請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54327
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鐘嘉德(Char-Dir Chung) | |
dc.contributor.author | Shih-Hsun Ma | en |
dc.contributor.author | 馬士勛 | zh_TW |
dc.date.accessioned | 2021-06-16T02:50:42Z | - |
dc.date.available | 2017-07-20 | |
dc.date.copyright | 2015-07-20 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-07-14 | |
dc.identifier.citation | [1] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” European Trans. Telecom-
mun., vol. 10, pp. 585-596, Nov.-Dec. 1999. [2] A. Pollok, W. Cowley, and N. Letzepis, “Symbol-wise beamforming for MIMO-OFDM transceivers in the presence of co-channel interference and spatial correlation,” IEEE Trans. Wireless Commun., vol. 8, no. 12, pp. 5755–5760, Dec. 2009. [3] H.-H. Lee and Y.-C. Ko, “Non-iterative symbol-wise beamforming for MIMO-OFDM systems,” IEEE Trans. Wireless Commun., vol. 11, no. 10, pp. 3788-3798, Oct. 2012. [4] K. Mamat and W. Santipach, “On transmit beamforming for multiantenna OFDM chan- nels with finite-rate feedback,” in Proc. IEEE Int. Conf. on Commun., Budapest, Hun- gary, Jun. 2013, pp. 1–5. [5] F. Tavassoli and C. Zhou. “Low complexity beamforming methods for MIMO-OFDM systems,” in Proc. IEEE Vehic. Technol. Conf., Quebec City, Canada, Sep. 2012, pp.1-5. [6] H. Bolcskei, D. Gesbert, and A. J. Paulraj, “On the capacity of OFDM-based spatial multiplexing systems,” IEEE Trans. Commun., vol. 50, no. 2, pp. 225–234, Feb. 2002. [7] X. Zhou, Z. Liu, Z. Wang, H. A. Suraweera, and J. Armstrong, “Capacity analysis for a distributed MIMO-OFDM system in composite spatially correlated channels,” in Proc.Int. Conf. Commun. and Networking in China, Shanghai, China, Aug. 2007, pp.1116- 1120. [8] Y.-Q. Jiang, 'Accurate capacity analysis for MIMO-OFDM systems considering corre- lation between subcarriers,' in Proc. IEEE Commun. Technol. Conf., Nanjing, China, Nov. 2010, pp.901-904. [9] I. S. Gradshteyn and I. M. Ryzhik, Table of Intergrals, Series, and Products. New York: Academic Press, 1965. [10] I. Land and J. Huber, Information Combining. Now Publishers Inc., 2006. [11] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1985. [12] P. Xiz, S. Zhou, and G. B. Giannakis, “Bandwidth- and power-efficient multicarrier multiple access,” IEEE Trans. Commun., vol. 51, no. 11, pp.1828-1837, Nov. 2003. [13] J. Choi and R. W. Heath, “Interpolation based transmit beamforming for MIMO-OFDM with limited feedback,” IEEE Trans. Signal Processing, vol. 53, no. 11, pp. 4125–4135, Nov. 2005. [14] P. A. Dighe, R. K. Mallik, and S. S. Jamuar, “Analysis of transmit-receive diversity in Rayleigh fading,” IEEE Trans. Commun., vol. 51, no. 4, pp. 694–703, Apr. 2003. [15] J. C. Nash and S. Shilien, “Simple algorithms for the partial singular value decomposi- tion.” The Computer Journal, vol. 30, no. 3, pp.268-275, Jun. 1987 [16] H.-H. Lee, “Symbol-Wise Beamforming with Limited Feedback for MIMO-OFDM Systems,” in Proc. IEEE Vehic. Technol. Conf., Yokohama, Japan, May. 2011, pp.1-5. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54327 | - |
dc.description.abstract | 在現今的無線通訊環境,多重輸入輸出系統廣為被採納,因為隨著在傳送端與接收端配置了多根的天線可以使多重輸入輸出系統相較於單天線系統提供更可靠的資料傳輸能力以及傳輸容量的提升。除了多重輸入輸出系統之外,正交分頻多工也是一個在無線環境下被廣為討論的技術,因為它本身內建了可以對抗無限通道中常有的多路徑衰減的能力。因此,結合多重輸入輸出系統與正交分頻多工的通訊技術勢必在下世代的行動通訊中佔有不可或缺的腳色。隨著在傳送端與接收端配置的多根的天線,成束技術的發明也隨之而來。成束是藉由在每個訊號於不同的傳接收天線上乘上不同的複數權重來實現,藉由每根天線上不同的複數權重,使的重不同天線上發射出的訊號有不同的振幅與相位。而這些複數權重的值可根據欲達成的目標而做設定,例如:達到接受端最大的訊號雜訊功率比、整體錯誤率達到最低、或是整體通道容量達到最大,等等…...。
由於正交分頻多工可視為將訊號切割成許多的子載波來傳送,因此在結合多重輸入輸出系統與正交分頻多之下最佳的成束方式為針對每一個子載波來做最佳成數係數的設計因此又稱為子載波成束,然而,這種方式卻有著複雜度上的致命缺點,接收端所需要設計的成束係數隨著子載波的數目而線性增加,且通常子載波數目都大於1024個,另一個重要的問題是,接收端計算好最佳的成束係數後必須將這接資訊回傳給傳送端,因此所需回傳的資料量也隨著子載波的數目而線性增加,這將會占掉很大一部分的通訊資源,迫使傳送的能傳的資料量降低。而為了克服迴授資料量太大的這個問題,內插成束被發展了出來,他只須回傳特定幾個子載波的成束係數,其餘子載波的成束係數都用內插法而得來,因此大大的降低了所需要的迴授量,但付出的代價是計算複雜度提升,且效能小幅度的降低。 基於上述的理由,本篇文章主要探討的是基於多重輸入輸出系統與正交分頻多之下的低複雜度成束。希望能找到一個方法既能降低成數所需迴受的資訊量也能降低運算成束係數的計算量,並且達到接近子載波成束的性能表現。由模擬結果得知,在正確選定該將子載波分成幾組時,我們的方法將會很接近子載波成束,並且優於內插成束。在複雜度分析上我們分成三個部分,實現複雜度、計算複雜度、以及迴授資訊量。結合複雜度分析與性能模擬結果,將可發現我們的方法在特定的性能下可提供最低的複雜度,反之,在限定的複雜度之下,我們的方法可以提供最好的性能表現。 | zh_TW |
