請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54303
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 游佳欣(Jiashing Yu) | |
dc.contributor.author | Chih-Wei Chao | en |
dc.contributor.author | 趙志偉 | zh_TW |
dc.date.accessioned | 2021-06-16T02:49:26Z | - |
dc.date.available | 2015-07-20 | |
dc.date.copyright | 2015-07-20 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-07-15 | |
dc.identifier.citation | 1. Valencia, P.M., et al., Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nature Nanotechnology, 2012. 7(10): p. 623-629.
2. Dang, T.D., et al., Reactivity of poly(dimethylsiloxane) toward acidic permanganate. Journal of Industrial and Engineering Chemistry, 2013. 19(6): p. 1770-1773. 3. Slaughter, G. and B. Stevens, A cost-effective two-step method for enhancing the hydrophilicity of PDMS surfaces. Biochip Journal, 2014. 8(1): p. 28-34. 4. Wilson, M.E., et al., Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography. Lab on a Chip, 2011. 11(8): p. 1550-1555. 5. Beebe, D.J., G.A. Mensing, and G.M. Walker, Physics and applications of microfluidics in biology, in Annual Review of Biomedical Engineering, M.L. Yarmush, K.R. Diller, and M. Toner, Editors. 2002, Annual Reviews {a} , 4139 El Camino Way, Palo Alto, CA, 94303-0139, USA. p. 261-286. 6. Kim, P., et al., Soft lithography for microfluidics: a review. Biochip Journal, 2008. 2(1): p. 1-11. 7. Xia, Y.N. and G.M. Whitesides, Soft lithography. Annual Review of Materials Science, 1998. 28: p. 153-184. 8. Choban, E.R., et al., Microfluidic fuel cell based on laminar flow. Journal of Power Sources, 2004. 128(1): p. 54-60. 9. Sun, M.H., et al., Characterization of microfluidic fuel cell based on multiple laminar flow. Microelectronic Engineering, 2007. 84(5-8): p. 1182-1185. 10. Andersson, H. and A. van den Berg, Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities. Lab on a Chip, 2004. 4(2): p. 98-103. 11. Ikeuchi, M. and K. Ikuta. Artificial Capillary Network Chip for in Vitro 3D Tissue Culture. in Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International. 2007. 12. Huh, D., et al., Microengineered physiological biomimicry: organs-on-chips. Lab Chip, 2012. 12(12): p. 2156-64. 13. Pompano, R.R., et al., Microfluidics Using Spatially Defined Arrays of Droplets in One, Two, and Three Dimensions, in Annual Review of Analytical Chemistry, Vol 4, R.G. Cooks and E.S. Yeung, Editors. 2011, Annual Reviews: Palo Alto. p. 59-81. 14. Theberge, A.B., et al., Microdroplets in Microfluidics: An Evolving Platform for Discoveries in Chemistry and Biology. Angewandte Chemie-International Edition, 2010. 49(34): p. 5846-5868. 15. Velasco, D., E. Tumarkin, and E. Kumacheva, Microfluidic Encapsulation of Cells in Polymer Microgels. Small, 2012. 8(11): p. 1633-1642. 16. Clausell-Tormos, J., et al., Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chemistry & Biology, 2008. 15(5): p. 427-437. 17. Ling, T.Y., et al., Differentiation of lung stem/progenitor cells into alveolar pneumocytes and induction of angiogenesis within a 3D gelatin - Microbubble scaffold. Biomaterials, 2014. 35(22): p. 5660-5669. 18. Allazetta, S., T.C. Hausherr, and M.P. Lutolf, Microfluidic Synthesis of Cell-Type-Specific Artificial Extracellular Matrix Hydrogels. Biomacromolecules, 2013. 14(4): p. 1122-1131. 