請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54376完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧信銘(Hsin-Min Lu) | |
| dc.contributor.author | Chun-Jung Tai | en |
| dc.contributor.author | 戴群融 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:53:23Z | - |
| dc.date.available | 2016-09-30 | |
| dc.date.copyright | 2015-09-30 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-11 | |
| dc.identifier.citation | R. Aggarwal, R. Gopal, A. Gupta, and H. Singh. 2012. Putting Money Where the Mouths Are: The Relation between Venture Financing and Electronic Word-of-Mouth. Information Systems Research.
T. Althoff, D. Borth, J. Hees, and A. Dengel. 2013. Analysis and forecasting of trending topics in online media streams, Proceedings of the 21st ACM international conference on Multimedia (MM). J. Bollen, H. Mao, and X.-J. Zeng, 2011. Twitter Mood Predicts the Stock Market. Journal of Computational Science. R. Crane, and D. Sornette. 2008. Robust dynamic classes revealed by measuring the response function of a social system. Proceedings of the National Academy of Sciences (PNAS), 105:15649 Z. H. I. Da, J. Engelberg, and P. Gao. 2011. In Search of Attention. Journal of Finance. F. Giummolè, S. Orlando, and G. Tolomei. 2013. A Study on Microblog and Search Engine User Behaviors: How Twitter Trending Topics Help Predict Google Hot Queries. In ASE Human Journal. S. Goel, J. M. Hofman, S. Lahaie, D. M. Pennock, and D. J. Watts. 2010. Predicting consumer behavior with Web search. Proceedings of the National Academy of Sciences (PNAS), 17486–17490 X. Luo, J. Zhang, and W. Duan. 2013. Social media and firm equity value. Information Systems Research. Y. Matsubara, Y. Sakurai, B. A. Prakash, L. Li, and C. Faloutsos, Rise and fall patterns of information diffusion: model and implications, Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. S. Petrovi ́c, M. Osborne, and V. Lavrenko. 2010. Streaming First story detection with application to Twitter. Proceedings of the 11th Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL). J. Ratkiewicz, A. Flammini, and F. Menczer. 2010. Traffic in Social Media I: Paths Through Information Networks, Proceedings of the 2010 IEEE Second International Conference on Social Computing. S. Tirunillai, and G. J. Tellis. 2012. Does Chatter Really Matter? Dynamics of User-Generated Content and Stock Performance. Marketing Science. G. Tolomei, S. Orlando, D. Ceccarelli, and C. Lucchese. 2013. Twitter anticipates bursts of requests for wikipedia articles. International Workshop on Data-driven User Behavioral Modelling and Mining from Social Media. (CIKM/DUBMOD). O. Tsur, and A. Rappoport. 2012. What's in a hashtag? Content based prediction of the spread of ideas in microblogging communities. Proceedings of the fifth ACM international conference on Web search and data mining (WSDM). J. Yang , and J. Leskovec. 2011. Patterns of temporal variation in online media. Proceedings of the fourth ACM international conference on Web search and data mining (WSDM). H. Yu, L. Xie, and S. Sanner. 2014. Twitter-Driven Youtube Views: Beyond Individual Influencers, Proceedings of the ACM International Conference on Multimedia. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54376 | - |
| dc.description.abstract | 隨著網路與資訊科技的盛行,大量的資料即時的在網路上流竄,使得使用者能以簡單快速之方法獲取最新消息。近年來因社群媒體之興起,有越來越多的使用者藉由社群平台即時分享或修改內容來抒發情緒,然而使用者於平台之選用上常會因不同類型事件而選擇不同的平台,使得各社群平台擁有其各自不同之類型。故本研究希望提出一個有效的方法來對平台彼此互動狀況進行探討,藉此找出平台間相互影響之特性。
本研究以向量自回歸模型 (Vector autoregression model) 為基礎,針對社群時間序列中含有每日季節循環樣式 (Pattern) 之問題以片段選取落後期數之方式,發展出 Vector autoregression with Segmented lags (VarSeg) 模型,期望藉由此模型能提供較有效之預測與分析能力於處理時間序列資料中含有季節因子之問題。 本研究針對三大主流網路平台 Twitter、Wikipedia 與 Google 之資料進行蒐集,並以每小時為單位來建置議題之時間序列,最後從三平台中選擇了 351 個趨勢議題來進行實驗。實驗結果證明 VarSeg 能夠對於資料當中含有當日循環樣式之議題提供良好的變數選用方法,並且在格蘭傑因果關係檢定上亦證明,一平台過去事件發生之情況,能夠用於預測其他平台事件未來之走勢。於衝擊反應函數之分析亦顯示各平台對於外部衝擊到完全反應的時間差大約 2 ~ 14 小時。另外,藉由與 VAR 模型之預測比較,發現 VarSeg 於議題之預測上,能降低預測的誤差值。故本實驗建構之 VarSeg 模型可作為往後研究多變量時間序列之基礎,並且可將其用於處理資料中含有季節性樣式之問題。 | zh_TW |
| dc.description.abstract | With the popularity of Internet and IT technology and a large amount of real-time information which diffuses in the Internet, users can obtain the latest news in a simple way. In recent years, many users use social media to share and edit the content that reflects their attention and thoughts. However, users often choose to interact with different platforms depending on specific triggering events. Therefore each platform has their own trending topic type. In our work, we develop an effective way to examine how social media platforms interact with each other and find the interplay between one platform and the other.