dc.description.abstract | In a wireless communication link, multiple-input multiple-output (MIMO) techniques have been developed to increase throughput and reliability of data transmission by employing multiple antennas at the transmitter and the receiver sides. Other than MIMO technique, orthogonal frequency-division multiplexing (OFDM) is also a promising technique and widely adopted in many recent and future wireless communication standards since it can make very efficient use of available spectrum and be easily combined with other existing communication techniques. Specifically, transmit beamforming and receive beamforming are simple and popular methods for performance enhancement in multiple-input multiple-output and orthogonal frequency-division multiplexing (MIMO-OFDM) systems. However, the optimal beamforming scheme requires channel state information in form of the beamforming vectors for each OFDM subcarriers, which is referred to as subcarrier-wise beamforming. In this thesis, a subband beamforming is developed for MIMO-OFDM systems to maximize the mutual information. It is shown that the proposed scheme can provide the performance approaching that of the subcarrier-wise beamforming, while reducing both computational complexity and feedback requirements significantly. Besides, two implementation structures are developed to implement the proposed subband beamforming and compared with the existing schemes . Moreover, computational complexity and feedback requirements among various beamforming schemes are discussed. Numerical simulations show that the proposed scheme provides a better performance/feedback trade-off than existing beamforming schemes. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:50:42Z (GMT). No. of bitstreams: 1 ntu-104-R02942094-1.pdf: 1276303 bytes, checksum: 4416e84b647f85caa0d1dfb31c6d6163 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | Abstract i
Contents ii List of Figures v List of Tables viii 1 Introduction 1 1.1 MIMO-OFDM Beamforming Symtems . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Review of MIMO Systems . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Review of OFDM Systems . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.3 Review of Beamforming . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.4 MIMO-OFDM with beamforming . . . . . . . . . . . . . . . . . . . 4 1.2 Review of MIMO-OFDM Beamforming schemes . . . . . . . . . . . . . . . 4 1.2.1 Subcarrier-wise beamforming . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 Interpolation beamforming . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.3 Symbol-wise beamforming . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.4 Non-iterative symbol-wise beamforming . . . . . . . . . . . . . . . 7 1.3 Thesis Motivation, Overview, and Contributions . . . . . . . . . . . . . . . . 8 1.4 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 System Model and channel capacity 11 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Channel Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 Beamforming vector design and comparison of grouping schemes 18 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Bound based beamforming vector design . . . . . . . . . . . . . . . . . . . . 19 3.3 Exact solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.1 Algorithm of steepest descent . . . . . . . . . . . . . . . . . . . . . 24 3.3.2 Exact solution based on steepest descent algorithm . . . . . . . . . . 25 3.4 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4 Complexity and implementation 39 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2 Computation complexity (Beamforming Vector Computation) . . . . . . . . 39 4.3 Feedback requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.4 Implementation complexity (IDFT + beamforming) . . . . . . . . . . . . . . 44 4.4.1 Fast Fourier Transform (FFT) . . . . . . . . . . . . . . . . . . . . . 44 4.4.2 Direct implementation . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.4.3 Time-domain implementation . . . . . . . . . . . . . . . . . . . . . 45 4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5 Conclusion 52 Bibliography 54 Appendix A: Derivation of (2.12) 56 Appendix B: Derivation of the upper bound in (3.5) 59 Appendix C: Derivations of the lower bound in (3.5) 60 Appendix D: Derivation of Proposition 2 62 | |
dc.language.iso | en | |
dc.title | 多重輸入輸出系統搭配正交分頻多工調變之子頻帶成束技術 | zh_TW |
dc.title | MIMO-OFDM Subband Beamforming | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 王晉良(Chin-Liang Wang),馬杰(Jeich Mar),王森弘(Sen-Hung Wang) | |
dc.subject.keyword | 多重輸入輸出系統,正交分頻多工,多路徑衰減通道,成束, | zh_TW |
dc.subject.keyword | multiple-input multiple-output (MIMO),orthogonal frequency-division multiplexing (OFDM),frequency-selective Rayleigh fading channel,beamforming, | en |
dc.relation.page | 62 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-07-14 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 1.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。