19. van der Kraan, P.M., et al., Interaction of chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering. Osteoarthritis and Cartilage, 2002. 10(8): p. 631-637. 20. Williams, D.F., CONSENSUS AND DEFINITIONS IN BIOMATERIALS, in De Putter, C., Et Al. 1988. p. 11-16. 21. Korurer, E., et al., Production of a composite hyaluronic acid/gelatin blood plasma gel for hydrogel-based adipose tissue engineering applications. Journal of Biomedical Materials Research Part A, 2014. 102(7): p. 2220-2229. 22. Abdellatef, S.A., et al., The Effect of Physical and Chemical Cues on Hepatocellular Function and Morphology. International Journal of Molecular Sciences, 2014. 15(3): p. 4299-4317. 23. Breuls, R.G., T.U. Jiya, and T.H. Smit, Scaffold stiffness influences cell behavior: opportunities for skeletal tissue engineering. Open Orthop J, 2008. 2: p. 103-9. 24. Yeung, T., et al., Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motility and the Cytoskeleton, 2005. 60(1): p. 24-34. 25. Engler, A., et al., Substrate compliance versus ligand density in cell on gel responses. Biophysical Journal, 2004. 86(1): p. 617-628. 26. Beningo, K.A. and Y.L. Wang, Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target. Journal of Cell Science, 2002. 115(4): p. 849-856. 27. Evans, E., A. Leung, and D. Zhelev, SYNCHRONY OF CELL SPREADING AND CONTRACTION FORCE AS PHAGOCYTES ENGULF LARGE PATHOGENS. Journal of Cell Biology, 1993. 122(6): p. 1295-1300. 28. Pelham, R.J. and Y.L. Wang, Cell locomotion and focal adhesions are regulated by substrate flexibility. Proceedings of the National Academy of Sciences of the United States of America, 1997. 94(25): p. 13661-13665. 29. Singh, M., C. Berkland, and M.S. Detamore, Strategies and Applications for Incorporating Physical and Chemical Signal Gradients in Tissue Engineering. Tissue Engineering Part B-Reviews, 2008. 14(4): p. 341-366. 30. Myotubes differentiate optimally on substrates with tissue-like stiffness. Biorheology, 2005. 42(1-2): p. 34-34. 31. Griffin, M.A., et al., Adhesion-contractile balance in myocyte differentiation. Journal of Cell Science, 2004. 117(24): p. 5855-5863. 32. Engler, A.J., et al., Matrix elasticity directs stem cell lineage specification. Cell, 2006. 126(4): p. 677-689. 33. Marino, A., et al., Two-Photon Polymerization of Sub-micrometric Patterned Surfaces: Investigation of Cell-Substrate Interactions and Improved Differentiation of Neuron-like Cells. Acs Applied Materials & Interfaces, 2013. 5(24): p. 13012-13021. 34. Szymanski, J.M. and A.W. Feinberg, Fabrication of freestanding alginate microfibers and microstructures for tissue engineering applications. Biofabrication, 2014. 6(2): p. 11. 35. Kim, H.N., et al., Nanotopography-guided tissue engineering and regenerative medicine. Advanced Drug Delivery Reviews, 2013. 65(4): p. 536-558. 36. Jaeger, A.A., et al., Microfabricated polymeric vessel mimetics for 3-D cancer cell culture. Biomaterials, 2013. 34(33): p. 8301-8313. 37. Kumar, V.A., et al., Microablation of collagen-based substrates for soft tissue engineering. Biomedical Materials, 2014. 9(1): p. 8. 38. Kim, D.H., et al., Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(2): p. 565-570. 39. Lamers, E., et al., The influence of nanoscale grooved substrates on osteoblast behavior and extracellular matrix deposition. Biomaterials, 2010. 