請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54292
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 闕蓓德(Pei-Te Chiueh) | |
dc.contributor.author | Tai-Yuan Huang | en |
dc.contributor.author | 黃泰元 | zh_TW |
dc.date.accessioned | 2021-06-16T02:48:53Z | - |
dc.date.available | 2020-07-31 | |
dc.date.copyright | 2015-07-31 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-07-15 | |
dc.identifier.citation | 外文部分:
Astrup, T., Mosbaek, H. and Christensen, T.H. (2006) Assessment of long-term leaching from waste incineration air-pollution-control residues. Waste Management 26(8), 803-814. Beylot, A. and Villeneuve, J. (2013) Environmental impacts of residual Municipal Solid Waste incineration: A comparison of 110 French incinerators using a life cycle approach. Waste Management 33(12), 2781-2788. Boesch, M.E., Vadenbo, C., Saner, D., Huter, C. and Hellweg, S. (2014) An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland. Waste Management 34(2), 378-389. Bor, A.M., Hansen, K., Goedkoop, M., Riviere, A., Alvarrado, C. and Wittenboer, W.V.D. (2011) Usability of life cycle assessment for cradle to cradle purposes. NL Environment and NL Energy and Climate. Chang, C.Y., Wang, C.F., Mui, D.T., Cheng, M.T. and Chiang, H.L. (2009) Characteristics of elements in waste ashes from a solid waste incinerator in Taiwan. Journal of Hazardous Materials 165(1-3), 766-773. Chang, F.Y. and Wey, M.Y. (2006) Comparison of the characteristics of bottom and fly ashes generated from various incineration processes. Journal of Hazardous Materials 138(3), 594-603. Chen, C., Habert, G., Bouzidi, Y. and Jullien, A. (2010) Environmental impact of cement production: detail of the different processes and cement plant variability evaluation. Journal of Cleaner Production 18(5), 478-485. Chen, W., Hong, J. and Xu, C. (2014) Pollutants generated by cement production in China, their impacts, and the potential for environmental improvement. Journal of Cleaner Production. Chen, W.S., Chang, F.C., Shen, Y.H., Tsai, M.S. and Ko, C.H. (2012) Removal of chloride from MSWI fly ash. Journal of Hazardous Materials 237, 116-120. Chiang, K.Y. and Hu, Y.H. (2010) Water washing effects on metals emission reduction during municipal solid waste incinerator (MSWI) fly ash melting process. Waste Management 30(5), 831-838. Fruergaard, T., Hyks, J. and Astrup, T. (2010) Life-cycle assessment of selected management options for air pollution control residues from waste incineration. Science of the Total Environment 408(20), 4672-4680. Huang, C.C. and Ma, H.W. (2007) LCA domestication in Taiwan: combination with the environmental indicator system. Environmental Engineering and Management Journal 17(1), 21-27. Hung, M.L., Ma, H.W. and