Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54299
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張瑞益
dc.contributor.authorChu-Chun Changen
dc.contributor.author張竹君zh_TW
dc.date.accessioned2021-06-16T02:49:14Z-
dc.date.available2020-09-02
dc.date.copyright2015-09-02
dc.date.issued2015
dc.date.submitted2015-07-15
dc.identifier.citationREFERENCE
[1] E. Vellasques, R. Sabourin, and E. Granger, 'Gaussian mixture modeling for dynamic particle swarm optimization of recurrent problems.' pp. 73-80.
[2] T. T. Nguyen, S. Yang, and J. Branke, “Evolutionary dynamic optimization: A survey of the state of the art,” Swarm and Evolutionary Computation, vol. 6, pp. 1-24, 2012.
[3] C. Cruz, J. R. González, and D. A. Pelta, “Optimization in dynamic environments: a survey on problems, methods and measures,” Soft Computing, vol. 15, no. 7, pp. 1427-1448, 2011.
[4] H. Ben-Romdhane, E. Alba, and S. Krichen, “Best practices in measuring algorithm performance for dynamic optimization problems,” Soft Computing, vol. 17, no. 6, pp. 1005-1017, 2013.
[5] I. Moser, and R. Chiong, 'Dynamic function optimization: The moving peaks benchmark,' Metaheuristics for Dynamic Optimization, pp. 35-59: Springer, 2013.
[6] J. Branke, 'Memory enhanced evolutionary algorithms for changing optimization problems.'
[7] C. Li, S. Yang, and D. A. Pelta, “Benchmark generator for the IEEE WCCI-2012 competition on evolutionary computation for dynamic optimization problems,” China University of Geosciences, Brunel University, University of Granada, Tech. Rep, 2011.
[8] M. Mavrovouniotis, C. Li, S. Yang, and X. Yao, “Benchmark Generator for the IEEE WCCI-2014 Competition on Evolutionary Computation for Dynamic Optimization Problems,” 2013.
[9] C. Li, and S. Yang, 'A generalized approach to construct benchmark problems for dynamic optimization,' Simulated Evolution and Learning, pp. 391-400: Springer, 2008.
[10] J. Kennedy, and R. Eberhart, 'Particle swarm optimization.' pp. 1942-1948.
[11] T. M. Blackwell, 'Swarms in dynamic environments.' pp. 1-12.
[12] T. Blackwell, and J. Branke, 'Multi-swarm optimization in dynamic environments,' Applications of Evolutionary Computing, pp. 489-500: Springer, 2004.
[13] S. Janson, and M. Middendorf, 'A hierarchical particle swarm optimizer for dynamic optimization problems,' Applications of evolutionary computing, pp. 513-524: Springer, 2004.
[14] T. Blackwell, and J. Branke, “Multiswarms, exclusion, and anti-convergence in dynamic environments,” Evolutionary Computation, IEEE Transactions on, vol. 10, no. 4, pp. 459-472, 2006.
[15] X. Li, J. Branke, and T. Blackwell, 'Particle swarm with speciation and adaptation in a dynamic environment.' pp. 51-58.
[16] W. Du, and B. Li, “Multi-strategy ensemble particle swarm optimization for dynamic optimization,” Information Sciences, vol. 178, no. 15, pp. 3096-3109, 8/1/, 2008.
[17] A. B. Hashemi, and M. R. Meybodi, 'A multi-role cellular PSO for dynamic environments.' pp. 412-417.
[18] P. Novoa-Hernández, C. C. Corona, and D. A. Pelta, “Efficient multi-swarm PSO algorithms for dynamic environments,” Memetic Computing, vol. 3, no. 3, pp. 163-174, 2011.
[19] I. G. Del Amo, D. A. Pelta, J. R. González, and A. D. Masegosa, “An algorithm comparison for dynamic optimization problems,” Applied Soft Computing, vol. 12, no. 10, pp. 3176-3192, 2012.
[20] L. Changhe, Y. Shengxiang, and Y. Ming, 'Maintaining diversity by clustering in dynamic environments.' pp. 1-8.
[21] A. Simões, and E. Costa, 'Evolutionary algorithms for dynamic environments: Prediction using linear regression and Markov chains,' Parallel Problem Solving from Nature–PPSN X, pp. 306-315: Springer, 2008.
[22] Z. Zhi-Hui, Z. Jun, L. Yun, and H. S. H. Chung, “Adaptive Particle Swarm Optimization,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 39, no. 6, pp. 1362-1381, 2009.
[23] Y. Shi, and R. C. Eberhart, 'Fuzzy adaptive particle swarm optimization.' pp. 101-106.
[24] M. Clerc, and J. Kennedy, “The particle swarm-explosion, stability, and convergence in a multidimensional complex space,” Evolutionary Computation, IEEE Transactions on, vol. 6, no. 1, pp. 58-73, 2002.
[25] T. Blackwell, 'Particle swarm optimization in dynamic environments,' Evolutionary computation in dynamic and uncertain environments, pp. 29-49: Springer, 2007.
[26] R.-I. Chang, and P.-Y. Hsiao, “Unsupervised query-based learning of neural networks using selective-attention and self-regulation,” Neural Networks, IEEE Transactions on, vol. 8, no. 2, pp. 205-217, 1997.
[27] R.-I. Chang, C.-C. Chu, Y.-Y. Wu, and Y.-L. Chen, “Gene clustering by using query-based self-organizing maps,” Expert Systems with Applications, vol. 37, no. 9, pp. 6689-6694, 2010.