31(12): p. 3307-3316. 40. Wood, J.A., et al., The modulation of canine mesenchymal stem cells by nano-topographic cues. Experimental Cell Research, 2012. 318(19): p. 2438-2445. 41. Janson, I.A., Y.P. Kong, and A.J. Putnam, Nanotopographic Substrates of Poly (Methyl Methacrylate) Do Not Strongly Influence the Osteogenic Phenotype of Mesenchymal Stem Cells In Vitro. Plos One, 2014. 9(3): p. 14. 42. Watari, S., et al., Modulation of osteogenic differentiation in hMSCs cells by submicron topographically-patterned ridges and grooves. Biomaterials, 2012. 33(1): p. 128-136. 43. You, M.H., et al., Synergistically Enhanced Osteogenic Differentiation of Human Mesenchymal Stem Cells by Culture on Nanostructured Surfaces with Induction Media. Biomacromolecules, 2010. 11(7): p. 1856-1862. 44. Trujillo, N.A. and K.C. Popat, Increased Adipogenic and Decreased Chondrogenic Differentiation of Adipose Derived Stem Cells on Nanowire Surfaces. Materials, 2014. 7(4): p. 2605-2630. 45. Khang, D., et al., Role of subnano-, nano- and submicron-surface features on osteoblast differentiation of bone marrow mesenchymal stem cells. Biomaterials, 2012. 33(26): p. 5997-6007. 46. Oh, S.H., et al., In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials, 2007. 28(9): p. 1664-1671. 47. Dhandayuthapani, B., et al., Polymeric Scaffolds in Tissue Engineering Application: A Review. International Journal of Polymer Science, 2011: p. 19. 48. Brauker, J.H., et al., NEOVASCULARIZATION OF SYNTHETIC MEMBRANES DIRECTED BY MEMBRANE MICROARCHITECTURE. Journal of Biomedical Materials Research, 1995. 29(12): p. 1517-1524. 49. Yang, S.F., et al., The design of scaffolds for use in tissue engineering. Part 1. Traditional factors. Tissue Engineering, 2001. 7(6): p. 679-689. 50. Whang, K., et al., Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture. Tissue Engineering, 1999. 5(1): p. 35-51. 51. Karageorgiou, V. and D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005. 26(27): p. 5474-5491. 52. Salgado, A.J., O.P. Coutinho, and R.L. Reis, Bone tissue engineering: State of the art and future trends. Macromolecular Bioscience, 2004. 4(8): p. 743-765. 53. Kim, J., et al., In vitro osteogenic differentiation of human amniotic fluid-derived stem cells on a poly(lactide-co-glycolide) (PLGA)-bladder submucosa matrix (BSM) composite scaffold for bone tissue engineering. Biomedical Materials, 2013. 8(1): p. 11. 54. Ziolkowska, K., et al., Long-term three-dimensional cell culture and anticancer drug activity evaluation in a microfluidic chip. Biosensors & Bioelectronics, 2013. 40(1): p. 68-74. 55. Salerno, A., et al., Modular polylactic acid microparticle-based scaffolds prepared via microfluidic emulsion/solvent displacement process: Fabrication, characterization, and in vitro mesenchymal stem cells interaction study. Journal of Biomedical Materials Research Part A, 2013. 101(3): p. 720-732. 56. Florczyk, S.J., et al., Porous chitosan-hyaluronic acid scaffolds as a mimic of glioblastoma microenvironment ECM. Biomaterials, 2013. 34(38): p. 10143-10150. 57. Conway, A. and D.V. Schaffer, Biophysical regulation of stem cell behavior within the niche. Stem Cell Research & Therapy, 2012. 3: p. 7. 