Chao, C.W. (2009) Screening the life cycle impact assessment methods and modifying environmental impact model to determine environmental burdens. Environmental Engineering and Management Journal 19(3), 155-164. Hung, P.C., Chi, K.H., Chen, M.L. and Chang, M.B. (2012) Characteristics of dioxin emissions from a Waelz plant with acid and basic kiln mode. Journal of Hazardous Materials 201, 229-235. Huntzinger, D.N. and Eatmon, T.D. (2009) A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. Journal of Cleaner Production 17(7), 668-675. Hyks, J., Astrup, T. and Christensen, T.H. (2009) Long-term leaching from MSWI air-pollution-control residues: Leaching characterization and modeling. Journal of Hazardous Materials 162(1), 80-91. Itoh, S., Tsubonie, A., Matsubae-Yokoyama, K., Nakajima, K. and Nagasaka, T. (2008) New EAF Dust Treatment Process with the Aid of Strong Magnetic Field. Isij International 48(10), 1339-1344. Jolliet, O., Margni, M.C., R., Humbert, S., Payet, J., Rebitzer, G. and Rosenbaum, R. (2003) IMPACT 2002+: A new life cycle impact assessment methodology. The International Journal of Life Cycle Assessment 8(6), 324-330. Kim, S.Y., Matsuto, T. and Tanaka, N. (2003) Evaluation of pre-treatment methods for landfill disposal of residues from municipal solid waste incineration. Waste Management and Research 21(5), 416-423. Koroneos, C. and Dompros, A. (2007) Environmental assessment of brick production in Greece. Building and Environment 42(5), 2114-2123. Kubonova, L., Langova, S., Nowak, B. and Winter, F. (2013) Thermal and hydrometallurgical recovery methods of heavy metals from municipal solid waste fly ash. Waste Management 33(11), 2322-2327. Kuo, N.W., Ma, H.W., Yang, Y.M., Hsiao, T.Y. and Huang, C.M. (2007) An investigation on the potential of metal recovery from the municipal waste incinerator in Taiwan. Waste Management 27(11), 1673-1679. Li, C., Nie, Z., Cui, S., Gong, X., Wang, Z. and Meng, X. (2014) The life cycle inventory study of cement manufacture in China. Journal of Cleaner Production 72(0), 204-211. Li, X.G., Yu, Z.Q., Ma, B.G. and Wu, B. (2010) Effect of MSWI fly ash and incineration residues on cement performances. Journal of Wuhan University of Technology-Materials Science Edition 25(2), 312-315. Ma, H.W., Matsubae, K., Nakajima, K., Tsai, M.S., Shao, K.H., Chen, P.C., Lee, C.H. and Nagasaka, T. (2011) Substance flow analysis of zinc cycle and current status of electric arc furnace dust management for zinc recovery in Taiwan. Resources Conservation and Recycling 56(1), 134-140. Machado, J., Brehm, F.A., Moraes, C.A.M., dos Santos, C.A., Vilela, A.C.F. and da Cunha, J.B.M. (2006) Chemical, physical, structural and morphological characterization of the electric arc furnace