請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54299完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張瑞益 | |
| dc.contributor.author | Chu-Chun Chang | en |
| dc.contributor.author | 張竹君 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:49:14Z | - |
| dc.date.available | 2020-09-02 | |
| dc.date.copyright | 2015-09-02 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-15 | |
| dc.identifier.citation | REFERENCE
[1] E. Vellasques, R. Sabourin, and E. Granger, 'Gaussian mixture modeling for dynamic particle swarm optimization of recurrent problems.' pp. 73-80. [2] T. T. Nguyen, S. Yang, and J. Branke, “Evolutionary dynamic optimization: A survey of the state of the art,” Swarm and Evolutionary Computation, vol. 6, pp. 1-24, 2012. [3] C. Cruz, J. R. González, and D. A. Pelta, “Optimization in dynamic environments: a survey on problems, methods and measures,” Soft Computing, vol. 15, no. 7, pp. 1427-1448, 2011. [4] H. Ben-Romdhane, E. Alba, and S. Krichen, “Best practices in measuring algorithm performance for dynamic optimization problems,” Soft Computing, vol. 17, no. 6, pp. 1005-1017, 2013. [5] I. Moser, and R. Chiong, 'Dynamic function optimization: The moving peaks benchmark,' Metaheuristics for Dynamic Optimization, pp. 35-59: Springer, 2013. [6] J. Branke, 'Memory enhanced evolutionary algorithms for changing optimization problems.' [7] C. Li, S. Yang, and D. A. Pelta, “Benchmark generator for the IEEE WCCI-2012 competition on evolutionary computation for dynamic optimization problems,” China University of Geosciences, Brunel University, University of Granada, Tech. Rep, 2011. [8] M. Mavrovouniotis, C. Li, S. Yang, and X. Yao, “Benchmark Generator for the IEEE WCCI-2014 Competition on Evolutionary Computation for Dynamic Optimization Problems,” 2013. [9] C. Li, and S. Yang, 'A generalized approach to construct benchmark problems for dynamic optimization,' Simulated Evolution and Learning, pp. 391-400: Springer, 2008. [10] J. Kennedy, and R. Eberhart, 'Particle swarm optimization.' pp. 1942-1948. [11] T. M. Blackwell, 'Swarms in dynamic environments.' pp. 1-12. [12] T. Blackwell, and J. Branke, 'Multi-swarm optimization in dynamic environments,' Applications of Evolutionary Computing, pp. 489-500: Springer, 2004. [13] S. Janson, and M. Middendorf, 'A hierarchical particle swarm optimizer for dynamic optimization problems,' Applications of evolutionary computing, pp. 513-524: Springer, 2004. [14] T. Blackwell, and J. Branke, “Multiswarms, exclusion, and anti-convergence in dynamic environments,” Evolutionary Computation, IEEE Transactions on, vol. 10, no. 4, pp. 459-472, 2006. [15] X. Li, J. Branke, and T. Blackwell, 'Particle swarm with speciation and adaptation in a dynamic environment.' pp. 51-58. [16] W. Du, and B. Li, “Multi-strategy ensemble particle swarm optimization for dynamic optimization,” Information Sciences, vol. 178, no. 15, pp. 3096-3109, 8/1/, 2008. [17] A. B. Hashemi, and M. R. Meybodi, 'A multi-role cellular PSO for dynamic environments.' pp. 412-417. [18] P. Novoa-Hernández, C. C. Corona, and D. A. Pelta, “Efficient multi-swarm PSO algorithms for dynamic environments,” Memetic Computing, vol. 3, no. 3, pp. 163-174, 2011. [19] I. G. Del Amo, D. A. Pelta, J. R. González, and A. D. Masegosa, “An algorithm comparison for dynamic optimization problems,” Applied Soft Computing, vol. 12, no. 10, pp. 3176-3192, 2012. [20] L. Changhe, Y. Shengxiang, and Y. Ming, 'Maintaining diversity by clustering in dynamic environments.' pp. 1-8. [21] A. Simões, and E. Costa, 'Evolutionary algorithms for dynamic environments: Prediction using linear regression and Markov chains,' Parallel Problem Solving from Nature–PPSN X, pp. 306-315: Springer, 2008. [22] Z. Zhi-Hui, Z. Jun, L. Yun, and H. S. H. Chung, “Adaptive Particle Swarm Optimization,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 39, no. 6, pp. 1362-1381, 2009. [23] Y. Shi, and R. C. Eberhart, 'Fuzzy adaptive particle swarm optimization.' pp. 101-106. [24] M. Clerc, and J. Kennedy, “The particle swarm-explosion, stability, and convergence in a multidimensional complex space,” Evolutionary Computation, IEEE Transactions on, vol. 6, no. 1, pp. 58-73, 2002. [25] T. Blackwell, 'Particle swarm optimization in dynamic environments,' Evolutionary computation in dynamic and uncertain environments, pp. 29-49: Springer, 2007. [26] R.-I. Chang, and P.-Y. Hsiao, “Unsupervised query-based learning of neural networks using selective-attention and self-regulation,” Neural Networks, IEEE Transactions on, vol. 8, no. 2, pp. 205-217, 1997. [27] R.-I. Chang, C.-C. Chu, Y.-Y. Wu, and Y.-L. Chen, “Gene clustering by using query-based self-organizing maps,” Expert Systems with Applications, vol. 37, no. 9, pp. 6689-6694, 2010. [28] R.-I. Chang, S.-Y. Lin, and Y. Hung, “Particle swarm optimization with query-based learning for multi-objective power contract problem,” Expert Systems with Applications, vol. 39, no. 3, pp. 3116-3126, 2012. [29] J.-W. Lin, W.-C. Chi, and R.-I. Chang, 'Particle Swarm Optimization Combined with Query-Based Learning Using MapReduce,' Future Information Technology, pp. 91-97: Springer, 2014. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54299 | - |