58. He, M., et al., Construction of Chitin/PVA Composite Hydrogels with Jellyfish Gel-Like Structure and Their Biocompatibility. Biomacromolecules, 2014. 15(9): p. 3358-3365. 59. Cao, Y., et al., Compressive Properties and Creep Resistance of a Novel, Porous, Semidegradable Poly(vinyl alcohol)/Poly(lactic-co-glycolic acid) Scaffold for Articular Cartilage Repair. Journal of Applied Polymer Science, 2014. 131(11). 60. Singh, D., V. Nayak, and A. Kumar, Proliferation of Myoblast Skeletal Cells on Three-Dimensional Supermacroporous Cryogels. International Journal of Biological Sciences, 2010. 6(4): p. 371-381. 61. Kim, J., et al., Effect of Pore Structure of Macroporous Poly(Lactide-co-Glycolide) Scaffolds on the in Vivo Enrichment of Dendritic Cells. Acs Applied Materials & Interfaces, 2014. 6(11): p. 8505-8512. 62. Kimmins, S.D., P. Wyman, and N.R. Cameron, Photopolymerised methacrylate-based emulsion-templated porous polymers. Reactive & Functional Polymers, 2012. 72(12): p. 947-954. 63. Dinu, M.V., et al., Ice-templated hydrogels based on chitosan with tailored porous morphology. Carbohydrate Polymers, 2013. 94(1): p. 170-178. 64. Wang, N., J.P. Butler, and D.E. Ingber, MECHANOTRANSDUCTION ACROSS THE CELL-SURFACE AND THROUGH THE CYTOSKELETON. Science, 1993. 260(5111): p. 1124-1127. 65. Discher, D.E., P. Janmey, and Y.L. Wang, Tissue cells feel and respond to the stiffness of their substrate. Science, 2005. 310(5751): p. 1139-1143. 66. Sit, S.T. and E. Manser, Rho GTPases and their role in organizing the actin cytoskeleton. Journal of Cell Science, 2011. 124(5): p. 679-683. 67. McBeath, R., et al., Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Developmental Cell, 2004. 6(4): p. 483-495. 68. Khetan, S., et al., Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nature Materials, 2013. 12(5): p. 458-465. 69. Lim, J.Y., et al., The regulation of integrin-mediated osteoblast focal adhesion and focal adhesion kinase expression by nanoscale topography. Biomaterials, 2007. 28(10): p. 1787-1797. 70. Teo, B.K.K., et al., Nanotopography Modulates Mechanotransduction of Stem Cells and Induces Differentiation through Focal Adhesion Kinase. Acs Nano, 2013. 7(6): p. 4785-4798. 71. Khatiwala, C.B., et al., ECM Compliance Regulates Osteogenesis by Influencing MAPK Signaling Downstream of RhoA and ROCK. Journal of Bone and Mineral Research, 2009. 24(5): p. 886-898. 72. Janson, I.A. and A.J. Putnam, Extracellular matrix elasticity and topography: Material-based cues that affect cell function via conserved mechanisms. J Biomed Mater Res A, 2014. 73. Browne, S., D.I. Zeugolis, and A. Pandit, Collagen: Finding a Solution for the Source. Tissue Engineering Part A, 2013. 19(13-14): p. 1491-1494. 74. Lou, X. and T.V. Chirila, Swelling behavior and mechanical properties of chemically cross-linked gelatin gels for biomedical use. Journal of Biomaterials Applications, 1999. 14(2): p. 184-191. 75. Jain, E. and A. Kumar, Disposable polymeric cryogel bioreactor matrix for therapeutic protein production. Nature Protocols, 2013. 8(5): p. 821-835. 76. Bohidar, H.B. and S.S. Jena, STUDY OF SOL-STATE PROPERTIES OF AQUEOUS GELATIN SOLUTIONS. Journal of Chemical Physics, 1994. 100(9): p. 6888-6895. 77. Watanabe, R., et al., A Novel Gelatin Hydrogel Carrier Sheet for Corneal Endothelial Transplantation. Tissue Engineering Part A, 2011. 