[28] R.-I. Chang, S.-Y. Lin, and Y. Hung, “Particle swarm optimization with query-based learning for multi-objective power contract problem,” Expert Systems with Applications, vol. 39, no. 3, pp. 3116-3126, 2012.
[29] J.-W. Lin, W.-C. Chi, and R.-I. Chang, 'Particle Swarm Optimization Combined with Query-Based Learning Using MapReduce,' Future Information Technology, pp. 91-97: Springer, 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54299-
dc.description.abstract多數現實世界的問題會因環境變動而改變,因此動態最佳化技術近年來逐漸受到重視。本論文提出一種詢問式學習粒子群演算法,根據最佳化過程所產生的歷史資料,學習問題環境特性並對演算法做出對應的改良,藉此改善不同特性之動態最佳化問題求解表現。本論文提出兩種主要改良方式,其一是根據環境變化特性自適應調整參數以及其二是預測最佳解位置變化。透過實驗知名動態最佳化基準GDBG所提供六種不同特性之動態環境變化設定,驗證本論文所提出之詢問式學習力自尋演算法能夠有效的從歷史資料中學習到問題特性,並以適當的回應來捕捉或預測環境變化後的最佳解位置,提高演算法的精準度以及廣度。實驗結果顯示所提出的演算法相對於原始mQSO演算法的解題效果改善了約11.37%,尤其在週期變化的動態最佳化問題中,詢問式學習方法有效地找到了最佳解的可能區域,而提升了約35.06%。zh_TW
dc.description.abstractThere is a growing interest in dynamic optimization problems as the optimal solution of real-world problem is usually changing over time. There are many challenges when facing DOPs. This thesis proposes a pilot study on Dynamic Particle Swarm Optimization with Query-Based Learning. We provide two QBL approaches, one with quantum parameter adaptation (QBLQPA) and another with optima prediction (QBLOP), to improve the optimizing behavior in dynamic environment. The main idea is to analyze the problem characteristics and to work out strategies with the obtained characteristics. By learning the problem characteristics from the historical data, our approaches evaluate whether the situation meets the prerequisites of QBL and activate the appropriate approach from the oracle to improve the optimization algorithm, particle swarm optimization. The well-known dynamic optimization benchmark, generalized dynamic benchmark generator system, is used to test the performance of our algorithm and the experimental results show that QBLQPA can adjust the number of quantum particles according to the shift severity of changing optima, and QBLOP can predict optimal position when finding some regular patterns in recurrent changes. Proposed algorithm can deal with different dynamic changes and outperforms original algorithm and its variant mPSODE reaching, on average, 11.37% and 8.00% improvement respectively. For the recurrent problems, our algorithm especially improves the solving ability by 35.06% with good prediction of possible optimal region.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:49:14Z (GMT). No. of bitstreams: 1
ntu-104-R02525061-1.pdf: 1508610 bytes, checksum: 3720fc376fe284c02152bf0ee57dab8e (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsCONTENTS
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES vii
Chapter 1 Introduction 1
1.1 Research Questions 1
1.2 General Background Information 2
1.3 Overview 3
Chapter 2 Literature Review 4
2.1 Dynamic Optimization Problems (DOPs) 4
2.1.1 The Challenges in Dynamic Optimization Problems 4
2.1.2 Real World Problems 6
2.2 Dynamic Optimization Problem Benchmarks 7
2.2.1 Moving Peak Benchmark (MPB) 7
2.2.2 Generalized Dynamic Benchmark Generator (GDBG) 8
2.3 Particle Swarm Optimization (PSO) 9
2.3.1 The PSO Algorithm 9
2.3.2 Recent Works in Dynamic Environment 10
2.3.3 Multi-Swarm PSO 11
2.4 Query-Based Learning (QBL) 12
Chapter 3 Proposed Method 14
3.1 Research Framework 14
3.1.1 QBLDPSO Framework 14
3.1.2 QBL Mechanism 15
3.2 Query-Based Learning Approaches 16
3.2.1 Quantum Parameter Adaptation (QPA) 17
3.2.2 Optima Prediction (OP) 19
Chapter 4 Performance Evaluation 22
4.1 Problem and Experimental Settings 22
4.2 Performance Measurements 23
4.3 Experimental Results 24
4.3.1 The Effect of QBLQPA 24
4.3.2 The Effect of QBLOP 31
4.3.3 Comparison with Other Algorithms 33
Chapter 5 Conclusions and Future Works 40
REFERENCE 42
dc.language.isoen
dc.subject詢問式學習zh_TW
dc.subject粒子群演算法zh_TW
dc.subject動態最佳化zh_TW
dc.subject詢問式學習zh_TW
dc.subject粒子群演算法zh_TW
dc.subject動態最佳化zh_TW
dc.subjectParticle swarm optimizationen
dc.subjectQuery based learningen
dc.subjectDynamic optimizationen
dc.subjectQuery based learningen
dc.subjectParticle swarm optimizationen
dc.subjectDynamic optimizationen
dc.title以詢問式學習機制改良粒子群演算法應用於動態環境之研究zh_TW
dc.titleParticle Swarm Optimization with Query-Based Learning in Dynamic Environmenten
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee丁肇隆,林正偉,何建明,林書宇
dc.subject.keyword粒子群演算法,動態最佳化,詢問式學習,zh_TW
dc.subject.keywordParticle swarm optimization,Dynamic optimization,Query based learning,en
dc.relation.page43
dc.rights.note有償授權
dc.date.accepted2015-07-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
1.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved