 2.2 序列核相關檢定與最佳化序列核相關檢定 .................................................. 5 2.3 用於族群分層調整的主成份分析法 .............................................................. 8 第三章 研究方法 .......................................................................................................... 10 3.1 使用疾病危險分數以調整族群分層問題 ................................................ 10 3.2 模擬研究 ................................................................................................... 11 第四章 模擬結果 .......................................................................................................... 15 4.1 納入比較的方法 ....................................................................................... 15 4.2 型一錯誤率 ............................................................................................... 16 4.3 統計檢定力 ............................................................................................... 17 第五章 結論與討論 ...................................................................................................... 19 圖 ……………………………………………………………………………………………………………………21 參考文獻 ........................................................................................................................ 25 | |
| dc.language.iso | zh-TW | |
| dc.subject | 族群分層 | zh_TW |
| dc.subject | 主成份分析 | zh_TW |
| dc.subject | 病例對照研究 | zh_TW |
| dc.subject | 次世代基因定序 | zh_TW |
| dc.subject | 疾病危險分數 | zh_TW |
| dc.subject | 次世代基因定序 | zh_TW |
| dc.subject | 病例對照研究 | zh_TW |
| dc.subject | 族群分層 | zh_TW |
| dc.subject | 罕見變異 | zh_TW |
| dc.subject | 序列核相關檢定 | zh_TW |
| dc.subject | 主成份分析 | zh_TW |
| dc.subject | 序列核相關檢定 | zh_TW |
| dc.subject | 疾病危險分數 | zh_TW |
| dc.subject | 罕見變異 | zh_TW |
| dc.subject | sequence kernel association test | en |
| dc.subject | next-generation sequencing | en |
| dc.subject | case-control study | en |
| dc.subject | population stratification | en |
| dc.subject | rare variants | en |
| dc.subject | principal component analysis | en |
| dc.subject | disease risk score | en |
| dc.subject | next-generation sequencing | en |
| dc.subject | case-control study | en |
| dc.subject | population stratification | en |
| dc.subject | rare variants | en |
| dc.subject | sequence kernel association test | en |
| dc.subject | principal component analysis | en |
| dc.subject | disease risk score | en |
| dc.title | 於罕見變異關聯研究裡使用疾病危險分數來處理族群分層的問題 | zh_TW |
| dc.title | Using Disease Risk Scores to Account for Population Stratification in Rare Variant Association Studies | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李文宗,楊欣洲,蕭朱杏 | |
| dc.subject.keyword | 次世代基因定序,病例對照研究,族群分層,罕見變異,序列核相關檢定,主成份分析,疾病危險分數, | zh_TW |
| dc.subject.keyword | next-generation sequencing,case-control study,population stratification,rare variants,sequence kernel association test,principal component analysis,disease risk score, | en |
| dc.relation.page | 29 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-08 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 523.77 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