17(17-18): p. 2213-2219. 78. Gorgieva, S. and V. Kokol, Collagen- vs. Gelatine-Based Biomaterials and Their Biocompatibility: Review and Perspectives. Biomaterials Applications for Nanomedicine, 2011. 79. Kimes, B.W. and B.L. Brandt, PROPERTIES OF A CLONAL MUSCLE-CELL LINE FROM RAT-HEART. Experimental Cell Research, 1976. 98(2): p. 367-381. 80. Hescheler, J., et al., MORPHOLOGICAL, BIOCHEMICAL, AND ELECTROPHYSIOLOGICAL CHARACTERIZATION OF A CLONAL CELL (H9C2) LINE FROM RAT-HEART. Circulation Research, 1991. 69(6): p. 1476-1486. 81. Menard, C., et al., Modulation of L-type calcium channel expression during retinoic acid-induced differentiation of H9C2 cardiac cells. Journal of Biological Chemistry, 1999. 274(41): p. 29063-29070. 82. Comelli, M., et al., Cardiac differentiation promotes mitochondria development and ameliorates oxidative capacity in H9c2 cardiomyoblasts. Mitochondrion, 2011. 11(2): p. 315-326. 83. Zuk, P.A., et al., Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 2002. 13(12): p. 4279-95. 84. Schaffler, A. and C. Buchler, Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells, 2007. 25(4): p. 818-27. 85. Donna D. Alderman, R.W.A., Advances in Regenerative Medicine: High-density Platelet-rich Plasma and Stem Cell Prolotherapy For Musculoskeletal Pain. Practical Pain Management, 2011. 11(8): p. 58-75. 86. Estes, B.T., et al., Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nature Protocols, 2010. 5(7): p. 1294-1311. 87. Yarak, S. and O.K. Okamoto, Human adipose-derived stem cells: current challenges and clinical perspectives. An Bras Dermatol, 2010. 85(5): p. 647-56. 88. Madonna, R., Y.J. Geng, and R. De Caterina, Adipose tissue-derived stem cells: characterization and potential for cardiovascular repair. Arterioscler Thromb Vasc Biol, 2009. 29(11): p. 1723-9. 89. Heydarkhan-Hagvall, S., et al., Human adipose stem cells: a potential cell source for cardiovascular tissue engineering. Cells Tissues Organs, 2008. 187(4): p. 263-74. 90. Ding, X., et al., Integrated trilayered silk fibroin scaffold for osteochondral differentiation of adipose-derived stem cells. ACS Appl Mater Interfaces, 2014. 6(19): p. 16696-705. 91. Mei, J.C., et al., Three-dimensional extracellular matrix scaffolds by microfluidic fabrication for long-term spontaneously contracted cardiomyocyte culture. Tissue Eng Part A, 2014. 20(21-22): p. 2931-41. 92. Shafiee, H., et al., Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP). Lab on a Chip, 2010. 10(4): p. 438-445. 93. Mahto, S.K., et al., Microfluidic shear stress-regulated surfactant secretion in alveolar epithelial type II cells in vitro. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2014. 306(7): p. L672-L683. 94. Petrache, I., et al., Differential effect of MLC kinase in TNF-alpha-induced endothelial cell apoptosis and barrier dysfunction. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2001. 280(6): p. L1168-L1178. 95. Ren, K.F., et al., Manipulation of the adhesive behaviour of skeletal muscle cells on soft and stiff polyelectrolyte multilayers. Acta Biomaterialia, 2010. 6(11): p. 4238-4248. 96. Song, D.L., et al., Connexin 43 hemichannel regulates H9c2 cell proliferation by modulating intracellular ATP and Ca2+. Acta Biochimica Et Biophysica Sinica, 2010. 