Our research model is constructed based on the vector autoregression Model. We modified the model to handle the intraday cyclical patterns in social media time series and developed the vector autoregression model with segmented lags model (VarSeg). Our experimental results based on 351 trending topics from the three platforms suggest that VarSeg is able to capture the intraday dynamics of trending topics. Moreover, our Granger causality tests provide stronger empirical evidence that historical time series in one platform can help predict the future traffic on another platform. In addition, impulse response functions show that the time delay to fully response to external shock is around 2 to 14 hours. After applying VarSeg to predict future values, we compare with standard VAR, the results show that VarSeg provided reduced MSE for event predicting. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:53:23Z (GMT). No. of bitstreams: 1 ntu-104-R02725028-1.pdf: 4382064 bytes, checksum: fcc240a261358ddd804ec1589a625d25 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iii 目錄 v 圖目錄 vii 表目錄 viii 第一章 緒論 1 1.1. 研究背景與動機 1 1.2. 研究目的 2 第二章 文獻探討 4 2.1. 社群平台相關研究 4 2.1.1 多媒體平台之互動情形 4 2.1.2 影響力傳播情況 5 2.2. 社群媒體對經濟議題之影響 5 2.3. 相關技術探討 6 2.3.1. 統計學方法 7 2.3.2. 監督式學習 7 2.3.3. 向量自回歸模型 8 2.3.3.1. 衝擊反應函數 9 2.3.3.2. 預測誤差變異數分解 11 2.3.3.3. 格蘭傑因果關係檢定 12 2.4. 小結 14 第三章 系統設計 15 3.1. 向量自回歸模型 15 3.2. 季節性自回歸移動平均模型 18 3.3. Vector Autoregression with Segmented Lags (VarSeg) 19 3.3.1. VarSeg 最適落後期數組合之選用 20 第四章 資料處理 23 4.1. 資料來源 23 4.1.1 Twitter 資料擷取 23 4.1.2 Wikipedia 資料擷取 24 4.1.3 Google 資料擷取 24 4.2. 資料前處理與時間序列之建置 25 4.2.1. Twitter 資料選取與建置 25 4.2.2. Wikipedia 資料選取與建置 26 4.2.3. Google 資料選取與建置 26 4.3. 依各平台為基礎之資料建置 27 第五章 實驗設計與結果 29 5.1. 單根檢定 29 5.2. VarSeg 季節性落後期數選取能力評估 33 5.3. 格蘭傑因果關係檢定 34 5.4. 衝擊反應函數 35 5.5. 預測誤差變異數分解 39 5.6. 趨勢議題之預測 41 第六章 結論與建議 49 6.1. 實驗結論 49 6.2. 研究貢獻 49 6.3. 未來研究方向 50 參考文獻 51 附錄 A 54 附錄 B 82 附錄 C 88 | |
| dc.language.iso | zh-TW | |
| dc.subject | 向量自回歸模型 | zh_TW |
| dc.subject | 社群媒體 | zh_TW |
| dc.subject | 時間序列 | zh_TW |
| dc.subject | 時間序列 | zh_TW |
| dc.subject | 向量自回歸模型 | zh_TW |
| dc.subject | 社群媒體 | zh_TW |
| dc.subject | Social media | en |
| dc.subject | Social media | en |
| dc.subject | Time series | en |
| dc.subject | Vector autoregression model | en |
| dc.subject | Vector autoregression model | en |
| dc.subject | Time series | en |
| dc.title | 應用向量自回歸模型於多媒體平台相互影響之研究 | zh_TW |
| dc.title | On the Interaction of Social Media Platforms: A Study Using Vector Autoregression Model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳建錦(Chien-Chin Chen),施人英(Jen-Ying Shih) | |
| dc.subject.keyword | 時間序列,社群媒體,向量自回歸模型, | zh_TW |
| dc.subject.keyword | Time series,Social media,Vector autoregression model, | en |
| dc.relation.page | 96 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-13 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 4.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
