請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54383
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃筱鈞(Hsiao-Chun Huang) | |
dc.contributor.author | Chun-Yen Feng | en |
dc.contributor.author | 馮淳晏 | zh_TW |
dc.date.accessioned | 2021-06-16T02:53:46Z | - |
dc.date.available | 2020-08-07 | |
dc.date.copyright | 2020-08-07 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-03 | |
dc.identifier.citation | 1. Futuyma, Douglas J. “Evolution.” AccessScience, McGraw-Hill Education, Aug. 2019. 2. Grant, P. “Ecology and Evolution of Darwin’s Finches” (Princeton: Princeton University Press), 1999. 3. ATWOOD, K C et al. “Periodic selection in Escherichia coli.” Proceedings of the National Academy of Sciences of the United States of America vol. 37,3, 1951: 146-55. doi:10.1073/pnas.37.3.146 4. Ryan, Francis J. “EVOLUTION OBSERVED.” Scientific American, vol. 189, no. 4, 1953, pp. 78–83., www.jstor.org/stable/24944373. Accessed 16 Apr. 2020. 5. Paquin, Charlotte, and Julian Adams. “Frequency of Fixation of Adaptive Mutations Is Higher in Evolving Diploid than Haploid Yeast Populations.” Nature, vol. 302, no. 5908, 1983, pp. 495–500. doi:10.1038/302495a0. 6. G., Hall. “Evolution of New Metabolic Functions in Laboratory Organisms.” CiNii Articles, 16 Apr. 1983, ci.nii.ac.jp/naid/10004334773. 7. Mortlock, Robert. Microorganisms as Model Systems for Studying Evolution. Springer Publishing, 2013. 8. NOVICK, A, and L SZILARD. “Experiments with the Chemostat on spontaneous mutations of bacteria.” Proceedings of the National Academy of Sciences of the United States of America vol. 36,12, 1950: 708-19. doi:10.1073/pnas.36.12.708 9. J. Monod. La technique de culture continue. Théorie et applications Ann. Inst. Pasteur, 79, 1950, pp. 390-410 10. Ratcliff, W. C., et al. “Experimental Evolution of Multicellularity.” Proceedings of the National Academy of Sciences, vol. 109, no. 5, 2012, pp. 1595–600. doi:10.1073/pnas.1115323109. 11. Ratcliff, William C et al. “Origins of multicellular evolvability in snowflake yeast.” Nature communications vol. 6 6102. 20 Jan. 2015, doi:10.1038/ncomms7102 12. Nowell, P. “The Clonal Evolution of Tumor Cell Populations.” Science, vol. 194, no. 4260, 1976, pp. 23–28. doi:10.1126/science.959840. 13. Burrell, Rebecca A., et al. “The Causes and Consequences of Genetic Heterogeneity in Cancer Evolution.” Nature, vol. 501, no. 7467, 2013, pp. 338–45. doi:10.1038/nature12625. 14. Muzny, D., Bainbridge, M., Chang, K. et al. “Comprehensive molecular characterization of human colon and rectal cancer.” Nature 487, 330–337, 2012. doi: 10.1038/nature11252 15. Heng, Henry H., et al. “Chromosomal Instability (CIN): What It Is and Why It Is Crucial to Cancer Evolution.” Cancer and Metastasis Reviews, vol. 32, no. 3–4, 2013, pp. 325–40. doi:10.1007/s10555-013-9427-7. 16. Landau, Dan A., et al. “Evolution and Impact of Subclonal Mutations in Chronic Lymphocytic Leukemia.” Cell, vol. 152, no. 4, 2013, pp. 714–26. doi:10.1016/j.cell.2013.01.019. 17. Greaves, Mel, and Carlo C Maley. “Clonal evolution in cancer.” Nature vol. 481,7381 306-13. 