42(7): p. 472-482. 97. Olson, E.N., INTERPLAY BETWEEN PROLIFERATION AND DIFFERENTIATION WITHIN THE MYOGENIC LINEAGE. Developmental Biology, 1992. 154(2): p. 261-272. 98. Miner, J.H. and B. Wold, HERCULIN, A 4TH MEMBER OF THE MYOD FAMILY OF MYOGENIC REGULATORY GENES. Proceedings of the National Academy of Sciences of the United States of America, 1990. 87(3): p. 1089-1093. 99. Moss, R.L. and D.P. Fitzsimons, Myosin light chain 2 into the mainstream of cardiac development and contractility. Circulation Research, 2006. 99(3): p. 225-227. 100. Rowlands, A.S., P.A. George, and J.J. Cooper-White, Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. American Journal of Physiology-Cell Physiology, 2008. 295(4): p. C1037-C1044. 101. Vidal, M.A., et al., Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Vet Surg, 2007. 36(7): p. 613-22. 102. Cheung, H.K., et al., Composite hydrogel scaffolds incorporating decellularized adipose tissue for soft tissue engineering with adipose-derived stem cells. Biomaterials, 2014. 35(6): p. 1914-1923. 103. Rosen, E.D., The transcriptional basis of adipocyte development. Prostaglandins Leukot Essent Fatty Acids, 2005. 73(1): p. 31-4. 104. Zechner, R., et al., The role of lipoprotein lipase in adipose tissue development and metabolism. Int J Obes Relat Metab Disord, 2000. 24 Suppl 4: p. S53-6. 105. Kulterer, B., et al., Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation. Bmc Genomics, 2007. 8: p. 15. 106. Mikulska, A., et al., Osteoinductive activity of insulin-functionalized cell culture surfaces obtained using diazonium chemistry. Front Chem, 2014. 2: p. 117. 107. Sung, H.J., et al., Stemness evaluation of mesenchymal stem cells from placentas according to developmental stage: comparison to those from adult bone marrow. J Korean Med Sci, 2010. 25(10): p. 1418-26. 108. Granéli, C., et al., Novel markers of osteogenic and adipogenic differentiation of human bone marrow stromal cells identified using a quantitative proteomics approach. Stem Cell Research, 2014. 12(1): p. 153-165. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54303 | - |
dc.description.abstract | 在生醫材料影響細胞行為的眾多物理性質中,維度是一較少被論及之性質。因為過往之技術頃向製作出孔洞大小形狀不一之支架,造成眾多因素影響細胞行為。在這份研究中,我們利用微流體技術製作出具有均一圓球狀孔洞大小之三維明膠細胞支架以模仿細胞在生物體內的生長環境,並比較細胞行為在三維及二維環境下的差異,實驗中所用的細胞為二種具有分化能力的細胞: H9c2老鼠心肌母細胞與人類脂肪幹細胞 (hASC)。
H9c2為一同時具骨骼肌與心肌細胞特徵的細胞株,能夠進一步分化成具有此二種肌肉特徵的細胞。因此在這部分的實驗中,我們旨在探討維度上的差異會有利於何種肌肉特徵的表現。首先我們透過Live/Dead螢光染色確定此支架能讓細胞維持良好生存率,接著我們探討細胞的生長速率、型態、分化率、Connexin 43染色定量還有基因表現。結果發現: H9c2在三維空間中傾向分化成骨骼肌,而在二維空間中傾向分化成心肌細胞,不過維度對心肌分化的影響遠小於化學因素所能造成的影響。 hASC具有多種分化能力,包括肌肉、硬骨、軟骨及脂肪分化等等,我們透過觀察細胞型態、增殖速率、鈣沉積或是脂滴染色以及基因表現探討維度對於脂分化及硬骨分化的影響。結果指出,三維的結構較有利於脂肪分化而不利於硬骨分化。未來將深入探討這樣的現象是由何種因素導致,並且進一步研究軟骨及肌肉的分化。 | zh_TW |
dc.description.abstract | Dimensionality is a physical cue that has been discussed less frequently among the various physical cues that influence cell behaviors. In this study, we took the advantage of microfluidics to fabricate three-dimensional (3D) gelatin-based scaffolds to mimic the natural circumstances of cell growth in an organism. We further compared the differences of cellular behaviors between 2D and 3D conditions. The models used in the presented study are H9c2 rat cardiac myoblast and human adipose-derived stem cell (hASC), both of which have differentiation ability.