dust. Journal of Hazardous Materials 136(3), 953-960. Meylan, G. and Spoerri, A. (2014) Eco-efficiency assessment of options for metal recovery from incineration residues: A conceptual framework. Waste Management 34(1), 93-100. Nakajima, K., Matsubae-Yokoyama, K., Nakamura, S., Itoh, S. and Nagasaka, T. (2008) Substance flow analysis of zinc associated with iron and steel cycle in Japan, and environmental assessment of EAF dust recycling process. Isij International 48(10), 1478-1483. Okada, T., Tojo, Y., Tanaka, N. and Matsuto, T. (2007) Recovery of zinc and lead from fly ash from ash-melting and gasification-melting processes of MSW - Comparison and applicability of chemical leaching methods. Waste Management 27(1), 69-80. Ponsioen, T. (2015) Finding your way in multifuncational processes and recycling. SimaPro website. Quina, M.J., Bordado, J.C. and Quinta-Ferreira, R.M. (2008) Treatment and use of air pollution control residues from MSW incineration: An overview. Waste Management 28(11), 2097-2121. Rani, D.A., Boccaccini, A.R., Deegan, D. and Cheeseman, C.R. (2008) Air pollution control residues from waste incineration: Current UK situation and assessment of alternative technologies. Waste Management 28(11), 2279-2292. Saikia, N., Kato, S. and Kojima, T. (2007) Production of cement clinkers from municipal solid waste incineration (MSWI) fly ash. Waste Management 27(9), 1178-1189. Suetens, T., Klaasen, B., Van Acker, K. and Blanpain, B. (2014) Comparison of electric arc furnace dust treatment technologies using exergy efficiency. Journal of Cleaner Production 65, 152-167. Tsai, Y.A., Mao, I.F., Chi, K.H., Chang, M.B., Feng, C.C., Lin, C.H., Hung, P.C. and Chen, M.L. (2014) Health risk from exposure to PCDD/Fs from a Waelz plant in Central Taiwan. Aerosol and Air Quality Research 14(4), 1310-1319. Twardowska, I. and Szczepanska, J. (2002) Solid waste: terminological and long-term environmental risk assessment problems exemplified in a power plant fly ash study. Science of the Total Environment 285(1-3), 29-51. Wang, Y., Pan, Y., Zhang, L., Yue, Y., Zhou, J., Xu, Y. and Qian, G. (2015) Can washing-pretreatment eliminate the health risk of municipal solid waste incineration fly ash reuse? Ecotoxicology and Environmental Safety 111(0), 177-184. Xi, Y., Fei, T. and Gehua, W. (2013) Quantifying co-benefit potentials in the Chinese cement sector during 12th Five Year Plan: an analysis based on marginal abatement cost with monetized environmental effect. Journal of Cleaner Production 58, 102-111. Zimmermann, H.J. (2000) An application-oriented view of modeling uncertainty. European Journal of Operational Research 122(2), 190-198. 網頁資料: 行政院環保署,焚化廠營運管理資訊系統,2015年6月。 