18 Jan. 2012, doi:10.1038/nature10762| 18. Meacham, Corbin E, and Sean J Morrison. “Tumour heterogeneity and cancer cell plasticity.” Nature vol. 501,7467, 2013: 328-37. doi:10.1038/nature12624 19. Jansen, Jan, et al. “Peripheral Blood Progenitor Cell Transplantation.” Therapeutic Apheresis, vol. 6, no. 1, 2002, pp. 5–14. doi:10.1046/j.1526-0968.2002.00392.x. 20. Hamburger, A., and S. Salmon. “Primary Bioassay of Human Tumor Stem Cells.” Science, vol. 197, no. 4302, 1977, pp. 461–63. doi:10.1126/science.560061. 21. Lapidot, Tsvee, et al. “A Cell Initiating Human Acute Myeloid Leukaemia after Transplantation into SCID Mice.” Nature, vol. 367, no. 6464, 1994, pp. 645–48. doi:10.1038/367645a0. 22. Clarke, Michael F., et al. “Cancer Stem Cells—Perspectives on Current Status and Future Directions: AACR Workshop on Cancer Stem Cells.” Cancer Research, vol. 66, no. 19, 2006, pp. 9339–44. doi:10.1158/0008-5472.can-06-3126. 23. Collins, Anne T., et al. “Prospective Identification of Tumorigenic Prostate Cancer Stem Cells.” Cancer Research, vol. 65, no. 23, 2005, pp. 10946–51. doi:10.1158/0008-5472.can-05-2018. 24. Li, Chenwei, et al. “Identification of Pancreatic Cancer Stem Cells.” Cancer Research, vol. 67, no. 3, 2007, pp. 1030–37. doi:10.1158/0008-5472.can-06-2030. 25. Prince, M E et al. “Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma.” Proceedings of the National Academy of Sciences of the United States of America vol. 104,3, 2007: 973-8. doi:10.1073/pnas.0610117104 26. Singh, Sheila K., et al. “Identification of Human Brain Tumour Initiating Cells.” Nature, vol. 432, no. 7015, 2004, pp. 396–401. doi:10.1038/nature03128. 27. Ricci-Vitiani, Lucia, et al. “Identification and Expansion of Human Colon-Cancer-Initiating Cells.” Nature, vol. 445, no. 7123, 2006, pp. 111–15. doi:10.1038/nature05384. 28. O’Brien, Catherine A., et al. “A Human Colon Cancer Cell Capable of Initiating Tumour Growth in Immunodeficient Mice.” Nature, vol. 445, no. 7123, 2006, pp. 106–10. doi:10.1038/nature05372. 29. Eramo, A., et al. “Identification and Expansion of the Tumorigenic Lung Cancer Stem Cell Population.” Cell Death Differentiation, vol. 15, no. 3, 2007, pp. 504–14. doi:10.1038/sj.cdd.4402283. 30. Yang, Zhen Fan, et al. “Significance of CD90+ Cancer Stem Cells in Human Liver Cancer.” Cancer Cell, vol. 13, no. 2, 2008, pp. 153–66. doi:10.1016/j.ccr.2008.01.013. 31. Bahmad, Hisham F et al. “Sphere-Formation Assay: Three-Dimensional in vitro Culturing of Prostate Cancer Stem/Progenitor Sphere-Forming Cells.” Frontiers in oncology vol. 8 347. 28 Aug. 2018, doi:10.3389/fonc.2018.00347 32. Reynolds, B., and S. Weiss. “Generation of Neurons and Astrocytes from Isolated Cells of the Adult Mammalian Central Nervous System.” Science, vol. 255, no. 5052, 1992, pp. 1707–10. doi:10.1126/science.1553558. 33. Hwang, Wei-Lun, et al. “MicroRNA-146a Directs the Symmetric Division of Snail-Dominant Colorectal Cancer Stem Cells.” Nature Cell Biology, vol. 16, no. 3, 2014, pp. 268–80. doi:10.1038/ncb2910. 34. Ricci-Vitiani, L., Lombardi, D., Pilozzi, E. et al. Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111–115, 2007. https://doi.org/10.1038/nature05384 35. Todaro, Matilde, et al. “Colon Cancer Stem Cells Dictate Tumor Growth and Resist Cell Death by Production of Interleukin-4.” Cell Stem Cell, vol. 1, no. 4, 2007, pp. 389–402. doi:10.1016/j.stem.2007.08.001. 36. Ponti, Dario, et al. “Isolation And In Vitro Propagation of Tumorigenic Breast Cancer Cells with Stem/Progenitor Cell Properties.” Cancer Research, vol. 65, no. 13, 2005, pp. 5506–11. doi:10.1158/0008-5472.can-05-0626. 