H9c2 is able to differentiate into skeletal or cardiac myocytes. Therefore, in this series of experiments, we aimed at investigating how dimensionality contributes to different types of muscle differentiation. We have found that H9c2 cells tended to fuse into multi-nucleated skeletal myotubes in 3D scaffold and differentiated into cardiac cells on 2D plane. However, the influence of dimensionality on cardiac differentiation was far less than that of chemical stimulation. hASC possesses multipotent differentiation ability toward osteogenic, adipogenic, myogenic and chondrogenic lineages. Specifically, we investigated osteogenic and adipogenic differentiation capability of hASC under different dimensional conditions. According to our results, the 3D environment supported adipogenesis and the 2D condition promoted osteogenesis. Our future work will focus on finding the factors which influence differentiation capability on the matrixes in different dimensionality. Furthermore, the myogenesis and chodrogenesis will also be investigated. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:49:26Z (GMT). No. of bitstreams: 1 ntu-104-R02524071-1.pdf: 42548657 bytes, checksum: c7aaa2a8502f3d55bd065338bcb63e56 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES ix LIST OF TABLES xv Chapter 1 Introduction 1 1.1 Microfluidic technology 1 1.1.1 Characterization of microfluidics 1 1.1.2 Microfluidics in tissue engineering field 3 1.2 Extracellular matrix and scaffolds 6 1.3 Factors influencing cellular behaviors 7 1.3.1 Stiffness 7 1.3.2 Topography 9 1.3.3 Pore size and porosity 12 1.3.4 Dimensionality 13 1.3.5 Cell – substrates interactions 15 1.4 Collagen and gelatin 18 1.5 Cells 20 1.5.1 H9c2 20 1.5.2 hASC 22 1.6 Motive and Aims 23 1.7 Research framework 23 Chapter 2 Material and Methods (H9c2 cardiomyoblasts) 25 2.1 Materials 25 2.2 Equipment 28 2.3 Methods 29 2.3.1 Microfluidic device 29 2.3.2 Scaffolds fabrication 29 2.3.3 2D control preparation 30 2.3.4 H9c2 culture and seeding 30 2.3.5 Live/Dead assay 31 2.3.6 Nucleus and F-actin labeling 32 2.3.7 Myosin heavy chain labeling and fusion index 32 2.3.8 Connexin 43 staining 33 2.3.9 LDH-release Analysis for Cell Proliferation 33 2.3.10 RNA Extraction 34 2.3.11 First Strand cDNA Synthesis by Reverse Transcription (RT) 35 2.3.12 Real time Polymerase Chain Reaction (qPCR) 35 2.3.13 Statistical Analysis 36 Chapter 3 Results and discussion (H9c2 cardiomyoblasts) 39 3.1 Scaffolds 39 3.2 Cell morphology 39 3.3 Cytotoxicity 41 3.4 Myosin heavy chain labeling 42 3.5 Connexin 43 labeling 42 3.6 Proliferation rate 44 3.7 Gene expression 44 Chapter 4 Materials and Methods (hASCs human adipose-derived stem cells) 53 4.1 Scaffolds and 2D gelatin film fabrication 53 4.2 Cell culture and seeding 53 4.3 Adipogenic / Osteogenic differentiation 53 4.4 Oil red o staining 55 4.5 Alizarin red S staining 55 4.6 DAPI and phalloidin staining 56 4.7 Real time Polymerase Chain Reaction (qPCR) 56 Chapter 5 Results and discussion (hASCs human adipose-derived stem cells) 57 5.1 hASCs without differentiation induction 57 5.1.1 Cell morphology 57 5.1.2 Proliferation rate 58 5.2 hASCs with adipogenic differentiation induction 58 5.2.1 Cell morphology 58 5.2.2 Oil red O staining 59 5.2.3 Gene expression 60 5.3 hASCs with osteogenic differentiation induction 60 5.3.1 Cell morphology 60 5.3.2 Alizarin red S staining 61 5.3.3 Gene expression 62 CONCLUSION 72 FUTURE PROSPECTIVES 73 REFERENCE 74 APPENDIX 81 | |
dc.language.iso | zh-TW | |
dc.title | 利用微流體技術探討維度對心肌母細胞及脂肪幹細胞之分化影響 | zh_TW |
dc.title | The applications of microfluidics in the interaction of dimensionality toward cardiac myoblast and adipose-derived stem cells differentiation ability | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡偉博(WeiborTsai),廖英志(Ying-Chih Liao),楊凱強(Kai-Chiang Yang),鄭乃禎(Nai-Chen Cheng) | |
dc.subject.keyword | 微流體,分化,維度,心肌母細胞,脂肪幹細胞, | zh_TW |
dc.subject.keyword | microfludics,dimensionality,H9c2,hASC,differentiation, | en |
dc.relation.page | 109 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-07-15 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 41.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。