http://swims.epa.gov.tw/swims/swims_net/index.aspx 東南亞水泥,紅磚製成圖,2015年6月 http://www.southeastcement.com.tw/index.php?q=node/27 Suryakanta, The process of brick making, May 2015. http://civilblog.org/2014/02/25/4-primary-steps-involves-in-brick-manufacturing 中文資料: 台北市環保局北投垃圾焚化廠,「垃圾焚化灰渣再利用技術手冊」,計畫報告書 (2007) 台北市環保局北投垃圾焚化廠,「飛灰再利用示範驗證成果報告(含採樣監測分析結果報告)」,計畫報告書(2015) 江玄政、黃國恭、黃雪娟,「ISO 14000系列生命週期評估技術與應用手冊」,經濟部工業局 (2001) 行政院公共工程委員會,「公共工程飛灰混凝土使用手冊」 (1999) 行政院環保署,「感應耦合電漿原子發射光譜法」 (2013) 行政院環保署,「廢棄物及底泥中金屬檢測方法-微波輔助酸消化法」 (2015) 行政院原子能委員會,「都市垃圾焚化爐飛灰電漿熔融資源化處理技術開發」,成果報告書,核能研究所 (2005) 林修毅,「垃圾焚化飛灰資源化處理之研究—作為水泥原料」,碩士論文,國立臺北科技大學環境工程與管理研究所 (2013) 張坤森,「垃圾焚化衍生飛灰重金屬去除之方法」,產學合作計劃書,國立聯合大學環境與安全衛生工程學系 (2014) 張文菖,「水泥業二氧化碳減量策略研究及經濟效益分析」,碩士論文,中原大學土木工程學系 (2011) 許桓瑜,「都市污水處理廠之生命週期評估」,碩士論文,國立臺灣大學環境工程學研究所 (2014) 陳家煒、林奮宏,「台北市垃圾焚化飛灰再利用技術」,期刊,化工技術 第18卷第12期 (2010) 陳偉聖、周瑋珊、吳俊毅、申永輝,「台灣煉鋼集塵灰處理現況」,期刊,工業污染防治 116期 (2010) 黃承鈞,「都市垃圾焚化飛灰應用於燒製紅磚資源化之研究」,碩士論文,淡江大學水資源及環境工程學研究所 (2010) 楊英賢,「生命週期評估與不確定性分析應用於火力電廠與燃料選擇」,碩士論文,國立成功大學環境工程學研究所 (2008) 董建鑫,「摻料對垃圾焚化飛灰熔渣砂漿抗壓強度之影響」,碩士論文,國立聯合大學土木與防災工程學研究所 (2008) 駱尚廉、蕭代基,「環境經濟分析」,台北市,曉園出版有限公司 (2007) 蕭代基、鄭蕙燕、吳珮瑛、錢玉蘭、溫麗琪,「環境保護之成本效益分析:理論、方法與應用」,台北市,俊傑書局 (2002) 蕭錫卜,「都市垃圾焚化飛灰添加於紅磚進料之生命週期評估」,碩士論文,淡江大學水資源及環境工程學研究所 (2010) 賴宥霖,「台北都會區垃圾焚化飛灰衛生掩埋滲出水中重金屬特性」,碩士論文,國立臺灣大學環境衛生研究所 (2008) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54292 | - |
dc.description.abstract | 在現今全球人口增加的狀況下,都市廢棄物的產生隨之漸增,伴隨而來的垃圾處理技術也須進行考量,自從民國80年開始,政府開始推廣以「焚化為主,掩埋為輔」的垃圾處理政策,以減輕垃圾掩埋的負擔,但焚化廠還是會產生殘渣,包含飛灰及底渣,其中飛灰被定義為有害廢棄物,更必須妥善處理飛灰,而我國最常使用技術為固化掩埋,反而更增加掩埋場的負擔,因此近幾年台北市政府開始推動焚化飛灰再利用的方案,鼓勵各焚化廠將飛灰妥善再利用,例如再利用成水泥、紅磚、鹼劑、飛灰熔融處理製成骨材等,不過這些再利用技術十分新穎,飛灰添加後會造成製程環境衝擊增大,在本研究目的主要探討目前國內外常用焚化飛灰處理及再利用技術之環境衝擊與成本,評估最合適的飛灰再利用技術。
本研究探討飛灰處理流程為經飛灰水洗程序後,接著四個情境,1)固化掩埋、2)再利用成水泥、3)再利用成紅磚、4)再利用成鹼劑於華爾滋法,因此本研究分為兩個階段,第一部分為飛灰水洗前後進行實驗分析重金屬成分,來了解水洗前後飛灰性質的差異,第二部分則比較飛灰處理及再利用流程的生命週期評估,盤查程序的資料透過實廠及文獻得到,並使用SimaPro生命週期評估軟體及衝擊評估IMPACT 2002+進行最後環境衝擊結果的闡述。在實驗結果部分,發現雖然水洗後飛灰毒性較為穩定,但水洗後飛灰會有重金屬富集現象;而在生命週期評估比較後結果,以情境四衝擊最低,其次為情境三、情境一,衝擊最高則是情境二,主因為情境四中回收氧化鋅效益過高,而使此情境接近零衝擊。 未來隨著人口增加,土地利用不足等問題,在焚化飛灰再利用的議題越顯重要,更需要其他飛灰再利用的研究進行探討,如其他經濟、社會層面的考量、飛灰重金屬再利用後溶出狀況,從環境衝擊角度來看,本研究可提供政府焚化飛灰再利用於環境衝擊層面的比較與考量,選擇飛灰再利用較佳的方案以作為政策。 | zh_TW |
dc.description.abstract | As global population has increased, the generation of municipal solid waste has also increased and its treatment is a salient issue for many governments. Fly ash is a byproduct of solid waste incineration and is regarded as hazardous waste. Yet fly ash can be reused in cement, bricks, alkaline, aggregate sand other treatments. However, these fly ash reuse treatments might create higher environmental impacts. Therefore, the study aims to discuss the most common fly ash reuse and treatments and evaluate them by environmental impact and cost benefit analysis, to choose the better fly ash reuse treatment alternatives.