37. Singh, S. K. et al. “Identification of a cancer stem cell in human brain tumors.” Cancer Research, vol. 63, 2003, pp. 5821-5828. 38. Martin, Elizabeth, and Robert Hine. A Dictionary of Biology. : Oxford University Press, , 2008. Oxford Reference. 39. Morrison, Sean J., and Judith Kimble. “Asymmetric and Symmetric Stem-Cell Divisions in Development and Cancer.” Nature, vol. 441, no. 7097, 2006, pp. 1068–74. doi:10.1038/nature04956. 40. Gönczy, Pierre. “Asymmetric Cell Division and Axis Formation in the Embryo.” WormBook, 2005, pp. 1–20. doi:10.1895/wormbook.1.30.1. 41. Strome, Susan, and William B. Wood. “Generation of Asymmetry and Segregation of Germ-Line Granules in Early C. Elegans Embryos.” Cell, vol. 35, no. 1, 1983, pp. 15–25. doi:10.1016/0092-8674(83)90203-9. 42. Mello, Craig C., et al. “The Pie-1 and Mex-1 Genes and Maternal Control of Blastomere Identity in Early C. Elegans Embryos.” Cell, vol. 70, no. 1, 1992, pp. 163–76. doi:10.1016/0092-8674(92)90542-k. 43. Mello, Craig C., Charlotte Schubert, et al. “The PIE-1 Protein and Germline Specification in C. Elegans Embryos.” Nature, vol. 382, no. 6593, 1996, pp. 710–12. doi:10.1038/382710a0. 44. Hansemann, David. “Ueber Pathologische Mitosen.” Archiv Für Pathologische Anatomie Und Physiologie Und Für Klinische Medicin, vol. 123, no. 2, 1891, pp. 356–70. doi:10.1007/bf01884400. 45. Bignold, Leon, et al. “David Paul von Hansemann: Contributions to Oncology: Context, Comments and Translations.” 2007th ed., Birkhäuser, 2007. 46. Saunders, William. “Centrosomal Amplification and Spindle Multipolarity in Cancer Cells.” Seminars in Cancer Biology, vol. 15, no. 1, 2005, pp. 25–32. doi:10.1016/j.semcancer.2004.09.003. 47. Gómez-Cuadrado, Laura, et al. “Mouse Models of Metastasis: Progress and Prospects.” Disease Models Mechanisms, vol. 10, no. 9, 2017, pp. 1061–74. doi:10.1242/dmm.030403. 48. Chu, Yi-Wen, et al. “Selection of Invasive and Metastatic Subpopulations from a Human Lung Adenocarcinoma Cell Line.” American Journal of Respiratory Cell and Molecular Biology, vol. 17, no. 3, 1997, pp. 353–60. doi:10.1165/ajrcmb.17.3.2837. 49. Yang, C.-F. et al. “Kinesin-5 Contributes to Spindle-length Scaling in the Evolution of Cancer toward Metastasis.” Sci. Rep. 6, 35767; doi: 10.1038/srep35767, 2016. 50. Prosser, Suzanna L., and Laurence Pelletier. “Mitotic Spindle Assembly in Animal Cells: A Fine Balancing Act.” Nature Reviews Molecular Cell Biology, vol. 18, no. 3, 2017, pp. 187–201. doi:10.1038/nrm.2016.162. 51. Goshima, Gohta, and Jonathan M. Scholey. “Control of Mitotic Spindle Length.” Annual Review of Cell and Developmental Biology, vol. 26, no. 1, 2010, pp. 21–57. doi:10.1146/annurev-cellbio-100109-104006. 52. Loughlin, Rose, et al. “Katanin Contributes to Interspecies Spindle Length Scaling in Xenopus.” Cell, vol. 147, no. 6, 2011, pp. 1397–407. doi:10.1016/j.cell.2011.11.014. 53. Goshima, Gohta, and Ronald D. Vale. “The Roles of Microtubule-Based Motor Proteins in Mitosis.” Journal of Cell Biology, vol. 162, no. 6, 2003, pp. 1003–16. doi:10.1083/jcb.200303022. 54. Helmlinger, Gabriel, et al. “Solid Stress Inhibits the Growth of Multicellular Tumor Spheroids.” Nature Biotechnology, vol. 15, no. 8, 1997, pp. 778–83. doi:10.1038/nbt0897-778. 