| dc.description.abstract | 多數現實世界的問題會因環境變動而改變,因此動態最佳化技術近年來逐漸受到重視。本論文提出一種詢問式學習粒子群演算法,根據最佳化過程所產生的歷史資料,學習問題環境特性並對演算法做出對應的改良,藉此改善不同特性之動態最佳化問題求解表現。本論文提出兩種主要改良方式,其一是根據環境變化特性自適應調整參數以及其二是預測最佳解位置變化。透過實驗知名動態最佳化基準GDBG所提供六種不同特性之動態環境變化設定,驗證本論文所提出之詢問式學習力自尋演算法能夠有效的從歷史資料中學習到問題特性,並以適當的回應來捕捉或預測環境變化後的最佳解位置,提高演算法的精準度以及廣度。實驗結果顯示所提出的演算法相對於原始mQSO演算法的解題效果改善了約11.37%,尤其在週期變化的動態最佳化問題中,詢問式學習方法有效地找到了最佳解的可能區域,而提升了約35.06%。 | zh_TW |
| dc.description.abstract | There is a growing interest in dynamic optimization problems as the optimal solution of real-world problem is usually changing over time. There are many challenges when facing DOPs. This thesis proposes a pilot study on Dynamic Particle Swarm Optimization with Query-Based Learning. We provide two QBL approaches, one with quantum parameter adaptation (QBLQPA) and another with optima prediction (QBLOP), to improve the optimizing behavior in dynamic environment. The main idea is to analyze the problem characteristics and to work out strategies with the obtained characteristics. By learning the problem characteristics from the historical data, our approaches evaluate whether the situation meets the prerequisites of QBL and activate the appropriate approach from the oracle to improve the optimization algorithm, particle swarm optimization. The well-known dynamic optimization benchmark, generalized dynamic benchmark generator system, is used to test the performance of our algorithm and the experimental results show that QBLQPA can adjust the number of quantum particles according to the shift severity of changing optima, and QBLOP can predict optimal position when finding some regular patterns in recurrent changes. Proposed algorithm can deal with different dynamic changes and outperforms original algorithm and its variant mPSODE reaching, on average, 11.37% and 8.00% improvement respectively. For the recurrent problems, our algorithm especially improves the solving ability by 35.06% with good prediction of possible optimal region. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:49:14Z (GMT). No. of bitstreams: 1 ntu-104-R02525061-1.pdf: 1508610 bytes, checksum: 3720fc376fe284c02152bf0ee57dab8e (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | CONTENTS
口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES vii Chapter 1 Introduction 1 1.1 Research Questions 1 1.2 General Background Information 2 1.3 Overview 3 Chapter 2 Literature Review 4 2.1 Dynamic Optimization Problems (DOPs) 4 2.1.1 The Challenges in Dynamic Optimization Problems 4 2.1.2 Real World Problems 6 2.2 Dynamic Optimization Problem Benchmarks 7 2.2.1 Moving Peak Benchmark (MPB) 7 2.2.2 Generalized Dynamic Benchmark Generator (GDBG) 8 2.3 Particle Swarm Optimization (PSO) 9 2.3.1 The PSO Algorithm 9 2.3.2 Recent Works in Dynamic Environment 10 2.3.3 Multi-Swarm PSO 11 2.4 Query-Based Learning (QBL) 12 Chapter 3 Proposed Method 14 3.1 Research Framework 14 3.1.1 QBLDPSO Framework 14 3.1.2 QBL Mechanism 15 3.2 Query-Based Learning Approaches 16 3.2.1 Quantum Parameter Adaptation (QPA) 17 3.2.2 Optima Prediction (OP) 19 Chapter 4 Performance Evaluation 22 4.1 Problem and Experimental Settings 22 4.2 Performance Measurements 23 4.3 Experimental Results 24 4.3.1 The Effect of QBLQPA 24 4.3.2 The Effect of QBLOP 31 4.3.3 Comparison with Other Algorithms 33 Chapter 5 Conclusions and Future Works 40 REFERENCE 42 | |
| dc.language.iso | en | |
| dc.subject | 詢問式學習 | zh_TW |
| dc.subject | 粒子群演算法 | zh_TW |
| dc.subject | 動態最佳化 | zh_TW |
| dc.subject | 詢問式學習 | zh_TW |
| dc.subject | 粒子群演算法 | zh_TW |
| dc.subject | 動態最佳化 | zh_TW |
| dc.subject | Particle swarm optimization | en |
| dc.subject | Query based learning | en |
| dc.subject | Dynamic optimization | en |
| dc.subject | Query based learning | en |
| dc.subject | Particle swarm optimization | en |
| dc.subject | Dynamic optimization | en |
| dc.title | 以詢問式學習機制改良粒子群演算法應用於動態環境之研究 | zh_TW |
| dc.title | Particle Swarm Optimization with Query-Based Learning in Dynamic Environment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 丁肇隆,林正偉,何建明,林書宇 | |
| dc.subject.keyword | 粒子群演算法,動態最佳化,詢問式學習, | zh_TW |
| dc.subject.keyword | Particle swarm optimization,Dynamic optimization,Query based learning, | en |
| dc.relation.page | 43 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 1.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