This research discusses four kinds of fly ash treatments scenarios: 1) Landfill after solidification, 2) Reuse as cement, 3) Reuse as bricks, 4) Reuse as alkaline in Waelz process, and evaluates each in two parts. The first part experimental, which analyzed heavy metal composition before and after washing process. The second part is to evaluate fly ash reuse treatment by life cycle assessment. Inventory data were obtained from commercial operation factories and references, and LCA software SimaPro and environmental impact model IMPACT 2002+ were used to evaluate the outcome of LCA. It was found that although washed fly ash can stabilize toxic substances, it also can increase heavy metal concentration, In LCA portion, the highest impact scenario is scenario 2, second is scenario 1, third is scenario 3, the lowest impact is reusing as alkaline of the low impact of scenario 4 is due to the benefit from recycling zinc. Fly ash reuse treatment will be increasingly important and will require many considerations. In terms of environmental impact, this research aims to provide a holistic comparison between different fly ash reuse treatments to further recommendation of better fly ash reuse treatment. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:48:53Z (GMT). No. of bitstreams: 1 ntu-104-R02541201-1.pdf: 3524792 bytes, checksum: 4e9dddd1abde6b13d68d8a2b1cd0e475 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 中文摘要 I
Abstract II 目錄 III 圖目錄 V 表目錄 VI 第一章 緒論 1 1.1研究動機與目的 1 1.2研究架構與流程 2 第二章 文獻回顧 4 2.1 焚化飛灰性質 4 2.1.1焚化飛灰定義及來源 4 2.1.2焚化飛灰之基本性質 5 2.1.3水洗後焚化飛灰之性質 7 2.2焚化飛灰處理及再利用技術 7 2.2.1分離處理 8 2.2.2熱處理 10 2.2.3固化穩定化 10 2.2.4 焚化飛灰再利用 11 2.2.3國內外處理及再利用現況 20 2.3生命週期評估 21 2.3.1方法介紹 21 2.3.2衝擊評估模式介紹 24 2.3.3生命週期評估之敏感度與不確定性分析 27 2.3.4生命週期評估之在地化 29 2.3.4焚化飛灰再利用之生命週期評估 32 2.4成本效益分析 34 2.4.1方法介紹 34 2.4.2環境成本效益評估 36 第三章 研究方法 37 3.1 焚化飛灰水洗前後之性質分析 37 3.1.1飛灰採樣 37 3.1.2表面質地分析 37 3.1.2重金屬含量分析 38 3.2 生命週期評估方法 40 3.2.1目標與範疇界定 40 3.2.2盤查分析 43 第四章 結果與討論 51 4.1 焚化飛灰水洗前後之基本性質 51 4.1.1 表面分析及半定量分析 51 4.1.2 重金屬分析 55 4.2 飛灰處理技術之生命週期評估 58 4.2.1水洗前處理之環境衝擊 58 4.2.2水洗飛灰處理及再利用方案之環境衝擊 60 4.2.3各方案之環境衝擊比較 65 4.2.4各方案之環境衝擊比較(不考慮效益) 71 4.2.5各方案之溫室效應潛勢 73 4.3 生命週期評估之效益、敏感度分析與不確定性分析 74 4.3.1再利用飛灰於建材之敏感度分析 74 4.3.2各情境之敏感度分析 78 4.3.3各情境生命週期評估之不確定性分析 81 4.4 飛灰處理技術之成本效益分析 84 4.5 綜合效益評估 90 第五章 結論與建議 92 5.1 結論 92 5.2 建議 94 參考文獻 96 | |
dc.language.iso | zh-TW | |
dc.title | 焚化飛灰再利用情境之特性與生命週期評估 | zh_TW |
dc.title | Analysis of MSWI Fly Ash Reuse in Property and Life Cycle Assessment | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 馬鴻文(Hwong-Wen Ma),駱尚廉(Shang-Lien Lo) | |
dc.subject.keyword | 焚化飛灰,水洗程序,飛灰再利用技術,生命週期評估,成本效益分析, | zh_TW |
dc.subject.keyword | MSWI fly ash,Washing process,Fly ash reuse treatment,Life cycle assessment,Cost benefit analysis, | en |
dc.relation.page | 102 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-07-15 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 3.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。