55. Nia, Hadi T., et al. “Solid Stress and Elastic Energy as Measures of Tumour Mechanopathology.” Nature Biomedical Engineering, vol. 1, no. 1, 2016. doi:10.1038/s41551-016-0004. 56. Nam, Sungmin, and Ovijit Chaudhuri. “Mitotic Cells Generate Protrusive Extracellular Forces to Divide in Three-Dimensional Microenvironments.” Nature Physics, vol. 14, no. 6, 2018, pp. 621–28. doi:10.1038/s41567-018-0092-1. 57. Yakisich, Juan Sebastian, et al. “Cancer Cell Plasticity: Rapid Reversal of Chemosensitivity and Expression of Stemness Markers in Lung and Breast Cancer Tumorspheres.” Journal of Cellular Physiology, vol. 232, no. 9, 2017, pp. 2280–86. doi:10.1002/jcp.25725. 58. McIver, C. M., et al. “Dipeptidase 1: A Candidate Tumor-Specific Molecular Marker in Colorectal Carcinoma.” Cancer Letters, vol. 209, no. 1, 2004, pp. 67–74. doi:10.1016/j.canlet.2003.11.033. 59. Toiyama, Yuji, et al. “DPEP1, Expressed in the Early Stages of Colon Carcinogenesis, Affects Cancer Cell Invasiveness.” Journal of Gastroenterology, vol. 46, no. 2, 2010, pp. 153–63. doi:10.1007/s00535-010-0318-1. 60. Park, Sang Yoon, et al. “Dehydropeptidase 1 Promotes Metastasis through Regulation of E-Cadherin Expression in Colon Cancer.” Oncotarget, vol. 7, no. 8, 2016, pp. 9501–12. doi:10.18632/oncotarget.7033. 61. Friedl, P., and E. B. Bröcker. “The Biology of Cell Locomotion within Three-Dimensional Extracellular Matrix.” Cellular and Molecular Life Sciences (CMLS), vol. 57, no. 1, 2000, pp. 41–64. doi:10.1007/s000180050498. 62. Parthiv Kant Chaudhuri, Boon Chuan Low, and Chwee Teck Lim. “Mechanobiology of Tumor Growth.” Chemical Reviews, vol. 118, no. 14, 2018, pp. 6499–515. doi:10.1021/acs.chemrev.8b00042. 63. Chen, Yun, et al. “The Evolution of Spindles and Their Mechanical Implications for Cancer Metastasis.” Cell Cycle, vol. 18, no. 15, 2019, pp. 1671–75. doi:10.1080/15384101.2019.1632137. 64. Dumont, Sophie, and Timothy J. Mitchison. “Force and Length in the Mitotic Spindle.” Current Biology, vol. 19, no. 17, 2009, pp. R749–61. doi:10.1016/j.cub.2009.07.028. 65. Iimori, Makoto, et al. “Phosphorylation of EB2 by Aurora B and CDK1 Ensures Mitotic Progression and Genome Stability.” Nature Communications, vol. 7, no. 1, 2016. doi:10.1038/ncomms11117. 66. Maiato, Helder, et al. “Human CLASP1 Is an Outer Kinetochore Component That Regulates Spindle Microtubule Dynamics.” Cell, vol. 113, no. 7, 2003, pp. 891–904. doi:10.1016/s0092-8674(03)00465-3. 67. Maffini, Stefano, et al. “Motor-Independent Targeting of CLASPs to Kinetochores by CENP-E Promotes Microtubule Turnover and Poleward Flux.” Current Biology, vol. 19, no. 18, 2009, pp. 1566–72. doi:10.1016/j.cub.2009.07.059. 68. Pereira, Ana L., et al. “Mammalian CLASP1 and CLASP2 Cooperate to Ensure Mitotic Fidelity by Regulating Spindle and Kinetochore Function.” Molecular Biology of the Cell, edited by Kerry Bloom, vol. 17, no. 10, 2006, pp. 4526–42. doi:10.1091/mbc.e06-07-0579. 69. Yu, Jun-Xiong et al. “Upregulation of colonic and hepatic tumor overexpressed gene is significantly associated with the unfavorable prognosis marker of human hepatocellular carcinoma.” American journal of cancer research vol. 6,3 690-700. 15 Feb. 2016 70. Gergely, F. “The Ch-TOG/XMAP215 Protein Is Essential for Spindle Pole Organization in Human Somatic Cells.” Genes Development, vol. 17, no. 3, 2003, pp. 336–41. doi:10.1101/gad.245603. 71. Barr, Alexis R., and Fanni Gergely. “MCAK-Independent Functions of Ch-Tog/XMAP215 in Microtubule Plus-End Dynamics.” Molecular and Cellular Biology, vol. 28, no. 23, 2008, pp. 7199–211. doi:10.1128/mcb.01040-08. 72. Kitazawa, Hidefumi, et al. “Ser787 in the Proline-Rich Region of Human MAP4 Is a Critical Phosphorylation Site That Reduces Its Activity to Promote Tubulin Polymerization.” Cell Structure and Function, vol. 25, no. 1, 2000, pp. 33–39. doi:10.1247/csf.25.33. 73. Samora, Catarina P., et al. “MAP4 and CLASP1 Operate as a Safety Mechanism to Maintain a Stable Spindle Position in Mitosis.” Nature Cell Biology, vol. 13, no. 9, 2011, pp. 1040–50. doi:10.1038/ncb2297. 74. Mohan, Renu, and Annie John. “Microtubule-Associated Proteins as Direct Crosslinkers of Actin Filaments and Microtubules.” IUBMB Life, vol. 67, no. 6, 2015, pp. 395–403. doi:10.1002/iub.1384. 75. Cabrales Fontela, Yunior, et al. “Multivalent Cross-Linking of Actin Filaments and Microtubules through the Microtubule-Associated Protein Tau.” Nature Communications, vol. 8, no. 1, 2017. doi:10.1038/s41467-017-02230-8. 76. Zhu, Jinwei, et al. “LGN/MInsc and LGN/NuMA Complex Structures Suggest Distinct Functions in Asymmetric Cell Division for the Par3/MInsc/LGN and Gαi/LGN/NuMA Pathways.” Molecular Cell, vol. 43, no. 3, 2011, pp. 418–31. doi:10.1016/j.molcel.2011.07.011. 77. Kiyomitsu, Tomomi, and Iain M. Cheeseman. “Chromosome- and Spindle-Pole-Derived Signals Generate an Intrinsic Code for Spindle Position and Orientation.” Nature Cell Biology, vol. 14, no. 3, 2012, pp. 311–17. doi:10.1038/ncb2440. 78. Manning, Amity L., et al. “The Kinesin-13 Proteins Kif2a, Kif2b, and Kif2c/MCAK Have Distinct Roles during Mitosis in Human Cells.” Molecular Biology of the Cell, edited by Ted Salmon, vol. 18, no. 8, 2007, pp. 2970–79. doi:10.1091/mbc.e07-02-0110. 79. Hood, Emily A., et al. “Plk1 Regulates the Kinesin-13 Protein Kif2b to Promote Faithful Chromosome Segregation.” Molecular Biology of the Cell, edited by Kerry S. Bloom, vol. 23, no. 12, 2012, pp. 2264–74. doi:10.1091/mbc.e11-12-1013. 80. Iancu, C et al. “Effects of stathmin inhibition on the mitotic spindle.” Journal of cell science vol. 114,Pt 5 (2001): 909-16. 81. McHugh, Toni, et al. “Kif15 Functions as an Active Mechanical Ratchet.” Molecular Biology of the Cell, edited by Thomas D. Pollard, vol. 29, no. 14, 2018, pp. 1743–52. doi:10.1091/mbc.e18-03-0151. 82. van Heesbeen, Roy G. H. P., et al. “Balanced Activity of Three Mitotic Motors Is Required for Bipolar Spindle Assembly and Chromosome Segregation.” Cell Reports, vol. 8, no. 4, 2014, pp. 948–56. doi:10.1016/j.celrep.2014.07.015. 83. Lai, Pei‑Lun, et al. “Selection of a Malignant Subpopulation from a Colorectal Cancer Cell Line.” Oncology Letters, 2020. doi:10.3892/ol.2020.11829. 84. Eisenach, P. A., et al. “Dipeptidase 1 (DPEP1) Is a Marker for the Transition from Low-Grade to High-Grade Intraepithelial Neoplasia and an Adverse Prognostic Factor in Colorectal Cancer.” British Journal of Cancer, vol. 109, no. 3, 2013, pp. 694–703. doi:10.1038/bjc.2013.363. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54383 | - |
dc.description.abstract | 在過往研究演化生物學中,學者大多聚焦於透過物種間相似的型態和基因體去判斷其為親緣較為接近的族群,然而對於何種因素主要去驅使演化的進展與方向則較少被深入探究。腫瘤的形成已被報導過是由上代細胞 (ancestral cell) 經一系列的基因突變,最終帶有利於生存性狀的子群體得以擴大並發展成為腫瘤主體。在此篇論文中,我們連續地採用球形成試驗 (sphere forming assay) 和體外侵略試驗 (invasion assay) 作為探究癌細胞演化的策略。 球形成試驗過去常被使用於識別癌幹細胞,我們將HCT116細胞株形成球體後再打散成一般貼盤細胞型態,以此流程連續八回合後發現篩選出的子群體具有較強的體外轉移性和體內腫瘤形成能力。除此之外,與未經篩選之族群相比,DPEP1被視為在經篩選群體間最高表現的基因其中之一,而當DPEP1表現被抑制,不論球形成能力、體外轉移能力和體內腫瘤形成能力皆有顯著性地下降。簡單來說我們成功透過此策略從人類大腸癌細胞HCT116中篩選出較為惡性的子群體並將DPEP1視為大腸癌細胞的診斷標記。 此外,CL系列和A549細胞株透過連續性體外侵略試驗成功分離出較具侵略性的群體,且侵略性高的群體 (例如:CL1-5和A549-12) 之紡錘絲有被延長的現象。相比於由同個病人體內分離出的原發性大腸癌細胞 (SW480),繼發性大腸癌細胞 (SW620) 也同樣被證明具有較高的Aspect ratio,但透過認證更多經體內或體外侵略試驗篩選的細胞株,我們發現紡錘絲延長的特徵並非普遍存在於任何較具侵略性的細胞株。我們的結果暗示紡錘體本身存在很高的適應性,而為形成穩定的紡錘體延長現象,CL1-5可能有超過一種以上調控機制同時喪失功能。為了觀測癌細胞實際在人類組織內分裂的過程,我們製備兼具黏著性與伸縮性的水凝膠用以模擬人類細胞外間質,並發現CL1-5細胞在水凝膠中分裂時會向細胞外方向產生較強的推力,同時我們也辨認出一些微管 (microtubule)、星狀 (astral) 或皮層 (cortex) 調整因子可能會去主導紡錘絲縮短或產生由紡錘絲向細胞外推力。為了要全盤瞭解紡錘體力學演化機制,許多技術性問題與進階的實驗有待解決及進行。 | zh_TW |
dc.description.abstract | In traditional evolutionary studies, researchers primarily focused on phenotype and genotype similarity to define categories of biological species. However, what drives evolutionary progression has been less investigated. It has been proposed that tumor is induced by a series of genomic mutations on an ancestral cell, and eventually the subpopulation that possesses properties stemmed from beneficial mutations develops into a tumor mass. In the present thesis, we adopted repeated sphere forming assay and continuously in vitro invasion assay as strategies to investigate cancer evolution in the laboratory. Sphere forming assay was commonly used to isolate cancer stem cells. After eight rounds of sphere forming and re-plating using HCT116, the resulting subpopulation exhibited higher metastatic capacity in vitro and increased tumorigenicity in vivo. Moreover, DPEP1 was identified as one of the most upregulated genes in the selected subpopulations compared with parental. Sphere forming capability, in vitro metastatic ability and in vivo tumorigenicity were markedly declined when knockdown of DPEP1. In sum, we have successfully isolated a malignant HCT116 subpopulation using our strategy, and DPEP1 might serve as prognostic biomarker of CRC. In addition, through repeated selection in vitro invasion assay, metastatic clones have also been isolated in CL and A549 cells. It has demonstrated that spindles were lengthened in both metastatic clones (e.g. CL1-5 and A549-12). Human secondary CRC (SW620) also exhibited higher spindle aspect compared to primary tumor (SW480) dissected from same patient. According to preliminary observations in other cancer cell lines selected in vitro an in vivo, we found that a stable spindle lengthening was not universal for all metastatic lines tested. Our data suggest that spindles may possess intrinsic adaptability, and that there may be more than one spindle regulatory mechanisms disrupted for CL series to exhibit stable lengthening phenotype. In order to mimic the process of cancer cell diving in human extracellular matrix, viscoelastic hydrogel was prepared for encapsulated cell divisions. We demonstrate that dividing CL1-5 cells generated stronger extracellular outward force in hydrogel compared to the parental. We also screened for potential microtubule or astral/cortex regulators that might modulate the transmission of outward force from spindle to extracellular space. We envision that many technical problems and further experiments are needed to be solved and carried out for the understanding of spindle force evolution in cancer. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:53:46Z (GMT). No. of bitstreams: 1 U0001-0308202015234500.pdf: 2635831 bytes, checksum: 1f1559ad16bf0f244f2870494638630c (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 致謝 i 中文摘要 ii Abstract iv Table of contents vi CHAPTER. 1 INTRODUCTION 1-1. Overview of evolution 1 1-1-1. Experimental evolution 1 1-1-2. Cancer evolution 2 1-1-3. Cancer stem cells 3 1-1-4. Sphere forming assay 5 1-2. Cell division 6 1-2-1. Abnormal cell division in tumor initiation 6 1-2-2. Cell metastasis and Model of CL cell lines 8 1-2-3. Spindle scaling in cancer 9 1-2-4. Extracellular force generated during cell division 10 CHAPTER. 2 MATERIALS AND METHODS 2-1. Cell lines and culture condition 12 2-2. Sphere forming assay 13 2-3. Preparation of Sphere-derived cancer stem cells and sphere-derived adherent cells 13 2-4. RNA extraction and quantitative real-time polymerase chain reaction (qRT-PCR) 14 2-5. Lentivirus transduction and short hairpin RNA (shRNA) knockdown 17 2-6. Western blots 18 2-7. Colony formation assay 19 2-8. Transwell migration assay 19 2-9. Double thymidine synchronization 20 2-10. Synchronization method of cell lines from Dr. Lu-Hai Wang’s lab 21 2-11. Synchronization method of hydrogel experiment 21 2-12. Immunofluorescence 22 2-13. Time-lapse Imaging 23 2-14. Force measurement in VLVG-hydrogel 23 2-15. Time Lapse imaging of gel-capsulated cells 26 2-16. Force measurement and analysis by microbeads displacement 27 CHAPTER. 3 RESULTS AND DISCUSSION 3-1. Selection of malignant subpopulation in cancer evolution 29 3-1-1. RNA-sequencing reveals DPEP1 as a highly expressed gene in the selected clone 29 3-1-2. High expression of DPEP1 promotes sphere-forming capability 30 3-1-3. Eighth-generation sphere-derived adherent cells (G8D) exhibits higher DPEP1-dependent metastatic and tumorigenicity 31 3-2. Mitotic spindle and extracellular force generated during cell division 33 3-2-1. Evolution of lengthened mitotic spindle in certain cancer cell lines 33 3-2-2. Measurement of mitotic extracellular force in different generation cells 35 3-2-3. Verification of microtubule and astral/cortex regulators mediating spindle length and protrusive force 37 CHAPTER. 4 CONCLUSIONS AND FUTURE WORK 40 CHAPTER. 5 REFERENCE 44 | |
dc.language.iso | en | |
dc.title | 探討癌細胞在實驗性演化壓力下惡性子群及細胞外推力 | zh_TW |
dc.title | Characterization of malignant subpopulation and mitotic extracellular force in experimental cancer evolution | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳亘承(Hsuan-Chen Wu),涂熊林(Hsiung-Lin Tu) | |
dc.subject.keyword | 實驗演化學,癌症演化,惡性子群體,DPEP1,紡錘絲延長,細胞外推力, | zh_TW |
dc.subject.keyword | experimental evolution,cancer evolution,malignant subpopulation,DPEP1,spindle lengthening,extracellular outward force, | en |
dc.relation.page | 81 | |
dc.identifier.doi | 10.6342/NTU202002279 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-04 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
顯示於系所單位: | 分子與細胞生物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0308202015234500.pdf 目前未授權公開取用 | 2.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。